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WILFRIED IMRICH† , SANDI KLAVŽAR‡ , AND HENRY MARTYN MULDER§

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, pp. 111-118

Abstract. Let M(m,n) be the complexity of checking whether a graph G with m edges and n
vertices is a median graph. We show that the complexity of checking whether G is triangle-free is
at most O(M(m,m)). Conversely, we prove that the complexity of checking whether a given graph
is a median graph is at most O(m logn+ T (m logn, n)), where T (m,n) is the complexity of finding
all triangles of the graph. We also demonstrate that, intuitively speaking, there are as many median
graphs as there are triangle-free graphs. Finally, these results enable us to prove that the complexity
of recognizing planar median graphs is linear.
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1. Introduction. All graphs considered in this paper are finite undirected
graphs without loops and multiple edges. Unless stated otherwise, for a given
graph G, n and m stand for the number of its vertices and edges, respectively.

The interval I(u, v) between vertices u and v consists of all vertices on shortest
paths between u and v. A median of a set of three vertices u, v, and w is a vertex
that lies in I(u, v)∩ I(u,w)∩ I(v, w). A connected graph G is a median graph if every
triple of its vertices has a unique median. Trees, hypercubes, and grid graphs are
prime examples of median graphs. It is easy to see that median graphs are bipartite.

By now a rich theory has been developed for median graphs. For instance, they are
shown to be the graphs of windex 2 by Chung, Graham, and Saks [8]. They constitute
the class of retracts of hypercubes (see Bandelt [5]). They have applications in location
theory and consensus theory (see, e.g., McMorris, Mulder, and Roberts [15]). They
are the underlying graphs of discrete structures from various areas, involving, e.g.,
ternary algebras, hypergraphs, convexities, semilattices, join geometries, and conflict
models. For a survey of all these aspects of median graphs, the reader is referred to
Klavžar and Mulder [14].

It is clear that median graphs can be recognized in polynomial time and a direct
approach would yield an O(n4) algorithm. Jha and Slutzki [13] followed the convex
expansion theorem of Mulder [16, 17] to obtain an O(mn) = O(n2 log n) algorithm.
A simple algorithm of the same complexity was recently proposed by Imrich and
Klavžar [11]. Currently, the fastest known algorithm for recognizing median graphs is
by Hagauer, Imrich, and Klavžar [9] and runs in O(m

√
n) = O(n3/2 log n) time. The
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last equality holds because a median graph with n vertices has at most n log n edges.
For more information on these and related algorithms, see [10].

Cartesian product graphs can be recognized in O(m log n) time by the algorithm
of Aurenhammer, Hagauer, and Imrich [3]. The simplest Cartesian product graphs
are obtained by multiplying complete graphs on two vertices and are usually called
hypercubes or n-cubes. As mentioned above, Bandelt [5] proved that median graphs
are very special subgraphs of n-cubes; namely, they are precisely the retracts of the
n-cubes. Hence, the natural question arises: Can the complexity O(m

√
n) for recog-

nizing median graphs be improved to, say, O(m logk n) for some k ≥ 1? The main
message of this paper claims that this is very unlikely.

Several algorithms are known which recognize triangle-free graphs or, more gen-
erally, find all triangles of a given graph. Clearly, a straightforward implementation
yields an algorithm of complexity O(mn). It is worthwhile to add that this simple
algorithm finds a triangle in O(n5/3) on the average (see [12]). In [12] Itai and Rodeh
show that Strassen’s algorithm for (Boolean) matrix multiplication can be used to
solve the problem in O(nlog 7) time. In addition, they also give an algorithm using
rooted spanning trees of complexity O(m3/2). The algorithm finds all triangles of
a given graph and becomes linear in the case of planar graphs. Another algorithm
which lists all the triangles of a given graph is due to Chiba and Nishizeki [7]. For a
graph G its time complexity is O(a(G)m), where a(G) denotes the arboricity of G.
They also show that a(G) ≤ O(m1/2). Thus, the algorithm of Chiba and Nishizeki is
in the worst case still of complexity O(m3/2). Recently, Alon, Yuster, and Zwick [2]
proved that deciding whether a directed or undirected graph contains a triangle, and
finding one if it does, can be done in O(m1.41) time. For related results we refer to
[1, 18].

We continue this paper as follows. We first recall several notions needed in the
rest of the paper. Then, in the next section, we introduce the main construction of
this paper which for a given triangle-free graph produces a median graph. We study
this construction and show that it can be used to deduce that, intuitively speaking,
there are as many median graphs as there are triangle-free graphs. In section 3 we use
the construction to show that recognizing triangle-free graphs is at most as difficult
as recognizing median graphs. For the converse we prove that the complexity of
checking whether a graph with m edges and n vertices is a median graph is at most
O(m log n+ T (m log n, n)), where T (m,n) is the complexity of finding all triangles of
a given graph with m edges and n vertices. A consequence of this relationship is a
linear algorithm for the recognition of planar median graphs. It exploits the fact that
the triangles of a planar graph can be found in linear time.

The eccentricity e(x) of a vertex x in a connected graph G is the maximum dis-
tance of x to any other vertex in G. The radius r(G) of G is the minimum eccentricity
in G, and a vertex x is a central vertex of G if e(x) = r(G). The periphery of G consists
of all vertices in G at distance r(G) to some central vertex in G.

For an edge e = uv in a graph G, the subdivision of e is obtained by replacing
the edge e by a new vertex adjacent to both u and v. For convenience, we denote the
new vertex by e and the new edges by ue and ev.

Let G be a graph. The simplex graph S(G) of G is the covering graph of the
partially ordered set of the family of simplices (i.e., complete subgraphs) in G ordered
by inclusion. In other words, the vertices of S(G) are the complete subgraphs of
G (including the empty one), two vertices being adjacent provided they differ in at
most one vertex. Simplex graphs were introduced by Bandelt and van de Vel [6].
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Obviously, a simplex graph is a median graph: The median of the simplices A, B, C
is the simplex (A ∩B) ∪ (A ∩ C) ∪ (B ∩ C).

By Q−3 we denote the graph obtained from the 3-cube Q3 by deleting one vertex.
The antipodal of the deleted vertex is called the base of the Q−3 . In other words, the
base is the only vertex of Q−3 which is incident to three vertices of degree 3. Note
that the three vertices of degree 2 in Q−3 do not have a median.

Finally, the Cartesian product G H of graphs G and H is the graph with vertex
set V (G) × V (H) and (a, x)(b, y) ∈ E(G H) whenever ab ∈ E(G) and x = y, or
a = b and xy ∈ E(H).

2. Constructing median graphs from triangle-free graphs. Let G =
(V,E) be a graph with |V | = n and |E| = m. The graph G̃ = (Ṽ , Ẽ) is obtained
from G by subdividing all edges of G and adding a new vertex z joined to all
the original vertices of G. So we have Ṽ = V ∪ E ∪ {z} and

Ẽ = {zv | v ∈ V } ∪ {ue | e ∈ E, u ∈ V and u is incident with e in G} .

Note that |Ṽ | = n+m+ 1, and |Ẽ| = n+ 2m. Observe also that G̃ is connected, even
if G is not. An example for this construction is given in Fig. 2.1.

Fig. 2.1. Illustration of the construction.

Let d denote the degree function of G and d̃ that of G̃. Then we have d̃(z) = n,

and d̃(v) = d(v) + 1, for v ∈ V , and d̃(e) = 2, for e ∈ E. Note that z has maximum

degree in G̃, and that d̃(v) = n if and only if v is a dominating vertex in G, i.e., a
vertex adjacent to all other vertices in G.

Since all vertices in G̃ are at a distance of at most 2 from z, we have r(G̃) ≤ 2.

Clearly, we have r(G̃) = 2 if and only if m ≥ 1. In any case, z is a central vertex

of G̃. Note that G is disconnected if and only if z is a cut-vertex in G̃, so that G̃ is
2-connected if and only if G is nontrivial and connected.

Assume that there is an edge e = uv and a vertex w in G such that w is not
incident with e. Then, in G̃, the vertices w and e have distance 3, so neither vertex
is central in G̃. This implies the following facts: Either

(i) G = K2, and G̃ = C4 = K2 K2, and all four vertices of G̃ are central, or

(ii) G = K1,n−1 with n 6= 2, and G̃ = K2 K1,n−1, and the two vertices of

degree n in G̃ are the two central vertices of G̃ (where it is understood that
K1,0 = K1), or

(iii) G is not a star and z is the unique central vertex of G̃.

Thus, to reconstruct G from G̃, we need only to search for a central vertex; take
this to be z, take the neighbors of z to be the vertices of G, and replace the remaining
vertices, which are all of degree 2, by edges.
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An automorphism of a graph necessarily maps central vertices to central vertices.
So, if G = (V,E) is not a star, then each automorphism α of G̃ fixes z. Furthermore,

we have α(V ) = V and α(E) = E in G̃. So, essentially, α|V ∪E is an automorphism of
G, which gives us the following result.

Proposition 2.1. Let G be a graph. If G = K2, then Aut(G̃) = Aut(C4). If

G is a star different from K2, then Aut(G̃) ∼= Z2 × Aut(G). If G is not a star, then

Aut(G̃) ∼= Aut(G).

Note that G contains a triangle if and only if G̃ contains a Q−3 , the base of which
necessarily is z.

In case that G is triangle-free, the graph G̃ is just the simplex graph of G and
hence is a median graph. Since Q−3 is a forbidden convex subgraph in a median graph,
we have as an immediate consequence the following result.

Theorem 2.2. A graph G is triangle-free if and only if its associated graph G̃ is
a median graph.

We next have a closer look at the median graphs arising in Theorem 2.2.
Let G be a triangle-free graph. Then G contains a dominating vertex if and only

if G is a star. Hence, if G is not a star, then z is not only the unique central vertex
but also the unique vertex of maximum degree in G̃. The only vertices of degree 1
in G̃ arise from components of G consisting of a single vertex. Let us ignore such
components. Then the minimum degree in G̃ is 2.

Conversely, let H be a median graph of minimum degree 2, with radius r(H) = 2,
with a unique central vertex z, which is also the unique vertex of maximum degree n.
Let p be any vertex in the periphery of H, whence at distance 2 from z. Since H is
bipartite, all neighbors of p must be adjacent to z. Since H is median, and therefore
without K2,3, it follows that p has exactly two neighbors. Let m be the number of
vertices in the periphery of H. Then H has 1 + n + m vertices and n + 2m edges.
Now we construct the graph G on the set of neighbors of z in H. We join two vertices
of G by an edge if and only if in H they have a common neighbor in the periphery.
Then G has n vertices and m edges and, clearly, we have H = G̃. Since H is Q−3 -free,
G is triangle-free.

Let Gn,m be the class of triangle-free graphs with n vertices and m edges and
without singleton components. LetHn,m be the class of median graphs with minimum
degree 2 and radius 2 and a single vertex of maximum degree n, which is also the
unique central vertex, and m vertices in the periphery. Thus, we have just proved the
following theorem.

Theorem 2.3. For each n and m the mapping G 7→ G̃ is a bijection between the
graph classes Gn,m and Hn,m.

Thus we have an injection of the class T of triangle-free graphs into the classM2

of median graphs of radius 2. Let M∗ be the class of all Q3-free median graphs and
let M be the class of all median graphs. Then we have the following situation:

M⊂ T ↪→M2 ⊂M∗ ⊂M .

Intuitively speaking, we have shown that there are as many median graphs as there
are triangle-free graphs. Thus median graphs are much less exotic than one would
expect from the definition of median graphs and the rich structure theory by now
developed for median graphs.

We conclude this section with the following observation. Let G be a triangle-free
graph. Then G̃ is a median graph and can be isometrically embedded into a hypercube
Qr. Let i(G̃) be such an embedding. Let uv be an edge of G. Then the corresponding
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vertices ũ and ṽ lie on a 4-cycle of G̃. Since i is an isometry, it maps a 4-cycle of G̃
onto a 4-cycle of Qr. This in particular implies that d(i(ũ), i(ũ)) = 2. Hence we have
the following proposition.

Proposition 2.4. Let G be a triangle-free graph. Then there is an r and a
mapping j : V (G)→ V (Qr), such that if uv is an edge of G, then d(j(u), j(v)) = 2.

3. On the complexity of recognizing median graphs and triangle-free
graphs. In this section we will show that the complexity of recognizing median graphs
is closely related to the complexity of recognizing triangle-free graphs and to the
complexity of finding all triangles of a graph. We first have the following corollary to
Theorem 2.2.

Corollary 3.1. Let M(m,n) be the complexity of checking whether a graph G
with m edges and n vertices is median. Then the complexity of checking whether G is
triangle-free is at most O(M(m,m)).

Proof. By Theorem 2.2 a graph G is triangle-free if and only if G̃ is a median
graph. Since |E(G̃)| = 2m + n and |V (G̃)| = n + m + 1, G̃ can be checked if it is a
median graph with complexity O(M(2m+ n, n+m+ 1)) = O(M(m,m)).

We can now explain why it seems unlikely that the complexity O(m
√
n) for rec-

ognizing median graphs can be improved to O(m logk n) for some k ≥ 1. For, if
this were the case, then Corollary 3.1 would imply the existence of an algorithm for
recognizing triangle-free graphs of time complexity in O(m logkm) = O(m logk n),
thus significantly improving known algorithms for recognizing triangle-free graphs.
Note also that, by Corollary 3.1, the fastest known algorithm for recognizing median
graphs, which is of complexity O(m

√
n), yields an O(m3/2) algorithm for recognizing

triangle-free graphs.
We next consider whether algorithms for recognizing triangle-free graphs can

help us in recognizing median graphs, in particular by improving the performance of
the algorithm of Hagauer, Imrich, and Klavžar [9] of complexity O(m

√
n). As this

algorithm is rather involved, we shall not recall it here in detail but will state whatever
is needed for our construction. We refer to this algorithm as Algorithm A.

First some notation. Let G = (V,E) be a connected bipartite graph. For u ∈
V (G), let N(u) be the set of all vertices adjacent to u. For X ⊆ V (G), let 〈X〉 denote
the subgraph induced by X. A subgraph H of a graph G is an isometric subgraph, if
the distance in G between any pair of vertices u and v of H is equal to the distance
between u and v in H. For any edge ab of G, we write

Wab = {w ∈ V | d(w, a) < d(w, b)},
Wba = {w ∈ V | d(w, b) < d(w, a)},
Uab = {u ∈Wab | u is adjacent to a vertex in Wba},
Uba = {u ∈Wba | u is adjacent to a vertex in Wab},
Fab = {uv | u ∈ Uab, v ∈ Uba}.

We refer to the set F = Fab as a color. In fact, if G is a median graph, then the sets
of type F are a proper edge-coloring of G. Also, G is a median graph if and only if,
for any edge ab, the sets Uab and Uba are convex. This characterization was proved
by Bandelt [4] but also follows immediately from results in [16, 17]. The bottleneck
in testing whether G is a median graph is testing whether the sets Uab are convex.
This convexity testing can be reduced to testing condition (iii) listed below. In fact,
with one exception, all steps of Algorithm A require at most O(m log n) time, the
exception being Step 3.4, which tests condition (iii) for Uab.



116 WILFRIED IMRICH, SANDI KLAVŽAR, AND MARTYN MULDER

Theorem 3.2. Let G = (V,E) be a connected bipartite graph, and let ab ∈ E.
Suppose the following properties hold:

(i) Fab is a matching that defines an isomorphism between 〈Uab〉 and 〈Uba〉;
(ii) for any u ∈ Uab and v ∈ Uba, I(u, a) ⊆ Uab and I(v, b) ⊆ Uba, respectively;

(iii) for any u ∈Wab\Uab and v ∈Wba\Uba, |N(u)∩Uab| ≤ 1 and |N(v)∩Uba| ≤ 1.
Then G is a median graph if and only if 〈Wab〉 and 〈Wba〉 are median graphs.

As we mentioned, Algorithm A without Step 3.4 checks all conditions of Theorem
3.2 except (iii) for Uab. We first describe how Algorithm A checks this condition. It
first constructs a breadth first search tree, say T , with root a. Suppose that a vertex
x from Wab \Uab has two neighbors in Uab, say u and v. As Uab is isometric, there is
a vertex w ∈ Uab which is adjacent to both u and v. Moreover, because condition (i)
was also tested before, there are vertices u′, v′, and w′ in Uba which are adjacent to
u, v, and w, respectively, such that these six vertices together with x induce a Q−3 .

Let L0, L1, . . . be the distance levels of the tree T and assume that x ∈ Li+1.
Then we know that u and v both belong to Li as condition (ii) of Theorem 3.2 has
already been tested at this stage. Suppose that w ∈ Li+1. Then by the down-closure
there is a vertex r ∈ Li−1 adjacent to u and v. But then the vertices x,w, u, v, r
induce a K2,3, which has been tested before. Hence w ∈ Li−1. We thus have the
situation depicted in Fig. 3.1.

Fig. 3.1. Testing condition (iii).

What we need to check now is if there exists a vertex z ∈ Li+2 adjacent to x, u′,
and v′. If this is not the case, then the test of (iii) fails and G is not a median graph.
If no such situation occurs, then all the checks of Theorem 3.2 have been done and G
is recognized as a median graph. We next describe how we can do these tests using
an algorithm for listing all triangles of a given graph.

Let Hi be the graph on the vertex set Li and two vertices of Hi are adjacent,
if they have a common neighbor in Li+1. By Corollary 4.2 of [9], Hi has at most
|Li+1| log2 n edges. Thus, all the graphs Hi together have at most n log2 n edges.
Moreover, there are at most n log3 triangles in them. We now use an algorithm which
finds all triangles in the graphs Hi. For each such triangle of Hi we have only to check
whether the corresponding three vertices in Li+1 have a common neighbor z in Li+2.
This is easy, because G has already been embedded into a hypercube by the previous
steps of Algorithm A. In other words, we know precisely the colors of the possible
edges between z and the three vertices of Li+1.
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Suppose that we have an algorithm of complexity T (m,n) which finds all triangles
in a given graph with n vertices and m edges. As we wish to test whether a given
graph G is a median graph, we have m = O(n log n). As already mentioned, all steps
of Algorithm A, except Step 3.4, require O(m log n) time. For the test of (iii) we then
follow the above approach, which takes O(n log2 n, n) time. Thus, we have proved the
following theorem.

Theorem 3.3. Let T (m,n) be the complexity of finding all triangles of a given
graph with m edges and n vertices. Then the complexity of checking whether a graph
G on n vertices and m edges is a median graph is at most O(m log n+T (m log n, n)).

As we mentioned in the introduction, the best general algorithm known for listing
all triangles of a given graph is of complexity O(m3/2). Thus, applying Theorem 3.3,
we conclude that median graphs can be recognized in O(m log n+ (m log n)3/2) time.
Since m = O(n log n) this reduces to O(n3/2 log3 n) which differs only by factor log2 n
from the complexity of Algorithm A. In special cases this complexity can be further
reduced. As an example we show that planar median graphs can be recognized in
linear time.

The arguments leading to this result rely on the observation that the factor logn
in Algorithm A without Step 3.4 is a bound on the down-degree of vertices in an
isometric subgraph of the hypercube with respect to a distance tree. To be more
precise, let x be vertex of in level Li+1 with respect to a distance tree of a graph
G. Then the number of neighbors of x in Li is at most log n if G is a subgraph of a
hypercube. This number is called the down-degree of x. See [9].

In [9] it is also shown that every vertex x of down-degree k in a median graph G
is contained in a hypercube Qk. Since Qk is nonplanar for k > 3 this implies that
the down-degrees of planar median graphs are bounded by 3 and that Algorithm A
without Step 3.4 can be executed in O(m) steps.

Corollary 3.4. Planar median graphs can be recognized in linear time.

Proof. Let G be a graph on n vertices with m edges. We wish to show that the
complexity of checking whether G is a planar median graph is O(m+n). As it is well
known that connectedness, bipartiteness, and planarity can be checked in linear time,
we can assume that G is a connected, planar, bipartite graph given by its adjacency
list and that we wish to check whether it is a median graph. We further observe that
a distance-tree can be found in linear time and that down-degrees can be found and
checked in linear time, too.

We now consider an embedding of G in the plane and the subgraph Xi spanned
by Li+1 and Li. In Li+1 there may be vertices of degree 1, 2, or 3 in Xi. Let w
be a vertex in Li+1 of degree 3 and a, b, c be its neighbors in Li. We split w into
three vertices x, y, z and replace the edges aw, bw, cw with ax, ay, by, bz, cz, cx. We do
this for every vertex of degree 3. Clearly the new graph X ′i obtained this way is still
planar. Moreover, every vertex of Xi not in Li has degree 1 or 2. We now delete the
vertices of degree 1 and replace every path x1x2x3, where x1, x3 ∈ Li and x2 ∈ Li+1,
by a single edge x1x3. This way we obtain the graph Hi from the construction in the
proof of Theorem 3.3.

Proceeding as in the proof of Theorem 3.3 we have to find the triangles in the
Hi and perform certain checks, the complexity of these operations being determined
by the complexity of finding all triangles. Now, the triangles in planar graphs can be
found in linear time; cf. [7]. Now the proof is completed by the observation that the
total number of edges in the Hi is at most 3n, where n is the number of vertices of
G.
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4. Concluding remark. A variant of Theorem 3.5 from [2] can be used to
further improve the recognition complexity of median graphs from O(n1.5 log n) to
O(n1.41 log2.82 n). This will be subject of a subsequent paper.
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