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The Folding of Triangulated 
Cylinders, Part I: Geometric 
Considerations 
This study was inspired by a model of a triangulated cylindrical shell made by C. 
R. Calladine during an investigation of the mechanics of biological structures. The 
model consisted of identical triangular panels on a helical strip and had a small-
displacement internal inextensional mechanism. It is shown that many triangulated 
cylinders broadly similar to Calladine's model can be folded down to a compact 
stack of plates: only small strains, whose magnitude can be made arbitrarily small 
by the choice of suitable design parameters, are imposed during folding. A general 
geometric formulation of the problem is presented and then, assuming that the 
folding process is uniform, the folding properties of any triangulated cylinder of 
this generic type are discussed. 

1 Introduction and Some Simple Examples 
The work described in this paper is part of a series of related 

projects in the area of deployable structures whose general aim 
is the development of simple and effective concepts. An over-
view of recent work in this field has been compiled by Kwan 
(1991); other concepts which have emerged from recent work 
at Cambridge can be seen in Kwan, You, and Pellegrino (1993) 
and Guest and Pellegrino (1992). 

The present study was inspired by a cardboard model of a 
triangulated cylindrical shell made by C. R. Calladine during 
an investigation of the mechanics of biological structures. This 
model consisted of identical triangular panels on a helical strip 
and had a small-displacement internal inextensional mecha-
nism. We decided to explore the possibility of transforming 
its small-displacement mechanism into a large-displacement 
motion by which a triangulated cylindrical shell could be folded 
down to a compact stack of plates. Quite quickly we found 
many arrangements that would allow this: only small strains, 
whose magnitude can be made as small as required by choosing 
suitable design parameters, are imposed during folding. Re-
cently we have found a more general way of approaching the 
problem, which considers all possible triangulated cylinders of 
the same generic type. 

In this paper, after describing the general configuration of 
a triangulated cylinder based on one or more helical strips, we 
identify those particular configurations which are suitable for 
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folding. Our estimates of strain levels in the plates will be 
based on the simplifying assumptions that the folding process 
is uniform and that only one side of each triangle can change 
its length. Based on the insight gained from this approach, in 
a separate paper (Guest and Pellegrino, 1994) we have removed 
these assumptions and simulated the folding process of some 
particular cylinders. Before considering the fully general case 
in the next sections, we introduce the problem by discussing 
briefly some specific examples. 

Figure 1 shows photographs of the folding of a particular 
triangulated cylinder when a flat plate on the top is gradually 
pushed down. In Fig. 1(a) the model is nearly fully extended; 
only a few triangular plates have been packaged. Then, as a 
small axial force is applied to the top plate, more and more 
triangles become part of the prismatic stack at the top of the 
cylinder and, in Fig. 1 (c), only a few triangles are still extended. 
The packaged configuration of this particular cylinder is a 
heptagonal prism. All cylinders made from isosceles triangles, 
like this one, fold down to prisms. They are a special case for 
which the general parameter n—defined in Section 2—becomes 
equal to one plus the number of sides in the packaged con-
figuration. Hence, the triangulated cylinder of Fig. 1 has n = 8. 

In this paper it is assumed that the plates have negligible 
thicknesses. 

Figure 2 shows line drawings of triangulated cylinders with 
n = 6, 7, and 8. As for all cylinders considered in this paper, 
they are strain-free both in their fully extended and fully folded 
configurations. In each cylinder all triangles are identical, and 
their sides are denoted by a, b, and c. These particular cylinders 
are made from isosceles triangles and hence their geometry is 
quite easy to analyze. For example, for n = 7 all corners of the 
triangles in the packaged configuration coincide with the cor-
ners of a hexagon, as shown in Fig. 2{b.ii). Thus, the lengths 
of sides a and b, la = lb, are related to the length of side c, lc, 
by the relationship 
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Flg.1(a) Flg.1(b)
Fig. 1 Folding sequence of triangulated cylinders with m= 1, n = 8,
Ibll.= 1, le//.= 1.802. The model shown has AI·alloy plates and flexible
plastic hinges; its fully extended height Is approximately 250 mm.

Fig.1(e)

This observation has been confirmed by detailed computations
(see Guest and Pellegrino, 1994) but now, having used these
specific examples purely for illustration, we are ready to begin
a proper investigation of the geometric design of triangulated
cylinders, with the aim of identifying their folding properties.
The layout of the paper is as follows. Section 2 introduces

the generic configuration in terms of three sets of helices lying
on a cylindrical surface. These helices define the corners of
the triangles forming the faceted cylinder. General expressions
for the side lengths of the triangles are derived in terms of the
helix parameters. With these tools, Section 3 examines the
folding properties of a range of cylinders. Section 4 concludes
the paper by discussing ways in which the results of Section 3
could be used to advantage in the design of foldable cylinders
with different mechanical properties.

Flg.2 Triangulated cylinders with m= 1 and (a) n= 6, (b) n= 7, and (e)
n = 8. (I) Fully extended, side view. (iI) Fully folded, plan view. All cyl·
inders have VI. = 1.

Ie = 2 sin n: 1) la = 2 sin la = .j3 la' (l)

To make a simple model of this cylinder, one draws on a sheet
of thin card three sets of straight, parallel lines: the a and b
lines are equi-distant and at an angle of 71"/3; the c lines go
through the points of intersection of a and b lines. Then the
sheet is folded along these lines: upwards along a and b lines,
downwards along c lines. Finally, two opposite edges of the
sheet are glued together to form the cylinder shown in Fig.
2(b.i). We have made card model cylinders of this sort for
n = 7, as described above, and also for n = 6 and n = 8. The
axial force required to fold these models is quite small and the
strains are sufficiently small that the models can survive sub-
stantially undamaged a small number of folding/unfolding
cycles. However, it quickly becomes clear that the strains im-
posed by folding become lower as the value of n is increased.

2 Geometry of Triangulated Cylinders
A general description of triangulated cylinders made from

identical triangular plates arranged on helical strips, like those
of Figs. 1 and 2, can be based on the observation that the
nodes of the triangulated cylinders lie on the intersection of
three sets of helices, as shown in Fig. 3. The helices are de-
scribed by the sides of the triangles which are closest to them,
i.e., they are called the a, b, and c helices.
All helices in one set are identical, apart from a rotation

about the axis of the helix. A full set can be defined as a single
helix with multiple starts. Each set of helices can be described
by the following three parameters (Coxeter, 1980):
(i) the number of helices in the set, i.e., the number of starts
of the helix (for example, in Fig. 3 the a helix has one start,
the b helix seven starts, and the c helix eight starts);
(ii) the radius, which has the same value for all helices of
Fig. 3 since they all lie on the same circular cylindrical surface;
(iii) the angle that the helix makes with a plane perpendicular
to the axis of the helix. This angle can be greater than 71"/2,
for a left-handed helix.
The positions of the nodes, and hence the configuration of

a triangulated cylinder, are fully defined by any two of the
three helices described above, as the third has to pass through
the intersections of the other two. We shall use the a and b
helices to describe a triangulated cylinder, therefore it is nec-
essary to give the parameters defining these helices. They are

r the radius;
a, {3 = the angles that the a and b helices, respectively,

make with a plane perpendicular to their axis;

Ic.i)

Ic.ii)

I bi)

I b.ii)

(a.i)

(a.ii)
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(b) (c) (dl 
Fig. 3 Geometric definition of nodes of triangulated cylinder (a) in 
terms of three sets of helices, side, and plan views; (/>) single-start a-
helix, m = 1; (c) seven-start b-helix, n = 7; (d) eight-start c-helix, m + n = 8. 
The first start of all helices is at (r, 0, 0). 

Fig. 4 Coordinate cylinder and parameters defining a and b helices 

m, n = the number of starts of the a and b helices, re-
spectively. 

The parameters r, a, (3 are shown in Fig. 4. The a helix has 
the equation 

Z = r8 tan a. (2) 
Similarly, the first start of the b helix is defined by 

z = r0tan/3 (3) 
and the second start by 

z = r[6-— )tan/3, (4) 

which gives z = 0 when 6 = 2ir/n. Note that in Eqs. (2)-(4) 
0 < 8 < + oo: a complete turn of a helix corresponds, obviously, 
to an increase in the value of 6 by 2ir. 

We define a nodal numbering system where nodes are num-
bered along the a helices: node (i, j) is they'th node on the 
/th start of the a helix. 

The next task is obtaining the coordinates of enough neigh-
bors of node (1, 1) to be able to calculate the three side lengths 
of the triangles. The cylindrical coordinate system to be used, 
O, r, 8, z, is defined in Fig. 3(b): node (i,j) has coordinates 
(r> 0/,y> ZiJ. We define Bu such that O<0,,y<27r and hence 

(1,n 

Fig. 5 Neighbors of mode (1,1) for a triangulated cylinder with (a) m= 1 
and (b) m = 2. The c helices are not shown. 

suitable multiples of 2TT will be added to it when it is substituted 
into Eqs. (2)-(4). Node (1, 1) has coordinates (r, 0, 0). 

For simplicity, the case m = 1 will be considered first. Figure 
5(a) shows that the ^-coordinates needed are those of nodes 
(1,2), ( l , n + l ) , a n d ( l , n + 2). 

At node (1, 2) the a helix and the second start of the b helix 
intersect and so, from Eqs. (2) and (4), 

r0i i2tana = r( 8 
2TT tan/? 

which gives 

where 

2 T 

n(\-k) 

k = t ana 
tan/3' 

(5) 

(6) 

At node (1, n + 1) the second turn of the a helix and the 
first start of the b helix intersect and so, from Eqs. (2), (3) 

r(8\,„ + \ + 2ir)tan a = rdUn+l tan /3 

giving 

7 l , n + 1 — 
2AT7T 

\-k' 
(7) 

(8) 

From Fig. 5(a), 0i,„+2 = 0i,2 + 0i,«+i and therefore 
2(1+A:fl)7r 

6l-" + 2- n(\-k) ' 
For cases where m>\ the nodes connected to node (1, 1) 

are those shown in Fig. 5(b). The expression for 8U2 remains 
that of Eq. (5). The expression for 0 M + , does not change either, 
but it is now 02,i which is required, and so from Fig. 5(£>) 

2kv (9) ? 1,77+1 
P2 , l - m(\-k) 
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Also 

"2,2- '1,2+ 02,1= ~ 
2(m + nk)ir (10) 
mn{\ -k) 

All relevant ^-coordinates are now defined. The next, final 
step is to calculate the side lengths la, lb, and lc in terms of the 
parameters defining the helices. In general, the distance / be-
tween node (1,1) and a node with coordinates (r, 6, z) is 

/ = 2rsin- + zz 

For node (1,2), l=la,6 = 6\,2, and—fromEq. (2)—z = / ,012tana, 
hence 

/„ = 2r sin - 2irr 
- tana (11) n(l-k)J \n(\-k) 

Similarly, for node (1,«+ 1) if m = 1, or node (2,1) if m>\, 
l=lb and 6 = 8i<n+i, or l=lb and 6 = 62,1, respectively. The z-
coordinate is 

n n „ 
Z =—Z\ 2 = ~r6i 2 t ana 

m ' m 
hence 

h = 2rsin- k-K 

m{\-k) 
litr 

m(l-fc) - tana (12) 

Similarly, for node (l,« + 2) if m = 1, or node (2,2) if m> 1, 
l=lc and 6 = 8\t„+2, or l = lc and 6 = 62,2, respectively, and 

, n\ m+n „ 
l-l— \Z\2 = r6\ 2 tan a 

ml ' m hence 

h = 2/'sin 
{m + nk)ir 2(m + n)irr 

tana . (13) 
mn(l-k)l \mn(l-k) 

Given the parameters which define the helices of a triangulated 
cylinder, it is possible to work out the side lengths of the 
triangular panels from Eqs. (11)—(13). Equally, it is possible 
to work backwards and, given a set of side lengths /„, lb, and 
lc, and the topological parameters m, n, to work out the pa-
rameters of a corresponding set of helices. 

There is one final condition, the inner edges of the triangles 
cannot cross the z-axis without penetrating each other. Because 
during folding all triangles move inwards, this condition is 
most severe in the fully folded state where it can be shown 
that 

sin 

(n-2)w 
2(m + n) 
(m + 2)ir 

(14) 

2(m + n) 
The equality sign corresponds to the c sides lying along di-
ameters of the coordinate cylinder. 

3 Folding Properties 
The results of Section 2 can be used to select particular 

layouts of triangulated cylinders which are suitable for folding, 
i.e., where both the extended and folded configurations are 
strain-free, and to gain insight into the folding process. A key 
assumption is made, that the folding process is uniform, i.e., 
that all triangles remain identical throughout the folding proc-
ess. This assumption may appear rather restrictive, particularly 
because Fig. 1 shows clearly that the deformation pattern in 
any partially packaged configuration is not uniform: it consists 
of a fully folded region, at the top, of a fully extended region, 

- ^ 

-

-

/ — 
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t = 0 - 5 

1 1 

~-<U) \ 1 . 5 

1 , \ 

Fig 
6 (rad) 

6(a) 

6( rad) 
Fig. 6(/J) 

Fig. 6 Plots of \J\„ versus 6 for triangulated cylinders with (a) m = 1 
and (6) m = 2; n = 7 in both cases 

at the bottom, and of an intermediate "transition" region. If 
any strains are induced by folding, one would expect them to 
be in the transition region and, obviously, this localization 
cannot be captured if it is assumed that all triangles remain 
identical. This restriction has been removed in a separate in-
vestigation (Guest and Pellegrino, 1994). 

The simplest way of approaching the problem is to inves-
tigate the geometric configurations of cylinders with 
/(,//„ = constant. This is equivalent to assuming that all defor-
mation can be modeled in terms of changes of lc only. With 
these hypotheses, the folding properties of any particular type 
of triangulated cylinder, defined by lb/la, m, and n can be 
investigated most effectively on a plot of lc/la versus 8, where 

5 = / 3 - a (15) 
(see Fig. 4). Obviously, 0 < 8 < ir: configurations with 5 = 0 have 
zero height and will be referred to as fully folded. All plots 
presented in this section have been obtained by solving nu-
merically the nonlinear system of four Eqs. (11)-(13), (15) for 
the four unknowns r/la, a, 13, and lc/l„, given lb/!a, m, n, and 
8. The function "fsolve," available in Matlab (The Math 
Works, 1989), has been used. No closed-form solution has 
been searched for. 

Figure 6(a) shows a plot of lc/la versus 5 for triangulated 
cylinders with m=\, n = l and for three different values of 
4/ / a . Consider initially the case /&//„ = 0.5. The figure shows 
that lc decreases monotonically as 8 increases. Indeed, this is 
the type of behavior that would be expected if all triangles 
were in a plane, rather than being wrapped in a tube. Within 
obvious limits, any value of lc/la is associated with a unique 
configuration of the cylinder. The case lb/la=\ (isosceles tri-
angles) is much more interesting since now lc/la initially in-
creases with 5 and then, having reached a maximum, starts 
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6 (rod) 
Fig. 7(a) 

6 l rad) 
Fig. 7(b) 

Fig. 7 Contour plots of (a) /„//, and (b) r/la for triangulated cylinders 
with m = 1 and n = 7 

decreasing. This can be explained by the effect of the curvature 
of the cylindrical surface, on which all corner nodes lie, be-
coming significant. In this case any triangulated cylinder with 
4/4 > VI admits two different, totally unstrained configura-
tions. In particular, lc/la = ypS gives one configuration where 
5 = 0 and one where 5 = 0.867. This is the same cylinder which 
has been analyzed, by much simpler means, in the Introduc-
tion. The third curve in Fig. 6(a), for the case 4/4= 1.5 shows 
similar behavior, but this time there is a much more marked 
maximum. This curve shows that triangulated cylinders with 
/6//fl=1.5 and 4/4 =1.800 are strain-free both when fully 
folded (5 = 0) and when extended (5= 1.587); however, going 
from one configuration to the other requires large deforma-
tions. 

Similar considerations apply to other triangulated cylinders. 
For example, Fig. 6(b) shows similar curves for the case m = 2, 
n = l. Note that the three curves in this figure refer to lower 
values of lb/la than in the case m = 1 because the upper limit 
on 4/4. Eq. (14), is a little lower. 

A more general way of plotting data for the case m=\,n = l 
is a contour plot of lc/la for the full range of 5 and 4/4. Fig. 
1(a). A. broken line marks those configurations of the cylinder 
which admit also a strain-free folded configuration with 5 = 0. 
These are the configurations on which we are focusing in this 
paper. The value 4/4 = 0.788 is the lowest possible for fully ' 
foldable cylinders. Also note that the contour 4/4= 1-75, for 
example, indicates that cylinders with 4/4 = 1 -039 require fairly 
small strains to go from 5 = 0 and 5 = 0.940 because the dimple 
in the contour is rather flat. The contour 4/4 =1-64 (not shown) 
is even flatter, thus allowing 5 to vary in the range 0-0.4 with 
less than 0.1 percent variation in 4/4- Finally, note that the 
upper limit on 4/4 is 1.497, from Eq. (14). Figure 7(b) plots 
the corresponding values of r/la: folding, i.e., decreasing 5 
always implies a reduction of r. 
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3 4 Discussion 
The general geometric formulation of Section 2 together with 

- the sample plots presented in Section 3 are very powerful tools 
for the design of foldable tubes. With this approach one can 

.5 go well beyond the fairly intuitive foldable cylinders presented 
in the Introduction, all of which had m= 1 and 4/4= 1- Ob-
viously, having the freedom to alter these two parameters can 
be very useful in the design of foldable cylinders that have to 
meet some specified requirements. With the hypothesis that 4 
and 4 remain constant during folding, while 4 varies, prelim-
inary estimates of strains during folding are easy to obtain (see 
Fig. 6). More detailed estimates of strains, axial force, shape 
and length of transition region, etc., are available in Guest 
and Pellegrino (1994). 

Although this paper has concentrated on cylinders which 
are strain-free both when fully deployed and fully packaged, 
it should be noted that it is also possible to design cylinders 
which accumulate elastic strain energy during folding and re-
lease it during deployment. This property could be useful for 
some particular applications, e.g., self-deploying cylinders. 

An interesting feature of the plots in Fig. 6 is that they 
: identify some special triangulated cylinders whose 4/4 is an 

analytical maximum. For example, the special configuration 
of a cylinder with m=\,n = l and 4/4 =1-5 occurs for 5 = 0.839 

. and hence 4/4 = 2.162 (see Fig. 6(a)). Any cylinder made to 
be strain-free in such a configuration can change its 5 by an 

- infinitesimal amount without any first-order changes of length 
in the triangular panels. Indeed, Calladine's model, referred 
to in Section 1, had this property and our analysis has produced 
a whole group of cylinders with the same property as a by-
product. It is well known, see Calladine (1978) for example, 
that special, singular configurations of an assembly of pin-
jointed bars are obtained when the length of one bar, or a 
group of bars, is maximum. One might expect that the con-
figurations corresponding to the maxima of Fig. 6 should have 
such property, but they do not. This is because only uniform 
configurations were considered in the analysis leading to the 
plots in Fig. 6 and hence the maxima of 4/4 are, indeed, the 
largest when this constraint is enforced. However, if this con-
straint is removed nonuniform configurations with larger 
4/4 can be obtained. This has been verified by careful com-
putations based on Pellegrino (1993). 
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