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The Folding of Triangulated 
Cylinders, Part II: 
The Folding Process 
In the first paper of this series we have introduced a class offoldable triangulated 
cylinders. In this paper we consider three particular examples of these cylinders and 
analyse computationally the way they fold. We show that this process is nonuniform 
and that it consists of two phases. The first unsteady phase involves the gradual 
buildup of strain energy in a "shape transition region." In the second phase the 
transition region moves toward the bottom of the cylinder under almost zero force. 
Although the behavior of the three example cylinders is qualitatively similar, the 
peak force on the cylinder, as well as the peak strain, have different magnitudes, 
in agreement with a result in our first paper. 

1 Introduction 
In Guest and Pellegrino (1994), henceforth referred to as 

Part I, we have examined the folding properties of triangulated 
cylinders like that shown in Fig. 1. By considering a uniform 
folding mode, which is a simplification of the mode observed 
in physical experiments, we obtained preliminary estimates of 
the strains imposed on a triangulated cylinder during folding. 
In this paper we restrict our attention to a particular type of 
cylinder which, in terms of the geometric parameters intro-
duced in Part I, have m = 1 and lb/la = 1 and hence can be 
packaged "flat" into prismatic stacks of plates. We consider 
three cylinders of this type, with n = 6,1, and 8, and analyze 
computationally the way they fold when pressed down by a 
flat plate. Our prime interest, of course, is in the level of 
straining induced by this process and also the force required 
to fold a cylinder. We are also interested in the shape of the 
transition region immediately ahead of the fully packaged re-
gion, and the decay pattern of the strain field. Such infor-
mation is needed for the design, manufacture, and testing of 
foldable cylinders. Indeed, only after obtaining some prelim-
inary results of the investigation reported in this paper was it 
possible to manufacture the Al-alloy cylinder which is shown 
in Fig. 1 of Part I. 

In the next section we set out our computational approach 
which can handle the inextensional mechanisms present at the 
end of a triangulated cylinder (activated only during the early 
stages of folding), and also the variable boundary conditions 
due to the unilateral support conditions imposed by the loading 
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Fig. 1 Triangulated cylinder with m = 1, n = 7, /,,//„ = 1, and /„//„ = 
v'3, folded by moving down a rigid plate; (a) fully extended configuration, 
k = 1; {b) partially folded configuration, k = 12. The bottom n nodes of 
the cylinder are fully restrained. The coordinate system O, x, y, z has 
the z-axis aligned with the axis of the cylinder; the bottom node lies in 
the x-y plane. 

plate. Then, in Section 3 we present and discuss the results 
obtained for a cylinder with n = 7, which folds down to a 
hexagonal prism, and compare its response to that of cylinders 
with n = 6 and n = 8: all cylinders have m = 1 and lb/la = 
1. Although the folding process is fundamentally the same for 
all of them, it turns out that the peak strains, the peak force 
on the loading plate, etc., tend to become smaller as n in-
creases.1 

A number of cylinders have now been tested. Many features of their behavior 
agree with the results presented here, but some other interesting features have 
also emerged. They will be discussed in a third paper in this series. 
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Fig. 2 (a) Forces acting on the top plate; (b) the corresponding forces 
on the top k nodes of the cylinder 

2 The Algorithm 
A simple analytical model of a triangulated cylinder is a 

truss structure having linear elastic bars of equal cross-section 
along the edges of the triangles and connected at the nodes by 
frictionless pin-joints. There are three types of bars, a, b, c, 
lying on the edges labeled thus in Fig. 3 of Part I. The bottom 
n nodes of the structure are fully fixed. The structure is com-
pressed by a frictionless, rigid plate which is connected to a 
rigid foundation at a single point. To simulate the folding 
process, this point is gradually drawn towards the bottom end 
of the structure. For simplicity, the thickness of the triangular 
plates making up the cylinder is neglected. 

This model can capture key aspects of the folding process, 
such as the formation of a shape transition region under grad-
ually increasing force, and its propagation under constant force, 
which have been observed experimentally. It is also useful to 
make comparisons between triangulated cylinders with differ-
ent parameters. 

The algorithm presented here is based on a Force Method 
approach, hence it requires that the overall equilibrium, com-
patibility, and flexibility matrices be available for any given 
configuration of the cylinder. These matrices are obtained by 
assembling the basic matrices of two types of elements, the 
pin-jointed bars and the rigid loading plate. Of course, there 
is no difficulty in setting up the matrices for a pin-jointed bar 
(Livesley, 1975). But the loading plate is not a standard element 
and we shall briefly explain how to set up the three matrices 
required, in the hypothesis that all forces acting on the loading 
plate are orthogonal to it. 

Let us consider the loading plate shown in Fig. 2(a), whose 
current configuration is defined by the position of point P and 
by the unit normal vector u. The plate is acted upon by k 
interaction forces between the plate and the k joints of the 
cylinder in contact with it. Equal and opposite forces act upon 
the top k joints of the cylinder, as shown in Fig. 2(b). The 
plate is also acted upon by a force of magnitude R and a couple 
of magnitude Q, applied to it by the foundation through the 
connecting hinge at P. All of these forces, as well as the vector 
representing Q, are orthogonal to the plate, i.e., parallel to u. 
In addition to point P, let us define k points on the plate, Pu 
..., Pk; an interaction force of magnitude Rt passes through 
point Pj. Only compressive R/'s—i.e., opposite to those shown 
in Fig. 2—are physically meaningful and, although no restric-
tions on their sign will be imposed in this study, this is a point 
worth considering in future work. 

Although, in general, there are six independent equations 
of equilibrium for a rigid body, in this particular case—because 
the plate is under the action of a system of parallel forces— 
two equations of force equilibrium are identically satisfied. 
Hence, we need to consider only the equilibrium of forces in 
the u-direction, which yields the matrix equation 

[1 . . . 1 1] 
Rk 

R 

(1) 

and the equilibrium of moments about any point. Because of 
the kinematic implications of these equations (see below) it is 
easiest to take moments about a set of axes parallel to x, y, 
and z (defined in Fig. 2(b)) and passing through P. The three 
moment components of the interaction force at Pt are 
(P, - P) x (-u)Rj, hence the three equations of moment 
equilibrium for the plate can be written in the form 

[(Pl-P)xu...(Pk-P)xuu] 

' Ri~ 

Rk 

_Q_ 

"o" 
0 
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(2) 

The r.h.s. of Eq. (1) and (2) have been set directly equal to 
zero because there are no external forces acting on the plate. 
Note that the reactions R and Q have been put among the 
internal forces because their values are not known a priori. 

By assembling together Eqs. (1) and (2) we obtain a system 
of four equations in k + 2 generalized stresses, whose 4 by k 
+ 2 coefficient matrix is the equilibrium matrix Ap for the 
plate: 
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(3) 
The transpose of Ap relates the kinematic variables corre-

sponding to the static variables in Eq. (3) (Livesley, 1975). The 
k + 2 generalized strains, corresponding to the vector on the 
l.h.s. of Eq. (3), are the extensions e-, of the "connectors" 
between the plate and the top & joints of the cylinder, together 
with the ^-displacement of point P, dPu, and the plate rotation 
4> about the u-axis. The four generalized displacements are dPu, 
a, /3, 7. The variable dPu appears both as internal and external 
and so it should be no surprise that the corresponding kinematic 
equation is a simple identity. The variables a, /3, 7 are the 
small rotations of the plate about the x, y, and z-axis, re-
spectively. The system of kinematic equations is 

(4) 

The third matrix is straightforward: because the plate and 
its foundation are rigid all entries in the k + 2 by k + 2 
flexibility matrix Fp must be zero. 

Note that the above formulation, with four external vari-
ables, is not the most compact, only two variables are really 
needed. The size of all three matrices for the plate could be 
reduced by two rows and two columns, at the expense of a 
few extra computations. 

The matrices derived above are assembled together with the 
matrices for the pin-jointed bars to form the overall matrices 
for the cylinder. Let N be the total number of nodes in the 
cylinder and B the total number of bars. Because the bottom 
n nodes are fully fixed to a rigid foundation, the corresponding 
3n equilibrium equations need not be considered. At the top 
of the cylinder the k nodes in contact with the rigid plate do 
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not need any special treatment, apart from noting that each 
of these joints is subject to an interaction force of magnitude 
.Rj, as shown in Fig. 2(b), as well as to the axial forces in the 
bars connected to it. Hence, there are 3 (TV- ri) + 4 equilibrium 
equations in B + k + 2 generalized stresses a and the overall 
equilibrium matrix A has size 3(TV — «) + 4 by B + k + 2. 
Similarly, the generalized strain vector e has size B + k + 2, 
while the generalized displacement vector d has size 3(TV - n) 
+ 4; the flexibility matrix F has size B + k + 2 by B + k 
+ 2. 

With these tools, the folding of a triangulated cylinder can 
be analyzed. One begins by setting up the cylinder in its fully 
extended configuration (as in Section 2 of Part I but w.r.t. the 
Cartesian coordinate system defined in Fig. 1(a)). The loading 
plate is set initially parallel to the x-y plane and the connection 
point P has coordinates P = (0, 0, zp), where zp is also the z-
coordinate of the top node of the cylinder. Obviously, at the 
beginning this is the only node which is in contact with the 
loading plate, hence k = 1. 

To compute the folding sequence, the value of Zp is decreased 
in small steps; note that <5, the overall shortening of the cylinder, 
see Fig. 1(b), is equal to the difference between the initial Zp 
and its current value. In each step the starting configuration 
is based on the shape of the cylinder computed at the end of 
the previous step, only Zp is changed. Obviously, this imposes 
some strains in the k connectors between the plate and the 
cylinder and, because they are rigid, these strains must be 
relieved through suitable displacements. Note that, with this 
approach, the folding of the cylinder is achieved simply by 
moving one of its boundaries, i.e., without applying any ex-
ternal forces (the force on the loading plate is treated as an 
internal force, thus simulating a displacement controlled test). 
If the imposed strains are compatible they produce, of course, 
only a displacement from the current configuration. This is 
always the case at the beginning of the folding process and, 
indeed, at this point the configuration of the loading plate is 
not uniquely defined. In our simulations, a unique configu-
ration is selected by minimizing the generalized displacement. 
In general, though, the imposed strains have an incompatible 
component which sets up a state of self-stress in the system. 
The calculation of the effects of these strains is geometrically 
nonlinear because (i) the plate is free to rotate about any in-
plane axis (although no w-rotation is allowed), and (ii) it is 
fairly sensitive to small geometry changes. A further source 
of nonlinearity is the variability of k, discussed below. 

For each value of Zp, our algorithm performs a series of 
Newton-Raphson iterations to find the new shape of the cyl-
inder and the corresponding value of R. Initially, the displace-
ment d° from the current configuration is set to zero and the 
initial strain Ae0 involves strains in the k connectors only. In 
iteration /, the system is in the trial configuration defined by 
d'_1. The strains Ae0 are given, for the bars, by the difference 
between current trial length and initial, unstrained length. The 
extensions of the k plate-cylinder connectors are equal to the 
distance between the top k joints and the loading plate. The 
overall equilibrium matrix A' is formed in this configuration 
and, after computing the Singular Value Decomposition of A', 
the stresses ACT and displacements Ad induced by Ae0 are found 
(Pellegrino, 1993). Finally, a new trial configuration is ob-
tained from 

d' = d'"' + Ad. 
The iteration stops when Ad is sufficiently small. If any nodes 
of the cylinder have gone past the plate, k is incremented by 
1 and a new series of Newton-Raphson iterations is started. 
Finally, the shape of the cylinder is updated. 

3 Simulation of the Folding Process 
Let us consider the triangulated cylinder shown in Fig. 1(a). 

It has m - \, n = 7, lb/la = 1, and lc/la = V I . According 

to Part 1, an unrestrained cylinder with these parameters has 
two strain-free configurations: one fully folded, the other fully 
extended. Figure 1(a) shows the fully extended configuration. 

This cylinder will be modelled as a pin-jointed truss, as 
discussed in Section 2: the total numbers of joints and bars 
are TV = 36 and B = 86; bars joining two fully restrained 
nodes have been taken out. All bars have equal axial stiffness 
AE. In the extended configuration node 1 (at the bottom of 
the cylinder) has z = 0, while node 36 (at the top of the cylinder) 
has z = 4.175 /„.' The bottom n = 1 nodes are fully restrained: 
the z-coordinate of the last restrained node is 0.716 /„. Clearly 
the folding of the cylinder cannot go past this point. The rigid 
plate at the top of the cylinder is set initially in contact with 
node 36, hence Zp = 4.175 /„ and k = 1. At this stage 5 = 0. 
Starting from this configuration we have lowered the plate by 
decreasing ZP in steps of /„/100. 

Results from a simulation involving approximately 300 steps 
are shown in Figs. 3-4. Figure 3(a) shows dimensionless plots 
of the force R and the strain energy U in the cylinder. The 
cylinder begins to fold under zero force, hence remaining strain-
free, until k = 4. Then R starts increasing until, when k = 
8, it reaches a peak and then falls off. Subsequently, R pe-
riodically oscillates around zero. The strain energy increases 
considerably when k goes from 3 to 9, but then remains ap-
proximately constant. In fact the strain energy plots show a 
slow increase, due to end effects in the top part of the cylinder, 
since the fully folded region does not yet contain enough bars 
to allow the natural decay of strain to take place. 

Fig. 3(b) shows some more details of the steady state regime; 
the periodic variation of R is directly related to changes in k. 
R is negative, i.e., tensile, just before a new node comes into 
contact with the plate and there is a sudden stiffness increase 
caused by the activation of an extra constraint, which corre-
sponds to an increment in the value of k. As 5 is increased, R 
increases until a limit point, it then decreases until the beginning 
of a new cycle. Note that in our simulation R is negative at 
the beginning and at the end of a cycle, which is unrealistic. 
In practice, a small spring-back of the folded region is likely 
to occur. 

The folding cylinder is a continuously softening system, with 

wherever this quantity is defined, but the system is periodically 
stiffened as new nodes come into contact with the top plate. 
Although unusual, this behavior has some similarities to the 
axial crushing of cellular materials (Gibson and Ashby, 1988). 

Next, we look at strain variation during steady-state folding. 
For a clear picture of strain distribution it is best to consider 
the axial strain ec in the 28 c bars, plotted in Fig. 3(c). As the 
plate is pushed down, the most significant part of the strain 
field, say ec > 10~3, simply translates from right to left, i.e., 
from the top towards the bottom of the cylinder. However, a 
region involving compressive strains gradually builds up in the 
wake of the shape-transition region and the strain energy as-
sociated with it is responsible for the slow strain energy increase 
discussed earlier. 

The most significant feature of Fig. 3(c) is the peak strain 
attained: here ecmax = 8.7 • 10"3. Similar plots are obtained 
for the a and b bars, whose (compressive) peak strains are 
'5.0 • 10"3 and 6.9 • 10"3, respectively. 

Figure 3(c?) shows strain plots, again for the c bars only, 
(i) just after a node has come into contact with the plate, (ii) 
when R reaches its peak, and (iii) just before a new mode 
comes into contact with the plate. Here, k = 14 throughout. 
Note that the peak strain remains essentially unchanged during 
this cycle. 

Figure 3(e) shows the orientation of the loading plate by 
means of plots of the x, y, and z-components of u. The plate 
normal essentially describes a small conical motion about the 

780 / Vol. 61, DECEMBER 1994 Transactions of the ASME 

Downloaded 20 Mar 2009 to 128.95.217.6. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Fig. 3(a) 

Fig. 3(b) 

E r .10 J 

(i) 1.02 

30 

Z-axis. Figure 4 shows four snapshots from the simulation 
process, including the initial configuration. 

Next, we compare the behavior of the three cylinders shown 
in Fig. 2 of Part I, to gain further insight into the folding 
process. One of them is the triangulated cylinder examined 
above, with m = 1, n = 7, lb/la = 1, and lc/la = V^- The 
two other cylinders also have m = 1 and lb/la = 1: the first 
has n = 6 and lc/la = 1.618; the second has n = 8 and /<//„ 
= 1.802. 

The folding of these two cylinders has been analyzed by the 
technique described above. For n = 6 we have considered a 
pin-jointed truss with N = 31 andB = 74. In the fully extended 
configuration ZP = 4.912 /„. To initiate the correct folding 
pattern, the simulation had to start with three nodes in contact 
with the plate. If a smaller number is chosen, the top plates 
start folding outwards and quickly the process comes to halt. 
Figure 5(a) shows plots of the force R and of the strain energy 
U. As for n = 7, there is a large force peak and a corresponding 
increase in strain energy soon after the beginning of the process; 

E r . 1 0 

Fig. 3(e) 

Fig. 3 Folding of cylinders with m = 1, n = 7, lb/l„ = 1, and /„//„ = 
\/3; (a) plots of R and U in the cylinder; (b) detailed data for steady-state 
phase; (c, d) cc during steady-state folding. Bars take the number of their 
bottom node, and nodes are numbered going up on the a helix. Discrete 
values have been joined, for legibility; (e) three components of u. 

Fig. 4 Fully extended view of cylinder with m = 1, n = 7, lb/l, = 1, 
and lc/la = V3, followed by three snapshots from the folding sequence 

afterwards, R oscillates around zero and U remains approxi-
mately constant. Figure 5(b) shows the strain field in the c 
bars; as in Fig. 3(c) the most significant part of the strain field 
simply translates from right to left. Qualitatively these results 
are the same as for the earlier cylinder, but the key difference 
between the cases n = 6 and n = 7 is in the magnitudes of 
forces and strains: Rmm and ecraax are, respectively, 14 and 4 
times higher for n = 6 than for n = 7. 

For the case n = 8 we have considered a pin-jointed truss 
with N = 49 and B = 122 which, when fully extended, has 
Zp = 2.818 /„. Starting from this position the plate has been 
lowered gradually: the folding behavior of this cylinder, see 
Fig. 6, is essentially identical to the earlier cases. Note that the 
trend towards lower forces and strains continues: i?max and 
«cmax are, respectively, 150 and 17 times higher for n = 1 than 
for n = 8. The complete set of values is available in Table 1. 
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Fig. 6(a) 

Ec.icr 

( i l 1.26 

Fig. 5 Folding of cylinders with m = 1, n = 6, lb/lg = 1, and \J\a 
1.618 

t , .10 

Fig. 6(d) 

Fig. 6 Folding of cylinders with m = 1, n = 8, lbl\B = 1, and /„//„ 
1.802 

4 Discussion 
Before discussing the results obtained in this paper it is 

necessary to comment on the validity of the assumptions behind 
our approach, namely that a triangulated cylinder can be mod-
eled as a simple pin-jointed truss and that plate thickness can 
be neglected. Although more complex models could be con-
sidered, we think that it would be pointless to do this in a 
purely conceptual study. More detailed models would need to 
be firmly based on the mechanical features of a particular 
triangulated cylinder. For example, in the model shown in Fig. 
1 of Part I the plates are connected by thin plastic links which 
are very flexible in comparison with the plates, and the de-
formation of such a system is concentrated in these connec-
tions. If, on the other hand, more traditional mechanical hinges 
are used, the effects of joint tolerance would have to be con-
sidered. Finally, the pin-jointed truss model assumes that the 
connections between plates offer no resistance to bending. If 
this is not the case there would have to be a larger strain energy 
increase during folding, but we do not expect higher peak 
strains. Regarding the second assumption, we expect that plate 
thickness does not play a significant role because its effects 
do not accumulate in this case unlike, e.g., the wrapping of a 
membrane around a central hub (Guest and Pellegrino, 1992). 

The simulations presented in Section 3 have revealed that 
the folding of a triangulated cylinder consists of two phases. 
The first unsteady phase involves a gradual buildup of strain 
energy under a large applied force, which might provide an 
effective self-locking feature. During this phase a shape tran-
sition region from the fully extended to the fully folded part 
of the cylinder is formed and, once the energy barrier that 
prevents folding has been overcome, a second steady-state 
phase of the process begins. During this phase the shape tran-
sition region moves towards the bottom of the cylinder under 
almost zero force. These observations agree qualitatively with 

Table 1 emax and flmax in cylinders with m = 1 and lb/la = 1 

n 
6 
7 
8 

Fa' max 
2.0-10-2 
5.0-10"3 

3.5-10-4 

l̂ b' max 
2.7-10-2 

6.9-10-3 

4.1-10"4 

l̂ c' max 
3.610-2 
8.710-3 

5.2-10-" 

Rraax/AE 
2.6-10-2 

1.8-10-3 

1.2-10-5 

the behavior of several models, including that shown in Fig. 
1 of Part I and many card models. 

In the three cylinders which have been analyzed in this paper 
both the peak force and peak strain decrease rapidly as n 
increases, as noted in Section 3, but the role played by this 
particular parameter should not be overvalued. The aim of the 
present study was a characterization of the general folding 
behavior of triangulated cylinders for which we selected three 
cylinders that fold down to simple prisms. Although a detailed 
investigation of design parameters is beyond the scope of the 
present investigation, it can be noted that the key factor de-
termining peak force and peak strain is the size of the geometric 
incompatibility shown in, e.g., Fig. 6 of Part I. The particular 
combination of the parameters m, n, lb/la, and lc/la which leads 
to it is not very significant. Thus, for example, a similar range 
Of emax and Rmax to that obtained here, for n = 6, 7, 8 but m 
= 1 and lb/la = 1, could be obtained with constant n, by 
varying lb/la. 

Finally, it is interesting to compare the present simulations 
of the folding process with the approach pursued in Part I. A 
comparison has been made in Table 2 for the case m = 1, 
n = 1, lb/la = 1, and lc/la = V3. The table gives also "mod-
ified" peak strains, estimated in the spirit of Part I but allowing 
all bar lengths to vary simultaneously with constant ratios lc/ 
la and lb/la. Note that these simplified estimates are higher than 
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Table 2 Comparison of predictions in Part I and Part II, for cylinders 
with m = 1, n = 7, lb/la = 1, and IJI, = V3 

Parti 
Part 1 (modified) 

Part 2 

'^a' max 

0 
1.210 2 

5.010"3 

'£b' max 

0 
1.2-10-2 

6.910 3 . 

I^c' max 

2.510"2 

1.3-102 

8.710-3 

the predictions obtained with the present method, hence "safe' 
for preliminary design of foldable cylinders. 
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