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Abstract

A standard representation of a family B of partial orders on a given finite set X is as a set of vertices of a cube. The metric and

order structures on B inherited from the cube are often used in applications. In this paper, following Stanley [(1996). Hyperplane

arrangements, interval orders, and trees. Proceedings of the National Academy of Sciences of the United States of America, 93,

2620–2625], we represent relations in B by regions and cells of a hyperplane arrangement arising from numerical representations of

the partial orders inB. To illustrate this approach, we establish wellgradedness of some families of generalized semiorders. Although

the families of linear and weak orders are not well graded, our approach allows the recasting of such concepts as well graded families

of sets.

r 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Various kinds of partial orders, like linear and weak
orders, and generalizations of semiorders, are widely
used in social and behavioral sciences to model
preference relations.

Let B be a family of partial orders (irreflexive and
transitive binary relations) on a set X of cardinality n.
Elements of the family B can be represented by their
characteristic functions as vertices of the n2-cube Qn2 .
Then B inherits metric and order structures from Qn2 .
These structures play an important role, for instance, in
group choice theory (Mirkin, 1979). Originally, metric
structures on families of binary relations were intro-
duced by Barbut and Monjardet (1970) for linear orders,
Kemeny and Snell (1972) for weak orders, and Bogart
(1973) for some other families of partial orders.

Another revealing geometric structure on the set B is
the order polytope associated with B. This polytope is
the convex hull of the vertices of Qn2 representing
elements from B. Combinatorial and geometric proper-
e front matter r 2005 Elsevier Inc. All rights reserved.
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ties of the order polytope play an important role, for
example, in random utility theory (see, for instance,
Fiorini & Fishburn (2004) and references there).

In this paper, we propose to model a family B of
partial orders by the collection of cells of a hyperplane
arrangement arising from the representational mode
defining B. ‘‘The representational mode defines member-
ship in a class (of partial orders) by the existence of a
map from X into real intervals that are ordered in a way
that preserves (partial order)’’, Fishburn (1997). In a
more general setting, elements of a family of partial
orders can be defined by a system of real functions on X

satisfying certain conditions as it is done in Section 4 of
the paper.

To illustrate how hyperplane arrangements appear
naturally in the representational mode, let us consider
the definition of a linear order L on the set X: a binary
relation L on X is a linear order if there is a one-to-one
function f : X ! R such that

aLb3f ðaÞ4f ðbÞ.

For aab, equations in the form f ðaÞ ¼ f ðbÞ define
hyperplanes in the vector space Rn of all real functions
on X. The regions (see Section 2 for details) of this

www.elsevier.com/locate/jmp
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arrangement A of hyperplanes are open polyhedral
cones in Rn separated by these hyperplanes. The set LO
of linear orders on X is in one-to-one correspondence
with the set of regions of A.

In the paper, we use hyperplane arrangements and
related geometric and combinatorial objects to study
representations of families of partial orders by looking
at well graded families of sets. A family F of subsets of
a finite set Y is said to be well graded (Doignon &
Falmagne, 1997) if, for any two distinct sets A;B 2 F,
there is a sequence of sets in the family F

Y 0 ¼ A;Y 1; . . . ;Y k ¼ B,

such that jY iDY iþ1j ¼ 1, for all 0pipk � 1, and
jADBj ¼ k, where D stands for the symmetric difference
between two subsets of Y. Note that jADBj is the
standard distance between subsets A and B.

Some families of partial orders are well graded. These
families include the set of all partial orders on X

(Bogart, 1973; Kuzmin & Ovchinnikov, 1975a,b;
Doignon & Falmagne, 1997) and the families of
semiorders and interval orders on X (Doignon &
Falmagne, 1997). On the other hand, the families of
linear and weak orders on X are not well graded, but can
be modeled in a rather natural way by well graded
families of sets as shown in Section 7. Applications of
the wellgradedness property are found, for instance,
in the theory of group choice (Ovchinnikov, 1983)
and in media theory (Falmagne, 1997; Falmagne &
Ovchinnikov, 2002).

Some remarks about graph terminology are in order.
As usual, we do not distinguish between isomorphic
graphs.

The direct product of n copies of the complete graph
K2 is the n-cube Qn. Vertices of Qn can be modeled as 0/
1-vectors in f0; 1gn or, equivalently, as subsets of an n-
element set. The graph distance on Qn is the usual
Hamming distance. Recall that the Hamming distance
between vertices x ¼ ðx1; . . . ;xnÞ and y ¼ ðy1; . . . ; ynÞ is
defined by

dH ðx; yÞ ¼
Xn

i¼1

jxi � yij.

A subgraph G0 of a graph G is an isometric subgraph

of G if dG0 ðu; vÞ ¼ dGðu; vÞ for all vertices u and v in G0.
Here, dG0 and dG stand for the graph distances (shortest
path distances) in G0 and G, respectively. Isometric
subgraphs of cubes are called partial cubes (Imrich &
Klavžar, 2000). Clearly, a graph is a partial cube if and
only if it is the Hasse diagram of a well graded family of
sets ordered by inclusion. In general, a graph is a partial
cube if it can be isometrically embedded into a cube.

In Section 2, we introduce arrangements of hyper-
planes and prove that the region graph of an arrange-
ment is a partial cube. This fact is instrumental in the
proof of the main result in Section 4, where we establish
the wellgradedness property for a wide class of families
of partial orders. To illustrate our approach, we prove in
Section 3 that the family of biorders from a finite set A

to a finite set B is well graded (a different proof is given
in Doignon & Falmagne (1997)).

In Section 4, we introduce a broad class of families of
partial orders in the representational mode. The main
result of this section (Theorem 4.1) asserts that families
satisfying the Distinguishing Property are well graded.
(Distinguishing representations for split semiorders and
interval orders were introduced in Fishburn & Trotter
(1999).)

The labeled interval orders introduced by Stanley
(1996) are natural generalizations of semiorders; so are
the interval orders themselves. In Sections 5 and 6, we
use the theorem from Section 4 to establish the
wellgradedness property of families of these relations.
Note that for semiorders and interval orders this was
shown in Doignon and Falmagne (1997).

Although the families of linear and weak orders are
not well graded, they fit the general framework
presented in Section 4. In particular, weak orders are
represented by the set of cells of a braid arrangement
and linear orders are represented by the set of regions of
the same arrangement. We construct representations of
families of weak and linear orders by well graded
families of sets in Section 7.
2. Arrangements and their graphs

A family A ¼ fH1; . . . ;Hng of distinct affine hyper-
planes in a real vector space V of dimension d is a
hyperplane arrangement. In the next two paragraphs, we
introduce basic concepts of the theory of hyperplane
arrangements. For details, the reader is referred to
Björner, Las Vergnas, Sturmfels, White, and Ziegler
(1999), Bourbaki (2002), Zaslavsky (1975), and Ziegler
(1995).

The regions (chambers) of A are the connected
components of the complement of the union [A. Each
region is a d-dimensional open polyhedron. Relatively
open faces of regions are cells of A. Thus each region is
a maximal cell of the arrangement A. Every cell is a
convex set. The face poset FðAÞ is the set of all cells
ordered by inclusion of their closures. Two regions P

and Q are adjacent if their closures share a facet, i.e., a
ðd � 1Þ-dimensional cell.

Let R be the set of regions of A. The region graph G

of the arrangement A has R as the set of vertices; edges
of G are pairs of adjacent regions in R.

Remark. In a more general setting, the graph G is the
tope graph of the oriented matroid associated with the
arrangement A. It follows from Proposition 4.2.3 in
Björner et al. (1999) that G is an isometric subgraph of
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the n-cube, where n is the number of hyperplanes in A.
We present a direct proof of this fact in this section
(Proposition 2.1 below).

We define an orientation of A by selecting for every
hyperplane Hi 2 A one of the two open half spaces
defined by that hyperplane. Let us assign a vector ZP 2

f0; 1gn for every region P in R, where ZP
i ¼ 1, if P is on

the selected ‘‘side’’ of Hi, and ZP
i ¼ 0, otherwise.

Clearly, the one-to-one function

j : P7!ZP (1)

is an adjacency preserving mapping, i.e., j is a graph
homomorphism from G into the n-cube Qn. The graphs
G and jðGÞ are isomorphic.

Let us show that jðGÞ is a partial cube. Let P and Q

be two distinct regions. We have dGðP;QÞXdH ðjðPÞ;
jðQÞÞ, since jðGÞ is a subgraph of Qn.

Let p be a point in P and let S be the union of all line
segments connecting p with points in Q. The dimension
of S is d. Let S0 be the union of all line segments in S (as
defined in the preceding sentence) that intersect cells of
dimension less than d � 1. The dimension of S0 is less
then d. Thus we can choose a point q 2 Q in such a way
that different hyperplanes separating regions P and Q

intersect the line segment ½p; q� at different points. Let us
number these points together with points p and q in the
direction from p to q as follows:

p ¼ r0; r1; . . . ; rkþ1 ¼ q.

Thus, k is the number of hyperplanes in A separating
points p and q. Each open interval ðri; riþ1Þ is an
intersection of ½p; q� with a unique region Ri. Clearly,
regions Ri and Riþ1 are adjacent. Thus the sequence

P ¼ R0;R1; . . . ;Rk ¼ Q

is a shortest path in the region graph connecting P and
Q. The length of this path is the Hamming distance
dH ðjðPÞ;jðQÞÞ. Indeed, since there are k hyperplanes
separating P and Q, the vectors jðPÞ and jðQÞ differ
at exactly k coordinates. Hence, dGðP;QÞ ¼ dH ðjðPÞ;
jðQÞÞ and j is an isometry.

We proved the following proposition which is
instrumental in our constructions.

Proposition 2.1. The region graph G of an arrangement

A is a partial cube. The distance dGðP;QÞ is equal to the

number of hyperplanes in A separating P and Q which in

turn is equal to the Hamming distance dH ðjðPÞ;jðQÞÞ

between vertices jðPÞ and jðQÞ in Qn.

To illustrate this result let us consider an arrangement
of three lines on a plane and the corresponding region
graph depicted on the figure below (see also a diagram in
Section 7).
Clearly, the region graph of this arrangement is a
cycle. This graph is isomorphic to a subgraph of the
cube Q3 obtained by deleting two opposite vertices as it
is shown on the figure below. It follows that it is a
partial cube.

In a more general setting, let W be a relatively open
convex set in a nonempty affine subspace V 0 of V. (An
affine subspace is a translation of a linear subspace of
V). Let us consider those hyperplanes in A that have
nonempty intersections with W. Distinct intersections of
these hyperplanes with V 0 form an arrangement A0 of
hyperplanes in V 0. (Note that two or more distinct
hyperplanes in A may define a single hyperplane in V 0.)
We say that A0 is an arrangement of hyperplanes in W

and denote the region graph of A0 by GW . We call
intersections of regions ofA0 with W regions of A0 in W.
Since W is a convex set, the construction used in the
proof of Proposition 2.1 can be applied to prove the
following proposition. (Note that the mapping j in (1) is
now defined for the arrangement A0.)

Proposition 2.2. The region graph GW of the arrange-

ment A0 in W is a partial cube. The distance dGW
ðP;QÞ is

equal to the number of hyperplanes in A0 separating

regions P and Q in W which in turn is equal to the

Hamming distance dH ðjðPÞ;jðQÞÞ between vertices jðPÞ
and jðQÞ in the cube Qn0 where n0 is the number of

hyperplanes in A0.
3. An example: the family of biorders

In this section, we show how Proposition 2.1 can be
used to prove that the family BO of biorders from a
finite set A to a finite set B is well graded (Doignon &
Falmagne, 1997).

In the representational mode a biorder relation is
defined as follows (Ducamp & Falmagne, 1969).
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Definition 3.1. Let A and B be two finite sets. A relation
R � A � B is a biorder from A to B if there are functions
f : A ! R and g : B ! R such that

aRb3f ðaÞ4gðbÞ, (2)

for all a 2 A and b 2 B.

For any f : A ! R and g : B ! R, we regard ordered
pairs ðf ; gÞ as elements of the vector space V ¼ RA � RB.
Two pairs are said to be (biorder) equivalent if they
define the same biorder R by means of (2). This
equivalence relation, which we denote by �, partitions
the space V into classes which are in one-to-one
correspondence with elements of BO.

Let A be an arrangement of hyperplanes H ða;bÞ in V

defined by

H ða;bÞ ¼ fðf ; gÞ 2 V : f ðaÞ ¼ gðbÞg, (3)

for ða; bÞ 2 A � B. Each region ofA is a subset of one of
the classes of the relation �. The arrangement A is
oriented by open half-spaces in the form fðf ; gÞ 2 V :
f ðaÞ4gðbÞg for ða; bÞ 2 A � B (cf. (2)).

Lemma 3.1. Any vector in V is equivalent to a vector in

some region of A.

A proof of this lemma as well as similar proofs of
Lemmas 5.1 and 6.1 are found in the appendix.

We consider the family BO as a set of vertices of the
cube 2A�B. It follows from the previous lemma that the
set BO is in one-to-one correspondence with the set of
regions of A. It is easy to see that this correspondence is
the same as defined by the mapping j in (1). By
Proposition 2.1, we have the following theorem.

Theorem 3.1. The family BO of biorders from A to B is

well graded.
4. Wellgradedness in the representational mode

An approach used in the previous section can be
applied to a wide class of families of binary relations on
a finite set X. We begin with a general definition.

Definition 4.1. A representational structure is a quintuple
R ¼ hX ;V ;W ; a;bi where
�
 X is an n-element set (n42).

�
 V ¼ ff : X ! Rmg is an ðmnÞ-dimensional ordered
vector space with the order defined by

fog3f iðxÞogiðxÞ; for all x 2 X ; 1pipm,

where f ¼ ðf 1; . . . ; f mÞ; g ¼ ðg1; . . . ; gmÞ.

�
 W is a relatively open convex subset of an affine
subspace V 0 of V.
�
 a ¼ ðaiÞ and b ¼ ðbiÞ, 1pipm, are m-dimensional
nonzero vectors.
For a given f 2 W we define a binary relation R on X

by
aRb3
X

i

ai f iðaÞ4
X

i

bi f iðbÞ (4)

and say that f represents R. We denote BðRÞ the family
of binary relations on X defined by (4) for f 2 W .

Two functions f ; g 2 W are said to be ðRÞ equivalent if
they represent the same relation R in BðRÞ. In the rest of
the paper we denote, for a given representational
structure, this equivalence relation by �.

Let A ¼ fH ða;bÞg be an arrangement of hyperplanes in
V that are defined by equationsX

i

ai f iðaÞ ¼
X

i

bi f iðbÞ; aab; a; b 2 X (5)

and let A0 be the restriction of A to W. In the rest of
this section we assume that ba� a. Then half-spaces (in
V 0) in the form

f 2 V 0 :
X

i

ai f iðaÞ4
X

i

bi f iðbÞ

( )

define an orientation of A0 which we will use in the
definition of the mapping j in (1) for A0.

Following Fishburn and Trotter (1999) we introduce
the concept of a distinguishing function.

Definition 4.2. A function f 2 W is a distinguishing

function if f does not belong to any of hyperplanes (5). A
family BðRÞ satisfies the Distinguishing Property if any
function in W is equivalent to a distinguishing function
in W.

If BðRÞ satisfies the Distinguishing Property, then it is
in one-to-one correspondence with the family of regions
of A0 in W. An example of a family of binary relations
on a given set X which does not satisfy the Distinguish-
ing Property is given by the family of weak orders on X

(see Section 7).
Let us identify the relations in BðRÞ with vertices of

the cube 2X�X . Let GW be the graph defined by the
arrangement A and the set W (see Section 2). Clearly,
(4) defines a mapping j : GW ! 2X�X , which is the
same as in (1). By Proposition 2.2, the mapping j is an
isometry between GW and BðRÞ. Thus we have the
following theorem.

Theorem 4.1. A family of binary relations BðRÞ satisfying

the Distinguishing Property is well graded.

It follows that in order to establish the wellgradedness
property of a family of binary relations defined by a
representational structure R it suffices to prove that this
family satisfies the Distinguishing Property. In the next
two sections we show that the families of semiorders,
labeled interval orders, and interval orders on a finite set
X all satisfy the Distinguishing Property, and so are well
graded. Note again that for semiorders and interval
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orders this was established in Doignon and Falmagne
(1997).
5. Labeled interval orders and semiorders

We recall the definitions of semiorders (Luce, 1956)
and labeled interval orders (Stanley, 1996). In the rest of
the paper X is a given set of cardinality n.

Definition 5.1. A binary relation R on X is a semiorder if
there exists a function f : X ! R such that

aRb3f ðaÞ4f ðbÞ þ 1, (6)

for all a; b 2 X .

The family of semiorders on X is denoted by SO.

Definition 5.2. Let r be a positive function on X (length
function, threshold). A binary relation R on X is a
labeled interval order if there exists a function f : X ! R

such that

aRb3f ðaÞ4f ðbÞ þ rðbÞ, (7)

for all a; b 2 X .

Clearly, a constant length function r defines semi-
orders on X. Thus we consider the more general case of
labeled interval orders. We denote by IOr the family of
labeled interval orders on X defined by the length
function r.

The components of the representational structure R

for the family IOr are defined as follows:
�
 V ¼ ff : X ! R2g, so f ¼ ðf 1; f 2Þ,

�
 W ¼ ff 2 V : f 2 ¼ f 1 þ rg. Thus W ¼ V 0 is an affine
subspace of V,
�
 a ¼ ð1; 0Þ; b ¼ ð0; 1Þ.

In terms of R, a binary relation R is a labeled interval
order if there exists f 2 W such that

aRb3f 1ðaÞ4f 2ðbÞ, (8)

for all a; b 2 X . Clearly, (8) is equivalent to (7).
Eqs. (5) defining the arrangement A have the

following form in the case of the family IOr:

H ða;bÞ ¼ ff 2 V 0 : f 1ðaÞ ¼ f 2ðbÞg (9)

for aab in X.

Lemma 5.1. The family IOr satisfies the Distinguishing

Property.

A proof of this lemma is found in the appendix.
By applying Theorem 4.1, we obtain the following

result.

Theorem 5.1. For a given length function r, the family

IOr of all labeled interval orders on a finite set X is well
graded. In particular, the family SO of all semiorders on

X is well graded.
6. Interval orders

In the representational mode, an interval order on X

is defined as follows.

Definition 6.1. A binary relation R on X is an interval

order if there exist functions fog on X such that

aRb3f ðaÞ4gðbÞ,

for all a; b 2 X .

We denote by IO the family of interval orders on the
set X and define the components of its representational
structure R as follows:
�
 V ¼ ff : X ! R2g, so f ¼ ðf 1; f 2Þ,

�
 W ¼ ff 2 V : f 1of 2g. Thus W is an open cone in

V 0 ¼ V ,

�
 a ¼ ð1; 0Þ; b ¼ ð0; 1Þ.

Clearly, a binary relation R is an interval order if
there is f 2 W such that

ða; bÞ 2 R3f 1ðaÞ4f 2ðbÞ, (10)

for all a; b 2 X . Note that condition (10) is the same as
condition (8) for labeled interval orders. Thus we can
use the same hyperplane arrangement A0 as defined by
(9).

Lemma 6.1. The family IO satisfies the Distinguishing

Property.

A proof of this lemma is found in the appendix.
As in the previous section, we have the following

theorem.

Theorem 6.1. The family IO of interval orders on X is

well graded.

Remark. An interval order on X is also an irreflexive
biorder from X to X. Thus the family of interval orders
on X is a proper subfamily of the family of biorders
from X to X. It is worthwhile noting that the well-
gradedness of the latter does not imply the wellgraded-
ness of the former.
7. Weak and linear orders

A binary relation R on X is a weak order if there exists
f 2 V such that

aRb3f ðaÞ4f ðbÞ, (11)

for all a; b 2 X (cf. (4)).
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Let R ¼ hX ;V ;W ; a;bi be a representational struc-
ture with the following components:
�
 V ¼ ff : X ! Rg is an n-dimensional ordered vector
space,
�
 W ¼ V ,

�
 a ¼ 1 and b ¼ 1 are scalars.

The quintuple R ¼ hX ;V ;W ; a; bi is a representational
structure for the family WO of weak orders on the set X.

The family WO, considered as a family of subsets of
X � X , is not well graded. For instance, let X ¼ fa; b; cg
and let P ¼ ; and Q ¼ fða; cÞ; ðb; cÞg. The distance
between P and Q is 2, but there is no path of length 2
in WO connecting P and Q. Nevertheless, it is possible
to ‘model’, in a rather natural way, the family WO by a
well graded family of sets.

Consider an arrangement of hyperplanes in the form

H ða;bÞ ¼ ff 2 V : f ðaÞ ¼ f ðbÞg (12)

for all aab in X (note that H ða;bÞ ¼ H ðb;aÞ). This is the
well known braid arrangement (Orlik & Terano, 1992;
Stanley, 1996) denoted Bn.

It is easy to see that two functions f ; g 2 V are
equivalent (in the sense of formula (4)) if and only if f

and g belong to the same cell of the arrangement A (this
means, in particular, that WO does not satisfy the
Distinguishing Property). Thus the family WO is in one-
to-one correspondence with the face poset FðAÞ of the
arrangement A. Actually, this correspondence is an
isomorphism between posets WO and FðAÞ. The latter
one, in turn, is isomorphic to the family F ðPn�1Þ of
nonempty faces of the permutahedron Pn�1 ordered by
inverse inclusion. Note, that this is a well known
correspondence between weak orders and faces of a
permutahedron: according to Ziegler (1995), ‘‘k-faces
(of Pn�1) correspond to ordered partitions of (the set X)
into n � k nonempty parts’’ (see also Barbut &
Monjardet, 1970, p. 54).

The Hasse diagram of F ðPn�1Þ (and therefore that of
WO) is a partial cube. To prove it, we will construct a
representation of WO by a well graded family of sets
explicitly in terms of weak orders (cf. Ovchinnikov,
2004a; Janowitz, 1984).

Weak orders defined by (11) can be characterized as
negatively transitive antisymmetric binary relations on
X. A weak order R on the set X can be represented in the
form R ¼ ðX 1; . . . ;X kÞ, where the sets X i are indiffer-
ence classes of R and xRy if and only if x 2 X i and
y 2 X j for some ioj. In this case we say that R is a weak

k-order. In particular, weak n-orders are linear orders,
and the only weak 1-order is the empty weak order. The
set of all weak k-orders on X is denoted by WOðkÞ.

The following proposition is the statement of Problem
19 on p. 115 in Mirkin (1979). The proof is straightfor-
ward and omitted.
Proposition 7.1. A weak order R ¼ ðX 1; . . . ;X kÞ contains

a weak order R0 if and only if

R0 ¼
[i1
j¼1

X j ;
[i2

j¼i1þ1

X j ; . . . ;
[k
j¼im

X j

 !

for some sequence of indices 1pi1oi2 � � �oimpk.

One can say (see Mirkin, 1979, Chapter 2) that R0 � R

if and only if the indifference classes of R are
‘‘enlargements of the adjacent indifference classes’’
of R0.

Let R be a weak order. We denote by JR the set of all
weak 2-orders that are contained in R.

Proposition 7.2. A weak order admits a unique represen-

tation as a union of weak 2-orders, i.e., for any R 2 WO

there is a uniquely defined set J � WOð2Þ such that

R ¼
[
U2J

U . (13)

Proof. Clearly, the empty weak order has a unique
representation in the form (13) with J ¼ ;.

Let R ¼ ðX 1; . . . ;X kÞ be a weak order with more than
one indifference class. By Proposition 7.1, each weak
order in JR is in the form

Ri ¼
[i

1

X j ;
[k
iþ1

X j

 !
; 1piok.

Let ðx; yÞ 2
Sk�1

i¼1 Ri. Suppose that :ðxRyÞ. Then x 2 X p

and y 2 X q for some pXq. It follows that :ðxRqyÞ, a
contradiction. This proves (13) with J ¼ JR.

Let R ¼ ðX 1; . . . ;X kÞ be a weak order in the form
(13). Clearly, J � JR. Suppose that Rs ¼ ð[s

1X j ;
[k

sþ1X jÞeJ, for some s. Let x 2 X s and y 2 X sþ1. Then
xRy and :ðxRiyÞ, for ias, a contradiction. Hence,
J ¼ JR, which proves uniqueness of representation
(13). &

We denote by J the family of subsets of the set
WOð2Þ in the form JW . The set J is a poset with respect
to the inclusion relation.

The following theorem is an immediate consequence
of Proposition 7.2.

Theorem 7.1. The correspondence R7!JR is an isomorph-

ism of posets WO and J.

Clearly, the empty weak order on X corresponds to
the empty subset of WOð2Þ and the set LO of all linear
orders on X is in one-to-one correspondence with
maximal elements in J.

Theorem 7.2. The family J is a combinatorial simplicial

complex, i.e., J 2 J implies J 0 2 J for all J 0 � J.

Proof. Let J 0 � J ¼ JR for some R 2 WO, i.e.,
R ¼

S
U2JW

U . Consider R0 ¼
S

U2J 0 U . As a union of
negatively transitive relations, the relation R0 itself is
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negatively transitive. It is antisymmetric, since R0 � R.
Thus, R0 is a weak order. By Proposition 7.2,
J 0 ¼ JR0 2 J. &

It follows that J is a well graded family of subsets of
the setWOð2Þ. Thus Theorem 7.1 establishes the required
representation of WO by a well graded family of sets.

Let now LO be the set of linear orders on X. Clearly,
the set LO is in one-to-one correspondence with the
regions of the braid arrangement Bn defined by (12).
The region graph G of Bn is the 1-skeleton graph of the
permutahedron Pn�1. By Proposition 2.1, the graph G is
a partial cube.

A representation of LO by a well graded family of sets
can be obtained as follows. Let L0 be a fixed linear order
on X. It is shown in Ovchinnikov (2004b) that fL \

L0gL2LO is a well graded family of subsets of X � X . The
desired representation of LO is given by the correspon-
dence L7!L \ L0.

The diagram below illustrates the geometric and
combinatorial features of posets WO and LO for X ¼

fa; b; cg (cf. Fig. 2 on p. 17 in Kemeny & Snell (1972)).

The three long lines are intersections of the planes in
R3 defining the braid arrangement B3 with the plane
f ðaÞ þ f ðbÞ þ f ðcÞ ¼ 0. The hexagon in this diagram is
the permutahedron P2. To avoid cluttering the figure,
only linear orders are labeled.
8. Concluding remarks
1.
 Melvin Janowitz has pointed out to the author that a
lattice theoretical study of the join-semilattice of
reflexive weak orders was presented in Janowitz
(1984). In particular, it is shown there (Proposition
F1) that the intervals above atoms of this semilattice
are isomorphic to the lattice of all subsets of an
ðn � 1Þ-element set (cf. Theorem 7.2).
2.
 One particular advantage of the approach presented in
the paper is that it can be used to enumerate elements of
a particular family of partial orders using the standard
enumeration techniques of the theory of hyperplane
arrangements (see Stanley (1996) and Postnikov &
Stanley (2000), where some examples are given).
3.
 An approach to ranking patterns of the unfolding
model based on hyperplane arrangements is found in
Kamiya, Orlik, Takemura, and Terao (2004).
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Appendix

In this section, we present proofs of Lemmas 3.1, 5.1,
and 6.1. The three proofs use essentially the same
geometric idea. For a function representing a given
binary relation, we construct an equivalent function
which belongs to a region of the arrangement defining
the corresponding family of binary relations.

We begin with a proof of Lemma 3.1.

Proof. Suppose first that ðf ; gÞ defines the empty rela-
tion by (2), i.e., that f ðxÞpgðyÞ for all x 2 A; y 2 B.
Clearly, the pair ðf � 1; gÞ defines the empty relation by
(2) and this vector does not belong to any of the
hyperplanes (3).

Suppose now that ðf ; gÞ defines a nonempty biorder R

and let a be a number satisfying inequalities

0oao min
ðx;yÞ2R

ðf ðxÞ � gðyÞÞ. (14)

We define f �
ðxÞ ¼ f ðxÞ � a and prove that ðf �; gÞ defines

the same biorder R by (2) and does not belong to any of
the hyperplanes (3).

Let aRb. Then f �
ðaÞ ¼ f ðaÞ � a4gðbÞ, by (14). On the

other hand, suppose that f �
ðaÞ ¼ f ðaÞ � a4gðbÞ for

some ða; bÞ 2 A � B. Then, again by (14), f ðaÞ4gðbÞ,
i.e., aRb. Thus, ðf �; gÞ�ðf ; gÞ.

Suppose ðf �; gÞ 2 H ða;bÞ for some ða; bÞ. Then
f �
ðaÞ ¼ gðbÞ, which implies f ðaÞ4gðbÞ. Hence, aRb,

implying f �
ðaÞ4gðbÞ, a contradiction. &

Now we prove Lemma 5.1.

Proof. We need to show that any function f 2 W is
equivalent to some function f �

2 W which does not
belong to any of hyperplanes H ða;bÞ defined by (9).

Suppose first that f 1ðxÞpf 2ðyÞ for all x; y 2 X . Then
(8) defines the empty relation on X. For l ¼ maxff 1ðxÞ :
x 2 X g, we define

f �
1ðxÞ ¼ l and f �

2ðxÞ ¼ lþ rðxÞ,

for all x 2 X . Clearly, ðf �
1; f

�
2Þ 2 W and f �

1ðxÞof �
2ðyÞ for

all x; y 2 X . Thus, f �
¼ ðf �

1; f
�
2Þ defines the empty

relation by (8) and therefore f �
�f . Clearly,

f �
1ðaÞaf �

2ðbÞ for all a; b 2 X .
Suppose now that, for a given f 2 W , we have

f 1ðxÞ4f 2ðyÞ for some x; y 2 X . Let R be a labeled
interval order defined by (8) and let d be a number
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satisfying inequalities:

max
ðx;yÞ2R

rðyÞ
f 1ðxÞ � f 2ðyÞ þ rðyÞ

odo1. (15)

We define f �
2 W by

f �
1 ¼ df 1 and f �

2 ¼ df 1 þ r

and show first that f �
�f .

Suppose that aRb. Then

f �
1ðaÞ � f �

2ðbÞ ¼ d½f 1ðaÞ � f 2ðbÞ þ rðbÞ� � rðbÞ40,

by the first inequality in (15). On the other hand, if
f �
1ðaÞ4f �

2ðbÞ for some a; b 2 X , then

0of �
1ðaÞ � f �

2ðbÞ ¼ d½f 1ðaÞ � f 2ðbÞ þ rðbÞ� � rðbÞ

of 1ðaÞ � f 2ðbÞ,

by the second inequality in (15). Thus ða; bÞ 2 R. We
have proved that f �

�f .
Suppose that f �

1ðaÞ ¼ f �
2ðbÞ for some a; b 2 X . The

previous inequality shows that in this case aRb

implying that f �
1ðaÞ4f �

2ðbÞ, a contradiction. We proved
that f � does not belong to any hyperplane in the
form H ða;bÞ. &

Finally, we prove Lemma 6.1.

Proof. Suppose first that f 2 W defines the empty
interval order by (10), i.e., that f 1ðxÞpf 2ðyÞ for all
x; y 2 X . Clearly, for f �

1 ¼ f 1 � 1, the function f �
¼

ðf �
1; f 2Þ 2 W defines the empty interval order and does

not belong to any of the hyperplanes in the form H ða;bÞ

(see (9)).
For a given f 2 W , let Ra; be an interval order

defined by (10) and let a be a number satisfying
inequalities:

0oao min
ðx;yÞ2R

ðf 1ðxÞ � f 2ðyÞÞ. (16)

Let us define f �
1 ¼ f 1 � a and prove that f �

¼

ðf �
1; f 2Þ 2 W defines the same interval order R by (10).
Suppose that aRb. Then f �

1ðaÞ ¼ f 1ðaÞ � a4f 2ðbÞ by
(16). On the other hand, if f �

1ðaÞ ¼ f 1ðaÞ � a4f 2ðbÞ for
some a; b 2 X , then f 1ðaÞ4f 2ðbÞ by (16), i.e., aRb. Thus
ðf �

1; f 2Þ�ðf 1; f 2Þ.
Suppose now that f �

1ðaÞ ¼ f 1ðaÞ � a ¼ f 2ðbÞ. Then
f 1ðaÞ4f 2ðbÞ, i.e., aRb, which implies f �

1ðaÞ4f 2ðbÞ, a
contradiction. Thus f � does not belong to any of
hyperplanes H ða;bÞ. &
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