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Abstract

We investigate the existence of g-laterals in geometric and combina-
torial configurations. First we can show that within a special family of
configurations any of the eight possible combinations of the existence or
non-existence of g-laterals for 3 ≤ g ≤ 5 may arise. Moreover, this is
true for arbitrary large configurations belonging to this family. We also
present geometric realizations of the two smallest trilateral-, quadrilateral-
and pentalateral-free (v3) configurations (generalized hexagons). Finally,
we consider (v4) configurations and present the smallest-known geometric
trilateral-free (v4) configuration.

1 Introduction

This paper is concerned with r-configurations, that is, incidence systems of ob-
jects we call points and lines, with the restriction that each object is incident
with precisely r objects of the other kind; some other restrictions are convenient,
and we shall give precise definition of this concept and the others mentioned
below in Section 2. Our special interest concerns multilaterals, that is cyclic
sequences of alternating points and lines, with each incident with its two neigh-
bors in the sequence, and all distinct. The study of configurations started in the
last quarter of the nineteenth century, and multilaterals were among the first
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topics studied – albeit under the misleading designation as “polygons” [12]. For
additional information about the history of multilaterals see Sections 5.2 to 5.4
of [8].

A g-lateral is a multilateral that consists of g points and g lines; colloquially,
we also speak of trilaterals, quadrilaterals, and so on. The early studies con-
cerned mainly either trilaterals, or else “Hamiltonial multilaterals”; the latter
contain all points and all lines, each exactly once. We are trying to answer
some questions of the following kind: Are there configurations which do have
g-laterals for a certain set of values of g, and at the same time do not have any
g-laterals for another set of values of g.

As sample results we may mention that in certain families of 3-configu-
rations there always exist 6-laterals, while in the same family there exist config-
urations for which any chosen subset of {3, 4, 5} corresponds to values of g such
that the configuration contains g-laterals and does not contain g-laterals for g
in the complementary subset.

2 Definitions

A (combinatorial) configuration C of type (vr), or a (vr) configuration, is an inci-
dence structure with sets P and L of objects called points and lines respectively,
such that

1. |P| = |L| = v.

2. each line is incident with r points,

3. each point is incident with r lines,

4. two distinct points are incident with at most one common line.

A geometric (vr) configuration is a set of v points and v (straight) lines in the
Euclidean plane, such that precisely r of the lines pass through each of the
points, and precisely r of the points lie on each of the lines. It is clear that
each geometric configuration determines a combinatorial configuration, while
the converse is not true, see [8].

To shorten the notation, we will frequently omit the word “combinatorial”
when referring to combinatorial configurations while we retain the adjective
geometric when we will speak of geometric configurations.

A configuration C of type (vr) fully determines its Levi graph L(C) (also called
the incidence graph), which is an r-regular bipartite graph with the vertex set
P ∪ L, and the point p ∈ P is adjacent to the line ` ∈ L whenever p and ` are
incident in C. The consequence of the part 4. in the definition above is that
the girth of the Levi graph is always > 4 (i.e. 6, 8, 10, . . . ). Conversely, each
bipartite r-regular graph with girth al least 6 determines a pair of mutually
dual (vr) configurations. We say that a configuration is connected whenever its
Levi graph is connected.

A g-lateral in a configuration is a cyclically ordered set {p0, `0, p1, `1, . . . ,
`g−2, pg−1, `g−1} of pairwise distinct points pi and pairwise distinct lines `i such
that pi is incident with `i−1 and `i for each i ∈ Zg. Note that g-laterals in a
configuration correspond precisely to 2g-cycles in its Levi graph. Note that for
combinatorial configurations, non-existence of trilaterals is essentially the girth
question of the corresponding Levi graph, see for instance [2].
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(a) (b)

Figure 1: The reduced Levi graph of the configuration C3(k, p, t) showing the
non-zero voltages and the directions of the edges (a); the same graph with
labeled vertices and edges (b), that will be used in the proofs.

Here, we will mainly focus on two special families of (v3) and (v4) configu-
rations which were introduced in [5]. Let k ≥ 3, and 0 ≤ t < k be two integers
and p = (p0, p1, . . . , pn−1), n ≥ 2, a vector of integers with 0 < pi <

k
2 . The

configuration C3(k, p, t) is defined as a configuration whose Levi graph is a Zk-
covering graph over a graph G in Figure 1(a). In this connection G is called a
reduced Levi graph. For related concepts see also [8].

Similarly, we define a configuration C4(k, p, q, t) as a configuration with its
Levi graph being a Zk-covering graph over the graph shown in Figure 4. Here,
the four parameters are: an integer k ≥ 7, an integer 0 ≤ t < k, and integer
vectors p = (p0, p1, . . . , pn−1), q = (q0, q1, . . . , qn−1), where n ≥ 2 and 0 <
pi, qi <

k
2 . In works of L. Berman and B. Grünbaum geometric realizations of

our C4 configurations are called celestial configurations, see for instance [1]. Note
also that C3 configurations are ((kn)3) configurations while C4 configurations are
((kn)4) configurations.

We can exploit special structure of C3 and C4 configurations to try to obtain
so-called rotational realizations in the Euclidean plane [5]. Precisely, a fact that
there exists a cyclic automorphism α of order k in both C3 and C4 configurations
(because their Levi graph is a Zk covering graph) can be used to realize α as a
rotation through 2π/k about the origin by drawing the points of the same α-
orbit as vertices of a regular k-lateral. We will call such geometric realizations
of C3 and C4 configurations simply geometric C3 configurations (geometric C4
configurations). In this case the values pi and qi indicate spans that a line
makes between the points of particular orbits, see [1, 5, 8] for more details. An
example of a geometric C4 configuration can be found in Figure 5(b).

3 Results on (v3) configurations

Proposition 1. Let C be a combinatorial C3(k, (p0, p1, . . . , pn−1), t) configura-
tion, where n ≥ 6. There is a g-lateral, g = 3, 4, 5, in C precisely when one of
the following expressions equals 0 modulo k:

g = 3 : 3pi, (1)
pi ± pi+1, (2)
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g = 4 : 4pi, (3)
2pi ± pi+1, (4)
pi ± 2pi+1, (5)

g = 5 : 5pi, (6)
pi ± 3pi+1, (7)
2pi ± 2pi+1, (8)
3pi ± pi+1, (9)
pi ± pi+2, (10)
pi ± pi+1 ± pi+2, (11)

for some i, i = 0, 1, . . . , n− 1 (additions in indices are performed modulo n).

Proof. A g-lateral in a configuration corresponds precisely to a 2g-cycle in its
Levi graph. If a configuration is described using a reduced Levi graph, 2g-cycles
can be obtained as Zk-lifts of closed walks in the reduced Levi graph which are
of the following form:

v0 e0 v1 e1 . . . v2g−1 e2g−1 ,

ei 6= ei+1, such that the vertices vi and vi+1 are the end-points of the edge ei

(additions in indices are always performed modulo n) and that the voltages on
the walk sum to 0 in Zk, i.e.

∑2g−1
i=0 ξ′(ei) = 0 (mod k). Here

ξ′(ei) =

{
ξ(ei) if ei = vivi+1

−ξ(ei) if ei = vi+1vi.

and ξ(ei) denotes the voltage on the edge ei.
Let the voltages of the reduced Levi graph of C3 configurations be denoted

as in Figure 1(a) and let the vertices and edges be labeled as in Figure 1(b).
Moreover, let us assume that the length of the “main” cycle in G has length at
least 12 (i.e. n ≥ 6).

Case g = 3. Any closed walk of length 6 (or its inverse) has one of the
following forms

W1 = yi fi xi gi yi fi xi gi yi fi xi gi,

W2 = xi gi yi hi xi+1 gi+1 yi+1 fi+1 xi+1 hi yi fi,

W3 = xi gi yi hi xi+1 fi+1 yi+1 gi+1 xi+1 hi yi fi

with the voltage sums

ξ(W1) = pi − 0 + pi − 0 + pi − 0 = 3pi,

ξ(W2) = −0 + 0− 0 + pi+1 − 0 + pi = pi + pi+1,

ξ(W3) = −0 + 0− pi+1 + 0− 0 + pi = pi − pi+1,

which gives equations (1) and (2). Note that for i = n − 1 the voltage corre-
sponding to yi hi xi+1 is t, but it cancels to 0 with the voltage −t of xi+1 hi yi.

Cases g = 4 and g = 5 can be dealt similarly; we have to consider all possible
ways to obtain essentially different closed walks of length 8 and 10. This was
done by hand testing and verified with a simple computer program written in
Mathematica.
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Note the fact that n ≥ 6 is only needed to reduce the number of possible
different closed walks, since it prevents any closed walk of length less than 12
to “encircle” the graph along the main cycle.

Proposition 2. Every combinatorial C3(k, (p0, p1, . . . , pn−1), t) configuration
contains a hexalateral. In case when n = 2 it also contains a 5-lateral.

Proof. We have to prove that there is always a closed walk of length 12 in the
reduced Levi graph G of C3 configurations shown in Figure 1 which lifts to a 12
cycle, and that there is always a closed walk of length 10 in G which lifts to a
10 cycle when n = 2. A closed walk of length 12 with voltage 0 is (see Figure 1
for labels)

x0 g0 y0 h0 x1 g1 y1 f1 x1 h0 y0 g0 x0 f0 y0 h0 x1 f1 y1 g1 x1 h0 y0 f0 x0

while a closed walk of length 10 and voltage 0 when n = 2 is

x0 f0 y0 h0 x1 g1 y1 h1 x0 g0 y0 f0 x0 h1 y1 g1 x1 h0 y0 g0 x0 .

Theorem 3. Considering combinatorial C3(k, (p0, p1, . . . , pn−1), t) configura-
tions, any combination of existence or non-existence of g-lateral, 3 ≤ g ≤ 5,
is possible for particular values of k and p. Moreover, for each N and each of
the combinations of existence of g-laterals a configuration on ≥ N points can be
found.

Proof. The following table gives combinatorial C3 configurations for all combi-
nations of existence (+) and non-existence (−) of 3-, 4-, and 5-laterals (values
of t are arbitrary):

3-lat. 4-lat. 5-lat. C3 configuration
− − − C3(21, (1, 4, 6, 1, 4, 6), t)
− − + C3(8, (1, 3, 1, 3, 1, 3), t)
− + − C3(9, (1, 2, 4, 1, 2, 4), t)
− + + C3(5, (1, 2, 1, 2, 1, 2), t)
+ − − C3(21, (1, 4, 7, 1, 4, 7), t)
+ − + C3(5, (1, 1, 1, 1, 1, 1), t)
+ + − C3(21, (1, 2, 7, 1, 2, 7), t)
+ + + C3(3, (1, 1, 1, 1, 1, 1), t)

For each C3(k, p, t) configuration in the table we have to check whether its param-
eters k, p, t satisfy or do not satisfy the equations of Proposition 1 corresponding
to a particular g.

For example, we claim that the configuration C3(9, (1, 2, 4, 1, 2, 4), t), line
− + − in the table, does not have any trilateral, has at least one quadrilateral
and does not have any 5-lateral. This means that for k = 9, p0 = 1, p1 = 2,
p2 = 4, p3 = 1, p4 = 2, p5 = 4

1. None of the expressions (1), (2) evaluates to 0 modulo 9 for any i;

2. At least one of the expressions (3)–(5) evaluates to 0 modulo 9 for some i
— here the expression (4) for i = 2 evaluates to 2p2 +p3 = 2 ·4+1 = 9 ≡ 0
(mod 9);
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3, 4, 5-lat. smallest C3 cfg. comb. geom.
− − − C3(27, (1, 8, 10), 5) (633) (633)
− − + C3(20, (1, 9), 4) (353) (353)
− + − C3(9, (1, 2, 4), 8)∗, C3(17, (1, 2, 8), 12) (273) (513 )
− + + C3(9, (2, 4), 3) (153) (153)
+ − − C3(27, (1, 4, 10), 0) (813 ) (813 )
+ − + C3(7, (2, 2, 2), 3) (213 ) (213 )
+ + − C3(15, (1, 2, 5), 4) (453 ) (453 )
+ + + C3(4, (1, 1), 3)∗∗, C3(3, (1, 1, 1), 1) (73) (93 )

Table 1: For each of the eight possible combinations of the existence/non-
existence of g-laterals, g = 3, 4, 5, we list, in order: The smallest C3 configu-
ration, the smallest known combinatorial configuration, and the smallest known
geometric configuration. All C3 configurations listed are geometric, except the
ones marked by asterisks; see Figure 2 and Remark 1. Bold-faced symbols are
known to denote the smallest possible configurations of the appropriate kind.
Symbols in italics denote configurations C3 listed in the second column; the
smallest configurations for these positions have not been determined.

3. None of the expressions (6)–(11) evaluates to 0 modulo 9 for any i.

Analogous conditions for other rows in the table can also be easily verified.
This gives the proof of the claim that combinatorial C3 configurations exist
for each combination of existence and non-existence of 3-, 4-, and 5-laterals.
Note that these are not the smallest combinatorial C3 configuations satisfying
the conditions. See Table 1 and Remark 1 for the smallest combinatorial and
geometric examples.

Configurations with n = 6m, m > 1, i.e. arbitrarily large combinatorial
configurations corresponding to each possibility are defined by the same values
of k while the sequence p is extended by repeating it m − 1 times. This is
true since the extension of p by repetition gives exactly the same values of the
expressions in Proposition 1.

Remark 1. All C3 configurations in Table 1 are realizable as geometric C3 con-
figurations, except of those denoted by ∗ and ∗∗, see Figure 2. The realizations
were obtained using the theory developed in [5]. The configuration denoted
by ∗ is not realizable as geometric C3 configuration since, if we respect the C3
symmetry, additional incidences occur. In fact, we can recognize it as a subcon-
figuration of the configuration C4(9, (1, 2, 4), (3, 3, 3), 7). The fact that this (273)
configuration is the smallest such configuration was proved by G. Brinkmann
(personal communication). The configuration ∗∗ is the Möbius-Kantor (83) con-
figuration. The claim that C3 configurations in the table are the smallest of its
kind has been proven by examining all admissible values for k, p, and t using a
computer program written in Mathematica.

Remark 2. The configuration C3(9, (2, 4), 3) listed in Table 1, a (183) configu-
ration, is one of the small trilateral-free (v3) configurations which where stud-
ied in [4]. The smallest (v3) configuration without trilaterals is the Cremona-
Richmond (153) configuration. There exist no (163) trilateral-free configurations
while there is only one (173) trilateral-free configuration.
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C3(3, (1, 1, 1), 1) C3(15, (1, 2, 5), 4)

C3(7, (2, 2, 2), 3) C3(27, (1, 4, 10), 0)

C3(9, (2, 4), 3) C3(17, (1, 2, 8), 12)

C3(20, (1, 9), 4) C3(27, (1, 8, 10), 5)

Figure 2: Geometric C3 configurations from Table 1.
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Remark 3. By Table 1, the smallest trilateral- and quadrilateral-free C3 con-
figuration is the (403) configuration C(20, (1, 9), 4). In general, the smallest
trilateral- and quadrilateral-free (v3) configurations result from (bipartite) 10-
cages. There are 5 non-isomorphic such configurations on 35 points and all of
them are geometric, see [10].

4 Generalized hexagons

According to Table 1, the smallest C3 configuration without 3-, 4- and 5-laterals
is the C3(27, (1, 8, 10), 5) configuration on 81 points. However, the smallest cu-
bic graph of girth 12, also called a 12-cage, has 126 vertices and is unique. It
is also a bipartite graph and is therefore the Levi graph of the smallest 3-, 4-
and 5-lateral-free 3-configuration. In fact, it determines a pair of dual (633)
configurations which are also called generalized hexagons. In [11] it is discussed
how to draw the hexagons, using their symmetries, but the presented drawings
are not realizations. The question of their realization was answered simultane-
ously with the smallest trilateral- and quadrilateral-free configurations, but it
was published only in [3]. Here we state the result again.

Theorem 4. Both smallest 3-, 4- and 5-lateral-free (v3) configurations, which
are (633) configurations, are geometrically realizable.

Proof. We can produce a C3 realization of these two dual configurations; both
the realization of one of the configurations and the corresponding reduced Levi
graph are shown in Figure 3. Numerical values of the coordinates of one point
of each of the 9 orbits are:

P1 = (0.1416, 0.3908) P2 = (−1.3574,−1.4168) P3 = (−2.6793, 0.9596)
P4 = (−1, 3) P5 = (−1.6789, 2.1752) P6 = (−0.6435, 0.8454)
P7 = (−0.1218,−0.3037) P8 = (−1.0093,−0.4332) P9 = (1, 0)

other points can are obtained as rotations for 2π/7 about the origin.
The above coordinates were obtained using an adaptation of the algorithm

described in [7]. Following this algorithm, a necessary condition for the existence
of a geometric realization can be reduced to finding real parameters which are
zeroes of a so-called final polynomial. The algorithm is adapted in such way
that we do not need to consider all lines of a configuration, but only lines from
different line orbits which reduces the number of parameters and simplifies the
computation.

Remark 4. Note that the points P1, P2, . . . , P9 of the configuration in Fig-
ure 3(a) correspond to the vertices x1, x2, . . . , x9 of the voltage graph in Fig-
ure 3(b), i.e., the point Pi corresponds, say, to the vertex x0

i of the covering
graph if we denote the vertices of the fiber over xi by x0

i , x
1
i , . . . , x

6
i .

5 Results on (v4) configurations

In Section 2 we gave a definition of combinatorial and geometric C4(k, p, q, t)
configurations which can be described as configurations admitting a reduced
Levi graph of the form depicted in Figure 4.
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(a)

(b)

Figure 3: Geometric realization of a (633) configuration, the smallest 3-, 4-
and 5-lateral-free (v3) configuration or a generalized hexagon (a) and the corre-
sponding reduced Levi graph of this realization (b). The points P1, P2, . . . , P9

of the configuration (a) correspond to the vertices x1, x2, . . . , x9 of the voltage
graph (b).
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Figure 4: The reduced Levi graph of the configuration C4(k, p, q, t) showing the
non-zero voltages and the directions of the edges (left); the same graph with
labeled vertices and edges (right).

The conditions on the parameters k, p, q, t to give a combinatorial (v4)
configuration which are given in [5] are the following.

Theorem 5 (Theorem 15, Lemma 17 in [5]). For given n ≥ 2, k ≥ 7 the
sequences p = (p0, p2, . . . , pn−1), q = (q0, q2, . . . , qn−1), 1 ≤ pi, qi < k/2, and
the number t determine a ((nk)4) configuration C4(k, p, q, t) if and only if

pi 6= qi, pi 6= qi−1, i = 0, 2, . . . , n− 1 (12)

For n = 2, in addition to (12), there are conditions

a− b+ c− d 6≡ 0 (mod k)

for any possible choice of a, b, c, d, where a ∈ {0, p0}, b ∈ {0, q0}, c ∈ {0, p1},
d ∈ {t, t+ q1}.

Moreover, we also have a necessary condition for C4 configuration to be
realizable as geometric C4 configuration.

Theorem 6 (Theorem 15, Lemma 22 in [5]). If a geometric C4(k, p, q, t) con-
figuration exists then the equation

cos
p0π

k
cos

p1π

k
· · · cos

pn−1π

k
= cos

q0π

k
cos

q1π

k
· · · cos

qn−1π

k
. (13)

holds and

t =
1
2

n−1∑
i=0

(
pi − qi

)
(14)

is an integer.

The smallest combinatorial C4 configuration is the configuration C4(5, (1,
1, 1), (2, 2, 2), 0), a (154) configuration, while the smallest geometrical C4 con-
figuration is C4(7, (1, 2, 3), (3, 1, 2), 0), a (214) configuration; see [8, 9] for its
realization. The smallest known geometric 4-configuration is (204) found by J.
Bokowski, see [8].

In the next theorem we show that there is always a 4-lateral in a C4 con-
figuration, i.e. there is no quadrilateral-free C4 configuration, and present the
smallest trilateral-free C4 configuration.
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(a) (b)

Figure 5: The smallest combinatorial trilateral-free C4 configuration realized
with pseudolines (a), and the smallest geometric trilateral-free C4 configuration
(b).

Theorem 7. Every combinatorial C4(k, (p0, p1, . . . , pn−1), (q0, q1, . . . , qn−1), t)
configuration contains a quadrilateral. The smallest trilateral-free combinatorial
C4 configuration is a (514) configuration C4(17, (2, 5, 8), (8, 2, 3), 1) and can be
realized with pseudolines. The smallest geometric C4 configuration is C4(15, (1, 2,
4, 7), (6, 3, 6, 3), 11), a (604) configuration.

Remark 5. Both configurations are shown in Figure 5. The presented (604)
configuration is currently the smallest known geometric trilateral-free (v4) con-
figuration. The smallest combinatorial trilateral-free (v4) configuration arises
from the (4, 8)-cage, which has 80 vertices, and is thus a (404) configuration.

Proof of Theorem 7. A closed walk of length 8 with voltage 0 in the reduced
Levi graph of C4 configurations, see Figure 4 for labels, is

x0 f0 y0 f
′
0 x1 g

′
0 y0 f0 x0 g0 y0 g

′
0 x1 f

′
0 y0 g0 x0 .

It gives an 8 cycle in the Levi graph and a quadrilateral in the configuration.
Cycles of length 6 in the Levi graph of a C4 configuration (trilaterals in the

configuration) arise from closed walks of length 6 in the reduced Levi graph,
see Figure 4. In the case n ≥ 4 all different possibilities for the voltages of the
closed walks of length 6 are

3pi 3qi
pi ± pi+1 qi ± qi+1

pi ± 2qi qi ± 2pi

pi+1 ± 2qi qi ± 2pi+1

pi + pi+1 ± qi pi ± pi+1 − qi
qi ± qi+1 + pi+1 qi + qi+1 ± pi+1

11



and their negative values. For example, the walks with voltage pi + qi + pi+1

are
xi gi yi f

′
i xi+1 gi+1 yi+1 fi+1 xi+1 g

′
i yi fi xi .

For n < 4 we get more different closed walks of length 6, and thus more different
voltages, since we have to consider the closed walks containing the “main” cycle.
Note that those walks can contain the voltage t while in the walks considered
above it cancels out.

If we check all possible values for p, q and t at some k satisfying conditions
of Theorem 5 and such that none of the voltages above has value 0 (mod k) (i.e.
there is no cycle of length 6 and hence no trilateral) we find out the following.
The smallest values for k when this happens are:
n = 2. For k = 30 we get three combinatorially non-isomorphic (604) configu-
rations

C2,1 = C4(30, (1, 11), (7, 13), 26), C2,2 = C4(30, (1, 2), (8, 11), 7),
C2,3 = C4(30, (1, 7), (11, 13), 22).

None of them satisfies the conditions of Theorem 6 and are not realizable as C4
configurations.
n = 3. For k = 17 we get a unique combinatorial (514) configuration C4(17, (2, 5,
8), (8, 2, 3), 1). It does not satisfy the condition 13 of Theorem 6. Thus, it is
not realizable as a geometric C4 configuration with straight lines, although it is
realizable with pseudolines, see Figure 5(a). For k = 18 and k = 20 we also get
trilateral-free configurations but none of them is realizable as a C4 configuration
by Theorem 6.
n = 4. For k = 15 we get four combinatorially different (604) configurations

C4,1 = C4(15, (1, 2, 4, 7), (6, 3, 6, 3), 11), C4,2 = C4(15, (1, 2, 4, 7), (6, 3, 6, 3), 1),
C4,3 = C4(15, (1, 2, 4, 7), (6, 3, 6, 3), 3), C4,4 = C4(15, (1, 2, 4, 7), (6, 3, 6, 3), 13).

Only C4,1 satisfies the conditions of Theorem 6. In this case, the conditions are
also sufficient (we do not get accidental incidences); the realization is found in
Figure 5(b). These four are not isomorphic to any of the configurations in case
n = 2.
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