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CHAPTER 4. OTHER CONFIGURATIONS. 
 

4.0 OVERVIEW 

 We devoted long chapters each to 3-configurations and to 4-configurations. In 

contrast, this short chapter covers all other configurations.  The reason for this difference 

in extent of coverage is a direct and inevitable consequence of the paucity of knowledge 

about configurations that are neither 3- nor 4-configurations. 

 Despite the generality of the definition of configurations proposed a century and a 

quarter ago, strikingly little effort was devoted to the study of the k-configurations for k ≥ 

5 and the related unbalanced configurations. 

 In Section 4.1 we review the information that is available about 5-configurations.  

The first images are barely a decade olds, and there is still great uncertainty concerning 

what is possible regarding 5-configurations, and what is not possible. 

 Section 4.2 nominally deals with all k-configurations for k ≥ 6.  In fact, it is 

mostly devoted to 6-configurations.  I am indebted to L. Berman for permission to 

include the recently found (and not previously published) images of (1106) and (1206).  

These are the first 6-configurations to appear in print anywhere. 

 The unbalanced configurations (124,163) and (163,124) have enjoyed a measure of 

popularity, but other [4,3]- and [3,4]-configurations have fared much less well.  The 

material about these is presented in Section 4.3. 

 Unbalanced [k1,k2]-configurations with {k1,k2} ≠ {3,4} are considered in Section 

4.4. 

 Section 4.5 deals with a recently discovered class of configurations, the "floral" 

configurations. They are characterized by their hierarchical construction, rather than by 

the particular incidence parameters. 

 In Section 4.6 we collected results on topological configurations.  These have 

been investigated in some detail only very recently, and the topic abounds in open 

questions. 
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 The topics presented in Section 4.7 are several kinds of unconventional 

configurations. We briefly touch on configurations of circles, and on two kinds of 

configurations involving infinite sets of points and lines. 

 The concluding Section 4.8 presents a few open problems that have not been 

mentioned in the earlier sections. 
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4.1 5-CONFIGURATIONS 

The history of 5-configurations is even shorter than that of 4-configurations, and 

the knowledge is also much skimpier.  However, there are several interesting aspects that 

do not appear in 3- and 4-configurations. 

From the obvious necessary conditions it follows that any (n5) configuration must 

satisfy n ≥ 21.  The build-up of a combinatorial configuration (215) using the "greedy" 

approach (as for (73) in Table 2.2.2 and for (134) in Table 3.1.1) can probably be carried 

out without undue effort.  However, it seems more interesting to note that (215) is the cy-

clic configuration based on (0,3,4,9,11).  As noted by Gropp [G8], while it is obvious that 

this cyclic basis works for all n ≥ 2·11 + 1 = 23, its validity for n = 21 is unexpected but 

easily verified. The configuration is presented in Table 4.1.1.  Gropp [G32] seems also to 

be the first to discover that (0,1,4,9,11) is a cyclic basis for (n5) for all n ≥ 23 as well; but 

it does not yield (215).  Gropp establishes a connection of these bases with the "Golomb 

rulers" –– combinatorial objects interesting in their own right; for some details see [G18], 

[G4], [G5]1. 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0 1 2 
 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0 1 2 3 
 9 10 11 12 13 14 15 16 17 18 19 20 0 1 2 3 4 5 6 7 8 
11 12 13 14 15 16 17 18 19 20 0 1 2 3 4 5 6 7 8 9 10 

Table 4.1.1. The cyclic combinatorial configuration (215) generated by the basis 
(0,3,4,9,11). This basis work also for each n ≥ 23 to yield a configuration (n5). 

So far we avoided mentioning the configuration (225).  It is a particularly interest-

ing one because –– in contrast to the situation we encountered for 3- and 4-configurations 

–– this configuration does not exist even combinatorially.  The proof of this requires tools 

that are outside the scope of this text. 

                                                
1  Much additional information can be found on the Internet.  See, for example, 
[C4], [S13], and, in particular, "Golomb ruler" in the Wikipedia. 
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Except for the existence of two non-isomorphic cyclic combinatorial configura-

tions (235) there seems to be no information available regarding the numbers of distinct 

(n5).  It is easy to construct, for all  n ≥ 25, additional cyclic bases such as (0,3,4,10,12), 

(0,1,4,10,12), or  (0,1,6,10,12);  but neither their number, nor possible isomorphisms, nor 

the existence of non-cyclic configurations seem to have been investigated.  

 For 4-configurations we have seen in Section 3.4 that one needs to increase the 

number of points only slightly from the minimal value n = 13 to reach values for which 

topological or geometric configurations exist –– n = 17 for the former, and n = 18 for the 

latter. Moreover, all these are best possible values.  In case of 5-configurations the infor-

mation available is far less satisfactory.   

 It is obvious that the configuration LC(5) (see definition in Section 1.1) is geo-

metrically realizable; however, with 55 = 3125 points and lines there is no intelligible re-

alization.  The first description of a graphically presentable 5-configuration appeared in 

[G50]; it is a (605) that is 3-astral in the extended Euclidean plane, and is also shown in 

[G46] and as Figure 4.1.1 below.  (By the convention adopted in Section 1.5, we may call 

such 3-astral 5-configurations astral.) The construction is based on the idea that many 4-

configurations have quadruplets of points aligned on diameters and are such that these 

diameters are parallel to quadruplets of lines. Then the addition of the diameters gives 

[5,4]-configurations, for which the addition of points at infinity results in 5-

configurations.  This construction is also illustrated in Figure 4.1.2 in the case of a (505) 

configuration, which is a smallest such configuration known.  Another (505) configura-

tion is shown in [G50]. 

 All these configurations are symmetric only in the extended Euclidean plane, 

since they include points at infinity.  Switching to their polars is no remedy due to the 

lines through the center.  Allowing a slight larger size enables one to construct 5-

configurations with dihedral symmetry by a slightly different process, starting with 5-

astral 4-configurations. An example appears in Figure 4.1.3. It is a (545) configuration 

with d9 symmetry, that is 6-astral in the extended Euclidean plane. 
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Figure 4.1.1.  Deleting the 12 lines (green) through the center yields the astral (484) con-

figuration (2) 12#(5,4;1,4). With these lines it is a (485, 604) configuration. Adding 12 

points at infinity, in the directions of the ten green lines, results in a (605) configuration 

that is astral in the extended Euclidean plane. 

 
Figure 4.1.2. Deleting the ten lines (green) through the center yields the 4-astral configu-

ration 10(#4,3,2,3,1,2,1,2). With these lines it is a (405, 504) configuration. Adding ten 

points at infinity, in the directions of the ten green lines, results in a (505) configuration 

that is 5-astral in the extended Euclidean plane. 
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 The smallest 5-configuration discovered so far is the (485), found by L. Berman 

and shown in Figure 4.1.4.  It has cyclic symmetry c12; moreover, it is 4-astral in the 

Euclidean plane. 

 As mentioned above, the configuration  (605)  illustrated in Figure 4.1.1 has the 

advantage of being astral –– but only in the extended Euclidean plane E2+.  One of the 

long-standing conjectures (see [G46], [B6]) is: 

Conjecture 4.1.1. There are no 5-configurations 3-astral in the Euclidean plane E2. 

 The existence of certain types of astral 5-configurations in the Euclidean plane 

has been ruled out in the recent paper [B11], but the more general question is still open. 

 

 

Figure 4.1.3.  The addition of 9 diameters (green) to the 5-astral configuration 

9#(3,4;1,3;2,3;4,1;3,2) together with the inclusion of 9 points at infinity in the direction 

of quintuplets of parallel lines, yields a 6-astral (545) configuration.  
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Figure 4.1.4.  The smallest 5-configuration known is this 4-astral (485). (L. Berman, pri-

vate communication) 

 One of the basic differences in the knowledge about 5-configurations compared to 

3- and 4-configurations is our ignorance whether geometric configurations (n5) exist for 

all  n  that are greater than some fixed bound.  On the other hand, a similarity appears to 

exist: Among the known 5-configurations, there are topological ones that are smaller than 

the smallest known geometric configuration.  One of several topological (425) configura-

tions is shown in Figure 4.1.5.  This is to be compared with the result mentioned in the 

proof of Theorem 3.2.1 to the effect that any topological (n5) must satisfy n ≥ 25.  Al-

though the gap from 25 to 42 is still large, it is not unexpected: There has been no inves-

tigation of 5-configurations –– topological or geometric –– till very recently, and no sys-

tematic approaches have been developed so far. 
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Figure 4.1.5.  The geometric configuration 7#(2,1;2,1;3,2;1,2;1,3) has unintended inci-

dences, and is just a prefiguration.  If these incidences are avoided by using pseudolines 

we obtain a topological (354) configuration formed by the black lines and green pseu-

dolines.  Adding the seven blue lines yields a (355, 424) configuration, and adding also 

the seven points at infinity (in the directions of the quintuplets of lines/pseudolines) re-

sults in a topological (425) configuration. 
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Exercises and problems 4.1.  

1. Determine the 4-configurations that can be turned into 5-configurations by adding 

lines, and points at infinity. It seems that all 4-astral 4-configurations can be used, admit-

ting duplication if necessary. Are there any others? 

2. The configuration in Figure 4.1.1 was constructed in an obvious way from two 

copies of the astral (244) configuration.  Can this method be applied to all astral 4-

configurations? 

3. Are there any 4-astral 5-configurations in the Euclidean plane that have dihedral 

symmetry? 

4. Decide whether any of the configurations in Figures 4.1.1 to 4.1.3 is selfpolar. 

5. Decide whether there are geometric (n5) configurations for any n < 48. 

6. Decide whether there are topological (n5) configurations for any n < 42. 

7. Find a useful and convenient way of encoding symmetric 5-configurations. 

8. Show that the 4-astral configuration 10#(4,3;1,2;3,4;2,1) can be used to construct 

a configuration (505). Determine all 3-astral configurations (404) that can be used for that 

purpose. 

9. The constructions we have seen can be generalized. Determine criteria on 4-astral 

configurations ((4m)4) that make it possible to obtain configurations ((5m)5).  Similarly, 

for ((5m)4) configurations to yield ((6m)5) configurations. 
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4.2 k-CONFIGURATIONS FOR  k ≥ 6 

 As justification for general existence statements for k-configurations with k ≥ 6 

we recall the configurations LC(k) introduced in Section 1.1.  They illustrate the possibil-

ity of geometric configurations  ((kk)k)  for all  k.  Naturally, one may be interested in 

smaller examples, and there are systematic ways to find them, even though they yield 

configurations that are neither stimulating to look at, nor very small. 

 The first such construction, during the "prehistory period" of configurations, is 

due to Cayley [C2*] in 1846.  Reflecting the spirit of the times, Cayley writes (in French, 

in a paper published in a German journal!): 

"   sans recourrir à aucune notion métaphysique à l'égard de la possibilité de 

l'éspace à quatre dimensions, ..." 

and proceeds to define configurations of flats of various dimensions spanned by families 

of points in general position; intersecting these with suitable planes he devises (for k ≥ 2) 

configurations (nk+1) where n = (2k+1)!/k!(k+1)!  Thus, what Cayley describes are geo-

metric configurations (354), (1265), (4626), (17167), and so on.  He also describes various 

unbalanced configurations, about which we shall report in Section 4.3. 

 Although Cayley's constructions yield smaller configurations than the LC(k), 

there are better construction methods that are easy generalizations of the ones we detailed 

in Section 3.3, considered there for the 4-configurations. 

 The (5m) construction which in Section 3.3 led from a configuration (m3) to 

((5m)4) generalizes immediately: From any (mk) configuration, taking k+1 copies that all 

intersect at the same points of a suitable line, and then adding  m  appropriate lines con-

necting corresponding points in these copies, we obtain a (((k+2)m)k+1) configuration.  

Using the smallest configurations available, this construction leads from (93) to (454), 

from (184) to (1085), from (485) to (3366), from (1106) to (8807), and so on.  Except for the 

last one, these are not the known minimal configurations –– but in the last case this is the 

best available.  Carrying out only the first step, with only k copies of the starting configu-

ration, leads to a (k,k+1)-configuration.  Taking a stack of k configurations and adding 
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the lines connecting the corresponding points leads to a (k+1,k)-configuration.  Some of 

the other methods in Section 3.3 generalize as well. 

 For 6-configurations we can do better than for general k.  Figure 4.2.1 shows a 

10-astral (1106) configuration, and Figure 4.2.2 a 4-astral configuration (1206); both were 

discovered by L. Berman (private communication). 

 

 

Figure 4.2.1.  A 10-astral (1106) configuration with symmetry group d11, found by L. Ber-

man. 
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 On the other hand, there is negative information available concerning astral (that 

is, 3-astral) 6-configurations.  As proved by Berman [B5], no such configurations exist, 

nor do any astral [2k,2h]-configurations for k ≥ 3, h ≥ 3. 

 The paucity of information on the topic of this section is clearly evidenced by its 

brevity, and the absence of references beyond [C2*] and [B5].  Notice that these are sepa-

rated by more than a century and a half! 

 

 

Figure 4.2.2.  A 4-astral (1206) configuration with symmetry group d12, found by L. Ber-

man. 
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Exercises and problems 4.2. 

1. Decide whether there exist any other 4-astral 6-configurations. 

2. Find some "small" topological 6-configurations. 

3. Is there some systematic construction for 6-configurations that is analogous to the 

passage from 4-configurations to 5-configurations mentioned in Exercise 9 of section 4.1. 

4. Find a visually intelligible 7-configuration. 
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4.3 [3, 4]- AND [4, 3]-CONFIGURATIONS 

 In the present section we shall survey the known facts concerning combinatorial 

and geometric [3, 4]-  and  [4, 3]-configurations.   

 The parameters of any combinatorial  (p3, n4)  or  (n4, p3)  configuration must sat-

isfy the conditions  3p = 4n,  p ≥ 1 + 3 · 3 = 10  and  n ≥ 1 + 4 · 2 = 9.  Thus  p  must be 

divisible by  4  and  n  must be divisible by  3,  so that the only possible configurations 

are those of the form  ((4r)3, (3r)4)  or  ((3r)4, (4r)3), respectively,  for  r = 3, 4, 5, ... .  For 

combinatorial as well as geometric configurations, the existence of  ((4r)3, (3r)4)  implies 

by duality resp. polarity the existence of  ((3r)4, (4r)3), and conversely.  Hence it is suffi-

cient in the following result to limit attention to one of the two cases. 

 Theorem 4.3.1.  For each integer  r ≥ 3  there exists a combinatorial configuration  

((4r)3, (3r)4;  topological and geometric  ((4r)3, (3r)4)  configurations exists for each  

r ≥ 4. 

 Proof.  We start with a combinatorial  (123, 94)  configuration, given by the fol-

lowing configuration table. 

 1 2 3 4 5 6 7 8 9 

 A A A L L L M M M 

 B G K B G K B G K 

 C F J J C F F J C 

 D E H E H D H D E 

Table 4.3.1.  A configuration table for a  (123, 94)  configuration. 

In order to complete the proof in case  r = 3, we have to prove that no combinato-

rial configuration  (123, 94)  can be realized by points and lines.  For that we recall the 

result known as “Sylvester’s problem”, which we mentioned in Section 2.1 as Lemma 

2.1.1.   

To apply the Sylvester result to the question at hand, we note that in any combina-

torial configuration  (123, 94)  the 36 pairwise intersections of the 9 lines have to occur in 
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12 triplets –– three intersections at each of the 12 points of the configuration.  However, 

since (by Sylvester) in every topological or geometric configuration at least one such in-

tersection is an “ordinary” one (which is therefore not a point of the configuration), there 

are not enough pairwise intersections to form 12 triplets.  

 On the other hand, it is possible to give a geometric realization of the dual con-

figuration, but with two of the “lines” neither straight lines nor pseudolines.  An example 

is shown in Figure 4.3.1. 

 

Figure 4.3.1.  A realization of a (94,123) configuration, dual to the one in Table 4.3.1;  

two of the “lines” are not straight. With a slight modification these two "lines" could have 

been chosen as circles. 

 For the remaining part of the proof of Theorem 4.3.1 we only have to exhibit ap-

propriate geometric configurations of points and lines.  The literature contains a number 

of papers devoted to the  (163, 124)  configurations, or to the  (124, 163)  configurations 

dual to them; several examples of the former kind are shown in Figure 4.3.2.   

 There appears to be no published mention of geometric  ((4r)3, (3r)4)  configura-

tions with  r ≥ 5.  However, examples of such configurations are very easy to produce.  

One method (see Figure 4.3.3) starts by placing  2r  points equidistributed on a circle.  

Each of these points is connected to the one diametrally opposite to it, as well as to the 

two points separated from it by two other points.  Adjoining the  2r  triple intersections 

(whose existence is clear by the symmetry of the diagram) yields a  ((4r)3, (3r)4)  con-

figuration, as required. 
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 Other  ((4r)3, (3r)4)  configurations may be constructed by slight variations of this 

method; several are shown in Figure 4.3.4.  In all these cases, the geometric existence of 

the configurations is an obvious consequence of the high degree of symmetry involved. 

 Although the configurations (163, 124)  and/or  (124, 163)  have been studied for 

at least 150 years (starting not later than Hesse [H2] in 1848, in the "prehistoric" era of 

configurations), there still are many unresolved questions.  It has been shown (or claimed 

– there seems to have been no independent verification) that there are precisely 574 com-

binatorial configurations (124, 163), see Gropp [G14], [G16].  The large number of such 

configurations helps explain why there is no clarity on the question which (or, whether 

all) configurations (1244, 163)  have geometric realizations in the Euclidean plane.  Two 

additional aspects probably contribute to the lack of clarity: On the one hand, most of the 

relevant papers have been published in journals that are not well known nor widely avail-

able, many in Czech which is not too widely spoken; a large number of references is 

listed below.  On the other hand, from the very beginning, these configurations have been   

Figure 4.3.2.  Three examples of configurations  (163, 124). 

Figure 4.3.3.  Examples of configurations  (203, 154),  (2433, 184)  and  (283, 214). 
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studied in close connection with the theory of cubic curves.  This connection, in turn, is 

not too well known these days, and also makes it hard to know which parts of the claims 

of possibility of realization rely on configurations in the complex plane, and which claims 

of impossibility are due to the restriction of attention to configurations with vertices on 

cubic curves.  See below for some relevant ideas. 

 From the duality in the projective plane it follows that geometric configurations    

((3r)4, (4r)3)  exist if and only if  r ≥ 4.  One example of a  (124, 163)  configuration is 

shown in Figure 4.3.5.  In contrast to the very symmetric diagrams representing the 

(163, 124)  configurations, the diagrams of the  (124, 163)  configurations shown in most 

publications are far from symmetric.   

  
Figure 4.3.4.  Additional examples of configurations (203, 154), (243, 184) and (283, 214). 
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 The reason for the difference is that projective duality does not in general pre-

serve Euclidean symmetries –– unless one considers the configurations in the extended 

Euclidean plane.  In particular, all examples in Figures 4.3.3 and 4.3.4 have lines passing 

through the center of symmetry (taken at the origin) which have to be mapped to “ideal 

points” in order to preserve symmetry.  If this is accepted, then it is easy to produce very 

symmetric  (163, 124)  configurations, such as the one in Figure 4.3.6. 

 

Figure 4.3.5. An example of a geometric configuration (124,163). 

 

Figure 4.3.6.  An example of a geometric configuration (124,163) that is astral in the ex-

tended Euclidean plane. 
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 Additional examples of quite symmetric (124, 163) configurations are shown in 

Figure 4.3.7. These have vertices on cubic curves.  

 In order to give a feeling for the relation of cubic curves to configurations, we 

show another example in Figure 4.3.8.  This is a geometric configuration (124,163) on a 

cubic curve, from the paper by V. Metelka [M17]. The equation of this cubic curve in 

homogeneous coordinates (x,y,z) is  

z (x2 + y2) + x(x2 – 3y2) = 0 

and the points are: 

M = (1,1,1) N = (0,1,0) O = (1,-1,1) P = (1,-t,2) 

Q = (1,t,2) R = (t,1,0) S = (-t,1 0) T = (1,t-2,1-t) 

U = (1,2-t,1-t) V = (1,t+2,t+1) W = (1,-t-2,t+1) X = (1,0,-1) 

where t = √3. 

 As is well known, an easy way to see whether three points given in homogeneous 

coordinates are collinear is by checking whether the determinant formed by their coordi-

nates is 0.  Thus the assertions about which triplets are collinear (as indicated by Figure 

4.3.8) can be algebraically verified. 

 As Metelka observed (this is the reason he considered the configuration "special") 

there are three additional lines that pass through three of the points. These three lines are 

indicated by the dashed lines in Figure 4.3.9.  It is worth noting that the maximal number 

of collinear triplets determined by 12 point is 19 – this is one of frequently raised "or-

chard problems"; see more details at [B33]. 

 As a clarification of what was briefly mentioned above regarding the use of cubic 

curves in looking for construction of configurations and related objects, in Figure 4.3.10 

we show a diagram of a cubic curve on which are marked several values of the "degree" 

parameter.  The following explanations are taken from the old paper [B33], from which 

the curve in Figure 4.3.10 was copied as well.  References to texts that establish the 

properties in question are given in [B33]; the notation is the one that seems traditional in 

the literature. 

 A suitable projective image of each real non-singular cubic curve has an equation 

of the form  
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(1)  y2 = 4x3 – g2x – g3 

where  g2 and g3 are real constants.  The curve  C  given by equation (1) may be pa-

rametrized by  

(2)  x = ℘(u),  y = d℘(u)/du, 

where ℘(u) is the Weierstrass elliptic function defined by 

  u = ∫℘(u)
∞

 (4x3 – g2x – g3)–1/2 dx. 

!

(b)

!

(a)

!

(c)  
Figure 4.3.7.  Three examples of quite symmetric configurations (124, 163).  The ∞ sym-

bol is meant to indicate that the line at infinity is a line of the configuration. 
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Figure 4.3.8.  A configuration (124, 163) with points on a cubic curve. 
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Figure 4.3.9.  The points of the (124, 163) configuration in Figure 4.3.8 determine three 

additional lines each incident with three of the points. 
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 The Weierstrass elliptic function ℘(u) is a doubly-periodic meromorphic function 

of the complex variable  u, and for real g2, g3 it has a real period that we shall denote  2ω  

(as well as a purely imaginary period 2ω').  The parametrization (2) yields for real  u  the 

"odd circuit" (branch) of the cubic  C.  In case D = g2
3 – 27g3

2 < 0 this is the only real 

part of the curve C ("unipartite cubic"), while in case D > 0 the curve C has also an "even 

circuit" corresponding to the values  u = v + ω', where v is real. (We shall be interested 

only in the  "odd circuit".) 

 The importance of cubic curves for the present concerns is based on the following 

result of N. H. Abel:  
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Figure 4.3.10.  A cubic curve, with a parametrization derived from the Weierstrass ℘(u) 

function, as explained in the text. 
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 Denoting by P(u) = (℘(u), d℘(u)/du) the point on the cubic C given by (1), (2) 

and corresponding to the real parameter u, a necessary and sufficient condition for the 

collinearity of the points  P(u), P(u'), P(u") on the odd circuit of C is 

  u + u' + u" ≡ 0 (mod 2ω). 

 The curve we use is given by the equation y2 = 4x3 – 1, and by consulting appro-

priate tables or software we find that ω = 1.529954037... .  As in much of the numerical 

work on the elliptic functions, we replace 2ω  by 360°; in Figure 4.3.10 we denote the 

points simple by their parameter-value in "degrees". 

 A practical weakness of the method is an inconvenient bunching of the points of 

interest.  The situation can be improved by using a suitable projective transformation of 

the curve C; this goes back to W. K. Clifford in 1865. The "odd circuit" of C contains 

three collinear points of inflection P(0), P(2ω/3), P(4ω/3). If we choose the line deter-

mined by these points as the "ideal line", and the points themselves to be in equiinclined 

directions, there results a very convenient and symmetric representation of C. 

 We are using the curve C with equation  y2 = 4x3 – 1, for which the Clifford 

transformation may be achieved by 

  x = (2x* + 1)/(2x* – 2),  y = 3y*/(x* – 1). 

This results (on omitting the asterisks) in the equation 

  (x – 1)(3y2 – (x + 2)2) = const. 

For better visibility we choose the constant as –300, yielding the curve in Figure 4.3.10. 

This curve is used in some of the exercises below. 

 

 The following is an extensive list of papers I am aware of that deal with  

(163, 124)  or  (124, 163)  configurations.  Some of them contain additional references to 

earlier papers.  [B34], [D5], [G14], [H2], [M9], [M10], [M11], [M12], [M13], [M14], 

[M15], [M16], [M17], [M5], [M6], [M7], [R6], [Z1], [Z2], [Z3], [Z6].  

 A configuration (154,203) was described by Cayley [C2*] in 1846. There seems to 

be no other discussion in the literature of  ((4r)3, (3r)4)  configurations with  r ≥ 5  (or 

their duals).  



  Page 4.3.11 

* * * * * * 
 The introduction of k-astral configurations helped develop the study of 3- and 4-

configurations.  It seems reasonable that investigations of [3,4]-configurations and similar 

objects would be advanced by moving from the concentration on the smallest cases to 

more general situations.  As examples capable of various generalizations we show in Fig-

ure 4.3.11 and 4.3.12 configurations (203,154) and (154,203) with cyclic symmetry group 

c5, and in Figure 4.3.12 a configuration (184,243) with symmetry group c6. It is clear that 

such configurations fit into infinite families for which the systematic investigation and 

notation still need to be developed. 

 
Figure 4.3.11.  A [4,3]-astral (203,154) configuration with symmetry group c5.  

 
Figure 4.3.12.  A [3,4]-astral (154,203) configuration with symmetry group c5.  
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Figure 4.3.13.  A [3,4]-astral (184,243) configuration with symmetry group c6. 

 

Exercises and problems 4.3. 

1. Show that each of the permutations (described by their cycle decompositions) 

(A)(L)(M)(BGK)(CFJ)(DEH) and (ABCD)(LGJHMKFE) maps the combinatorial con-

figuration (123, 94)  of Table 4.3.1 onto itself.  Deduce that the automorphisms of the 

configuration act transitively on its points as well as on its lines.  Decide whether the con-

figuration is flag-transitive?  (Flag = pair consisting of a "point" and a "line" incident 

with it.) 

2. Decide whether all combinatorial  (123, 94)  configurations are isomorphic, that 

is, whether the configuration (123, 94)  is unique.  (Hint: Delete a line and all its points.) 

3. Prove that any geometric realization of the  (123, 94)  configuration must contain 

at least two “lines” that are not straight. 

4. Set up the configuration table of the configuration (94, 123)  dual to the configura-

tion in Table 4.3.1.  Decide whether this configuration can be geometrically realized with 

straight lines or with pseudolines. 
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5. Describe the configuration table of the ((4r)3, (3r)4)  configuration constructed in 

the proof of Theorem 4.3.1. 

6. Show that the two  (203, 154)  configurations shown in Figures 4.3.3 and 4.3.4 are 

not isomorphic. 

7. Decide whether any among the three configurations  (163, 124)  in Figure 4.3.2  

are isomorphic, and whether the two configurations  (243, 184)  in Figure 4.3.4 are iso-

morphic. 

8. Starting with  12  points equidistributed on a circle, how many  (243, 184)  con-

figurations can you construct that have different appearance?  Are any two among them 

isomorphic? 

9. For general  r,  starting with  2r  points equidistributed on a circle, how many  

((4r)3, (3r)4)  configurations can you construct that have different appearance?  Are any 

among them isomorphic? 

10. Draw symmetric realizations in the extended Euclidean plane of the polars of the 

configurations in Figure 4.3.2. 

11. Decide whether any among the three configurations  (124, 163)  in Figure 4.3.7  

are isomorphic. 

12. Draw the polar configurations of the configurations in Figure 4.3.7. 

13. Verify that those triplets shown as collinear in Figures 4.3.8 and 4.3.9 that contain 

the point U are, in fact, collinear. 

14. Find in Figure 4.3.9 a configuration (124,163) that contains the dashed lines, and 

decide whether it is isomorphic with the configuration in Figure 4.3.8. 

15. Determine the group of automorphisms of the configuration in Figure 4.3.8. 
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16. On the cubic curve in Figure 4.3.10, find a configuration (92,63), and a configura-

tion (123).  Can you find any other configurations? 

17. Decide whether the configurations in Figures 4.3.11 and 4.3.12 are duals of each 

other? If so, find a duality map. If not, find their duals. 

18. Find the dual of the configuration in Figure 4.3.13. 

19. Develop a theory –– similar to the ones in Chapters 2 and 3 –– of the [4,3]-

configurations. 
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 4.4 UNBALANCED [q,k]-CONFIGURATIONS WITH [q,k] ≠ [3,4] 

 Very little has been published about geometric  [q,k]-configurations with q ≠ k 

and {q,k} ≠ {3,4}.  As mentioned in Section 4.2, a few results were found by Cayley 

[C2*], using planar sections of configurations of flats of various dimensions generated by 

families of points in general position.  Specific instances will be mentioned below. Some 

of these methods have been used (mostly in special cases) by later writers.  

 There is more information about the corresponding combinatorial configurations, 

much of it due to H. Gropp. Here is a survey of what is known. 

 For combinatorial [3,5]-configurations (p3, n5) the necessary conditions for exis-

tence are  3p = 5n,  p ≥ 13,  and  n ≥ 11.  Therefore we must have  p = 5r  and  n = 3r  for 

some integer  r,  so that we are looking at  ((5r)3, (3r)5)  configurations with  r ≥ 4.  A 

combinatorial  configuration  (203, 125)  is shown in Table 4.4.1.  From results on the 

"orchard problem" (see [B33]) it is known that 12 lines determine at most 19 triple 

points; it follows that no geometric  (203, 125)  configuration is possible. Unfortunately, I 

do not know of any simple proof of the orchard problem result.   

1 1 1 2 2 3 3 4 4 5 5 8 
 2  6 10  6  9  7 13  8  9  6  7 13 
 3  7 11 14 10 11 17 12 11 10 12 15 
 4  8 12 15 16 14 18 14 18 17 15 16 
 5  9 13 18 19 16 19 17 20 20 19 20 

Table 4.4.1.  A  (203, 125)  combinatorial configuration. 
 

 There are interesting connections between combinatorial configurations  

(125, 203)  and Steiner triple systems  S(2,3,13).  We recall that a Steiner triple system  

S(2,3,v) is a collection of triplets from a v-element set, such that each pair of elements 

occurs in one and only one triplet. It is well known that a Steiner triple system S(2,3,v) 

exists if and only if  v º 1 or 3 (mod 6).  (For general information about Steiner triple sys-

tems see, for example,  [B29, Section 10.3] or [R5, pp. 388 – 390].) The unique system 

S(2,3,7) is one of the incarnations of the combinatorial configuration (73), (the Fano 
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plane) which we discussed in Section 2.1.  There is unique system S(2,3,9).  There are 

two (and only two) non-isomorphic systems S(2,3,13), which are of interest here.  Infor-

mation about them is presented in Tables 4.4.2 and 4.4.3, taken from [M4].  For a history 

of the S(2,3,13) see Gropp [G12]. 

1 1 1 1 1 1 2 2 2 2 2 3 3 
2 4 6 8 10 12 4 5 8 9 11 4 5 
3 5 7 9 11 13 6 7 10 12 13 8 12 

3 3 3 4 4 4 5 5 5 6 6 7 7 
6 7 9 7 10 11 6 8 9 8 9 8 10 
10 11 13 9 13 12 13 11 10 12 11 13 12 

Orbit:  {1,2,3,4,5,6,7,8,9,10,1,12,13}.        Automorphisms group has order 39. 
Generators:  (1  2  13  5  3  11  6  12  7  9  8  10  4) (1  2  3) (4  10  7) (9  13  12) 

Table 4,4.2.  The Steiner triple system  S(2,3,13)1. 

1 1 1 1 1 1 2 2 2 2 2 3 3 
2 4 6 8 10 12 4 5 8 9 11 4 5 
3 5 7 9 11 13 6 7 10 12 13 8 12 

 
3 3 3 4 4 4 5 5 5 6 6 7 7 
6 7 9 7 10 11 6 8 9 8 9 8 10 
13 11 10 9 13 12 10 11 13 12 11 13 12 

Orbits:  {1, 2, 5, 6, 8, 13} {3, 9, 10} {4, 11, 12} {7}.   Automorphisms group has order 6.  
Generators:  (1  2  8) (3  10  9) (4  11  12) (5  13  6) (1  5) (2  6) (3  10) (8  13) (11 12) 

Table 4.4.3.  The Steiner triple system  S(2,3,13)2. 

 One interesting property of Steiner systems S(2,3,13) is that the deletion of one 

point and the triplets containing it yields a combinatorial configuration (125, 203).  It is 

clear that the deletion of different points from the same orbit yields isomorphic configu-

rations.  As it happens, deleting points from different orbits of the Steiner systems 

S(2,3,13) yields non-isomorphic configurations.  Hence there are five such configurations 

(125, 203).  This result is due to Novak [N2]; see also Gropp [G17].  

* * * * * * 
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 Concerning values of  r ≥ 5  we shall show that there exist geometric  

((5r)3, (3r)5)  configurations for all  r ≥ 5.  By duality and polarity, the same is true for 

configurations ((3r)5, (5r)3). 

Theorem 4.4.1.  There exist geometric  ((5r)3, (3r)5)  configurations for all  r ≥ 5; 

moreover, they can be chosen as astral in the extended Euclidean plane. 

Proof. The validity of this statement follows at once from the family of configurations 

illustrated in Figure 4.4.1;  clearly, analogous configurations exist for all  r ≥ 5.   

 Additional examples of geometric [3,5]-configurations are shown in Figures 4.4.2 

and 4.4.3. 

 Cayley [C2*] described a (215,353) configuration. 

* * * * * * 

 For combinatorial [3,6]-configurations (p3, n6) the necessary condition for exis-

tence are  p = 2n  and  n ≥ 13.  A combinatorial  configuration  (263, 136)  is shown in 

Table 4.4.4.  It can also be shown (see [G20]) that combinatorial configurations 

((2n)3, n6) exist for all  n ≥ 13.  Gropp [G17] states that there are exactly 787 distinct 

(283, 146)  combinatorial configurations. 

 

Figure 4.4.1.  Typical examples of [3,5]-configurations astral in the extended Euclidean 

plane. The two examples correspond to r = 5 and r = 6. 
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Figure 4.4.2.  Examples of astral [3,5]-configurations in the Euclidean plane.  These are 

clearly representatives of an infinite family, and several variants are possible. 

 

Figure 4.4.3. Another (253, 155) configuration. 

 There seems to be no geometric  (263, 136)  configuration, but I am not aware of 

any proof.  Also, there is a large difference between the case of [3,6]-configurations and 

the [3,5]-configurations considered above.  In the latter case, for all values of  n  that sat-

isfy the necessary conditions and are beyond a certain limit (in fact n ≥ 15), an astral  
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 1 1 1 2 2 3 3 4 4 5 5 6 6 
 2 7 12 7 8 7 8 9 10 10 11 9 11 
 3 8 13 12 16 15 13 14 12 16 13 15 14 
 4 9 14 17 20 23 17 17 22 19 18 18 21 
 5 10 15 18 25 24 19 20 24 21 20 19 22 
 6 11 16 21 26 26 22 23 25 23 24 25 26 

Table 4.4.4  A  (263, 136)  combinatorial configurations (found in 1999 by Xin Chen, at 
the time a student in one of my classes).  The number of distinct (263, 136)  combinatorial 
configurations seems not to be known. 
 

configuration is possible in the extended Euclidean plane.  For [3,6]-configurations this is 

not the case.  We have: 

Theorem 4.4.2.  For all  r ≥ 5  there exist astral ((6r)3, (3r)6) geometric configurations in 

the Euclidean plane. 

Proof.  In Figure 4.4.4 we show the two typical configurations of this kind for r = 6 and 

7. The only known configuration (303, 156) is not typical; it is shown in Figure 4.4.5, and 

we have already seen it in Figure 1.6.8.  ¨ 

 Thus, except for small values of n, there exist geometric configurations (2n3, n6)  

for all n that are multiples of 3.  For no other values of n are any geometric [3,6]-

configurations known. 

 It is clear that geometric [3,k]-configurations and [k,3]-configurations can be con-

structed for all k ≥ 7 in analogy to the configurations in Figures 4.4.1, 4.4.2, and 4.4.4. As 

these are not really interesting, and no additional information seems available, we shall 

not pursue this topic any farther.  Instead, we turn now to [4,k]-configurations and their 

duals. 

 For [4,5]-configurations  (p4, n5) the necessary conditions are  p ≥ 17,  n ≥ 16,  

5n = 4p.  Therefore the configurations are necessarily of the form ((5r)4, (4r)5) for r ≥ 4.  

According to Gropp [G20], combinatorial configurations with these parameters exist for  
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Figure 4.4.4.  Configurations (363, 186) and (423, 216). 

 
Figure 4.4.5.  The only known (303, 156)  configuration. 

all r ≥ 4.  There seems to be no information available concerning the number of distinct 

configurations for each value of r.   

 Concerning topological or geometric [4,5]-configurations, there is an elegant fam-

ily of geometric configurations ((5r)4, (4r)5) for  r ≥ 9.  (I do not know whether or not 



  Page 4.4.7 

there are any for  r ≤ 8.)  Its two smallest members are shown in Figure 4.4.6, and their 

construction can be explained as follows:  Starting for r ≥ 9 from the 4-astral 

4-configurations ((4r)4), such as the ones denoted in Section 3.8 by 9#(3,1;2,4;3,2;3,2) or 

r#(3,1,2,4,1,3,4,2), additional  r  points are added at-infinity (in the directions of the quad-

ruplets of parallel lines of the 4-configuration). This yields a ((5r)4, (4r)5) configuration 

with five orbits of points and four orbits of lines.  Polars of these configurations are [5,4]-

configurations.  Other [5,4] configurations can be obtained by adding  r  mirrors to the 

same 4-configurations ((4r)4), but only for odd r ≥ 9.  The two cases analogous to the 

ones in Figure 4.4.6 are illustrated in Figure 4.4.7. We used a combination of these meth-

ods in Section 4.1. 

     

Figure 4.4.6. Typical ((4r)4) configurations with symbols 9#(3,1;2,4;3,2;3,2) and 

10#(3,1,2,4,1,3,4,2).  Addition of  r  points-at-infinity to each yields configurations ((5r)4, 

(4r)5).  Addition of  r  mirrors gives ((4r)5, (5r)4) 



  Page 4.4.8 

     

Figure 4.4.7.  For odd r, adding  r  mirrors to 4-configurations such as 9#(3,1;2,4;3,2;3,2) 

and 11#(3,1,2,4,1,3,4,2)  yields [5,4]-configurations  ((4r)5, (5r)4). 

 

 There is very little information available about small [q,k]-configurations with 

still larger values of q and k.  Some examples, similar to those above and possible for 

some particular parameter values, are shown in Figures 4.4.8 and 4.4.9. 

     

Figure 4.4.8.  At left, a 4-configuration (364) with symbol 9#(3,1,4,2,1,3,2,4).  Adding 18 

points yields a (4,6)-configuration (544, 366) shown at right. 
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Figure 4.4.9.  At left, a 4-configuration (364) with symbol 9#(4,3;1,4;2,1;3,2).  Adding 18 

lines yields a [6,4]-configuration (366, 544) shown at right.  Adding to it the nine lines of 

mirror symmetry yields a (367, 634) configuration.  Adding instead the nine points at in-

finity leads to a configuration (456, 545). 

 Many other 4-astral 4-configurations can be used in constructions similar to the 

ones illustrated in Figures 4.4.7 to 4.4.10. 

 A complete determination of astral [6,4]-configurations (and their polars) was car-

ried out by L. Berman [B2]. These are configurations in which each point is on six lines 

and each line contains four point, there being two orbits of points and three orbits of 

lines.  As demonstrated in [B5] there are precisely five connected astral (606,904) con-

figurations, and no other connected astral [6,4]-configurations.  One of these is shown in 

Figure 4.4.11.  This configuration can be understood as superposition of three astral (304) 

configurations: the sporadic 30#(12,10;6,10), and the systematic 30#(12,10;3,9) and 

30#(10,6;3,9). Similarly for the other four. Some other results on [q,k]-configurations can 

also be found in [B5]. 
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 The material we have presented in this section exhausts the knowledge available 

to us. As in most other sections, there are lots of obvious questions and open problems for 

which we have no guesses as to the correct answers.  The hope is that some readers will 

take it as a challenge to enlarge the compass of known facts. 

     
(a)      (b) 

Figure 4.4.10. (a) The 4-astral configuration 9#(3,1;4,2;1,3;2,4) has quadruplets of lines 

concurrent at points that are not configuration points.  (b)  Adding these 18 points (green) 

yields a (544, 366) configuration.  Adding nine points at infinity (in the direction of quad-

ruplets of parallel lines) yields a (634,367). Adding instead the nine mirrors results in a 

(545,456) configuration. 
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Figure 4.4.11.  An astral (606,904) configuration, taken from [B5]. 

Exercises and problems 4.4 

1. Decide whether any combinatorial configuration (263, 136) can be realized geo-

metrically or topologically. 

2. Do there exist any geometric configurations (2n3, n6) with n not a multiple of 3? 

3. Draw a configuration (454, 365). 

4. Draw a configuration (544, 366).   

5. Draw a configuration (493, 217). 

6. Draw as small a configuration of type (p8, n3) as you can find. 

7. By consulting the lists in Section 3.6, describe the other four astral (606,904) con-

figurations. 

8. Find configuration (606,904) that are not astral. 
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4.5 FLORAL CONFIGURATIONS 

 Floral configurations provide a means of visualizing some rather large configura-

tions in a pleasing and visually accessible way.  The topic was initiated by J. Bokowski 

late in 2006, in an email message asking whether the configuration attached to the mes-

sage has been already found by anybody.  The configuration in question is shown in Fig-

ure 4.5.1. It was a completely new type of configuration, and the curiosity it engendered 

quickly led to a wealth of configurations analogous in some sense.  Collectively they be-

came known as "floral configurations".  The results of the early investigations of these 

configurations have been presented in [B12]; most will be reviewed here, together with 

new developments.  Many of the latter arose in discussions with the coauthors of [B12], 

and I owe them sincere gratitude. 

 Loosely speaking, a floral configuration is a connected configuration that has a 

number of parts, called florets, arranged within the configuration in a symmetric way.   

 

Figure 4.5.1.  The first "floral" configuration, from an email by J. Bokowski on October 

28, 2006. 
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Reasonable people may (and do) differ regarding what level of generality is reasonable in 

the context of floral configurations.  For our purposes the following approach seems most 

appropriate; it is more general than the approach in [B12], with which we shall compare 

it near the end of this section. 

 Definition 4.5.1.  A floret is a collection of points and lines, with prescribed inci-

dences.  A floral configuration is a configuration that consists of a collection of florets, 

such that the symmetry group of the configuration acts transitively on the florets. 

 In view of the generality of the concept, it is not surprising that one may distin-

guish several varieties of floral configurations.  To begin with, there is the question of 

what symmetry group is being considered. It turns out that dihedral groups are much 

more productive in this context, and we shall devote most of the section to them. The cy-

clic groups will be considered briefly afterwards. 

 Even before discussing methods for the construction of floral configurations, a 

limitation of their appeal needs to be discussed.   It is quite clear that the florets in Bok-

owski's configuration are easily picked out, as are the ones in parts (a) and (b) of Figure 

4.5.2.  However, this becomes increasingly more difficult in the other parts of that illus-

tration, and the question arises whether it is appropriate to call all of them "floral".  One 

may wish to restrict consideration to only those configurations in which each floret is 

contained in a single sector determined by the mirrors of the symmetry group, or in two 

such sectors – but there really is no obvious and natural delimitation.  Hence we shall not 

make any such restriction, although we shall endeavor to present examples in which the 

florets can be readily discerned. 

 Four construction methods seem to furnish all known examples of floral configu-

rations.  Since they depend on the mirrors of the dihedral groups, we denote them as con-

structions (M1), (M2), (M3) and (M4). 
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(a)         (b) 

 
 
    

 
(c)         (d) 
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(e)         (f) 

Figure 4.5.2.  The first four floral (364) configurations are isomorphic, and differ only in 

the size of the florets. The florets of the configuration are clearly distinguishable in (a) 

and (b), but less easily in (c) and especially in (d).  In fact, in all four cases the situation is 

complicated by the fact that two different sets of florets can be picked out.  When con-

structing the configurations, the top florets in (a), (b), and (c) had their top three points on 

the upper half of the top sides of the overall hexagon, while in (d) they reached beyond 

the top half. However, with a bit of contemplation it is easy to reverse the perception in 

all four of the configurations.  The diagrams in (e) and (f) show two representations of 

the same configuration – with some unintended incidences. 

 

 Construction (M1).  Let  S  be a family of  s  concurrent lines, equiinclined to 

each other, so that they represent the  s  mirrors of a dihedral group  ds.  Let the protoflo-

ret  F  be a [q,t]-configuration such that each of the lines in  F  is perpendicular to one of 

the mirrors in S, and no mirror in S is a mirror for F.  Then images of the protofloret  F  

under all reflections in the  s  mirrors of  S  create in general a floral (q,2t)-configuration 

with 2s florets. 
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 The "in general" part refers to two possibilities of failure of the construction: 

• The resulting configuration may be disconnected, hence cannot qualify as a floral 

configuration; 

• There may be some accidental incidences, which make this a representation of the 

underlying combinatorial configuration – but not a realization of it 

 It should be stressed that neither the points of an individual floret, nor its lines, are 

required to have any non-trivial symmetries – although in many cases they do have them.   

 An illustration of the construction (M1) is provided in Figure 4.5.3.  There s = 3 

(in parts (a) and (b)) or s = 6 (in parts (c) and (d)), with  q = 3 and t = 2.  The lines of  S  

are shown green. The protofloret F is shown with black points and red lines, while the 

other points are red and lines are black.  Bokowski's original floral configuration, shown 

in Figure 4.5.1, can also be obtained by the (M1) construction. 

 The color-coding in Figure 4.5.3 will be used throughout the present section for 

all constructions with method (M1).  

 It should also be stressed that all floral configurations obtained by the construc-

tion (M1) have at least two degrees of freedom.  This is most easily seen by observing 

that if the distance of the center of symmetry from the centroid of the protofloret is kept 

fixed, the size of the protofloret can be changed continuously, as can its position with re-

spect to the mirrors.  The configuration in Figure 4.5.2 shown earlier was constructed by 

the (M1) method as well, and the influence of the size of the protofloret can be discerned 

easily. 

 Construction (M2).  As before, let  S  be a family of  s  concurrent lines, equiin-

clined to each other, so that they represent the  s  mirrors of a dihedral group  ds.  Let the 

protofloret  F  be a [q,t]-configuration such that each of the lines in  F  is perpendicular 

to one of the mirrors in S, and precisely one mirror M in S is a mirror for F.  Moreover, 

let no line of F be perpendicular to  M.  Then images of the protofloret  F  under all re-

flections in the  s  mirrors of  S  create in general a floral [q,2t]-configuration with  s  flo-

rets. 
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(a)         (b) 

 

(c)         (d) 

Figure 4.5.3.  Four floral (3,4)-configurations formed using construction (M1).  In (a) and 

(b) the protofloret F is a (63, 92) configuration, with points at the vertices of an isogonal 

hexagon.  In each case the result is a (363, 274) configuration with symmetry group d3; the 

two configurations are isomorphic.  In (c) and (d) the configurations are (483, 364) with 

symmetry group d6, and the protofloret F consists of the vertices of an equilateral triangle 

and its center, the sides of the triangle, and its mirrors; hence it is a (43, 62) configuration.  

In all parts the lines incident with F are shown in red, the mirrors in S are shown green. 
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 An example of construction (M2) is provided in Figure 4.5.4.  There s = 3, q = 2, 

and t = 2.  The result is a floral [2,4]-configuration (182, 94).  Figure 4.5.2 also shows 

configurations obtained by method (M2). As with (M1), unintended incidences may oc-

cur.  This happened, for example, in Figure 4.5.2, parts (e) and (f). 

 The floral configurations constructed using (M2) have at least one degree of free-

dom for continuous changes –– the size of the protofloret relative to its distance from the 

center of symmetry.  This is illustrated in parts (a) and (b) of Figure 4.5.4.  In some cases 

the floret itself may have continuous changes in shape; this is shown in part (c). 

 
(a)    (b)     (c) 

Figure 4.5.4.  Three isomorphic floral configurations (182, 94) obtained by method (M2).  
The florets in (a) and (b) differ only in size, those in (c) differ in shape. 
 
 Construction (M3) starts with a floral [q,k]-configuration C constructed by 

method (M2). Assuming, for ease of formulation, that the mirror M of the protofloret F is 

vertical, we look for the uppermost points on florets F' and F'' symmetric with respect to 

M.  If each of these two florets has a single highest point X' and X'', respectively, we fo-

cus on the corresponding points Y' and Y'' in the protofloret F, and on a pair of lines, 

symmetric with respect to M, which go to points Z' and Z'' on F that are lower that Y' and 

Y''. We create a new protofloret F* by deleting from F the two lines just mentioned, and 

introducing a horizontal line H containing the two points Z' and Z''.  The protofloret F* is 

not a configuration, since it has two points (Y' and Y'') that are incident with only  q–1  

lines. Mirroring the changes we made to get F* from F to all the florets of C, we now 

utilize the presence of a degree of freedom in floral configurations constructed like C by 
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method (M2), and change the size of the protofloret F* until the line H passes through 

the highest points on F' and on F''  –– if this is possible.  Then, if there are no unintended 

incidences, this renders the whole collection of points and lines into a floral [q,k]-

configuration. 

 An illustration of the (M3) construction is shown in Figure 4.5.5. In part (a) we 

have a  (494) floral configuration constructed by the (M2) method, and in the other parts 

are three floral configurations obtained from it by (M3).  The newly introduced lines in 

these configurations are shown in blue. In distinction from the other floral configurations 

we have seen, configurations obtained by (M3) have lines that are incident with three flo-

rets each.  It also should be noted that although in many cases the florets F' and F'' are the 

ones nearest to F, this is not always the case. In Figures 4.5.6 and 4.5.7 we show floral 

configurations (564) in which the points of the protofloret are seven of the eight vertices 

of a regular octagon.  In the second of these the special lines go to non-adjacent florets. 

 Construction (M4) is analogous to (M3), but it starts with a floral 

[q,k]-configuration C constructed by either method (M1) or method (M2). Assuming, for 

ease of formulation, that a mirror M mapping the protofloret F to its adjacent floret F° is 

vertical, we look for the uppermost points on florets F' and F'' symmetric with respect to 

M, and adjacent to F and F°, respectively.  If each of these two florets has a single highest 

point X' and X'', respectively, we focus on the corresponding points Y' and Y'' in the pro-

tofloret F and the floret F°, and on a pair of lines, symmetric with respect to M, which go 

to points Z' and Z'' on F and F° that are lower than Y' and Y''. We create a new protofloret 

F* by deleting from F the line just mentioned and omitting its companion from F°, and 

introducing a horizontal line H containing the two points Z' and Z''.  The protofloret F* is 

not a configuration, since it has a point (namely Y') that is incident with only  q–1  lines. 

Mirroring the changes we made to get F* from F to all the florets of C, we now utilize the 

presence of a degree of freedom in floral configurations constructed like C by method 

(M1), and change the size of the protofloret F* until the line H passes through the highest 

points on F' and on F''  –– if this is possible.  Then, if there are no unintended incidences, 

this renders the whole collection of points and lines into a floral [q,k]-configuration. 
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(a)      (b) 

 

(c)      (d) 

Figure 4.5.5.  A floral configuration (494) obtained using (M2) is shown in (a).  From it 

three distinct configurations (494) are obtained by construction (M3).  The special lines 

resulting from the construction are shown in blue. 
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Figure 4.5.6.  A floral (564) configuration obtained by the (M2) construction, and another 

(564) configuration resulting from it by the (M3) method.  The points of the protofloret 

are seven of the eight vertices of a regular octagon. The protofloret has d1 symmetry, the 

configurations have d8 symmetry. 

 
Figure 4.5.7. The same procedure as in Figure 4.5.6, except that the special line deter-

mined by two points of the protofloret was aimed not at adjacent florets but at a pair of 

more distant florets.  To achieve the intended incidence, the size of the protofloret had to 

be increased, leading to a situation similar to that in Figure 4.5.2(d).  As a visual aid, the 

points of each floret were given distinct colors, matched in the two parts. 
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 Construction (M4) is illustrated in Figures 4.5.8 and 4.5.9, by floral configura-

tions (364) and (1284).  It should be noted that in contrast to the other constructions, (M4) 

leads to configurations in which some lines are incident with four florets.  It is also worth 

mentioning that, as in construction (M3), instead of "adjacent" florets in some cases flo-

rets lying farther away may be used. 

 In order to illustrate the esthetic appeal of floral configurations, and their great 

variety, we shall now present a number of examples. Most deal with the more versatile 

(M1) construction. 

 Figure 4.5.10 shows a floral [5,4]-configuration (1205, 1504), while Figure 4.5.11 

has a floral [3,4]-configuration (723, 544), both obtained using construction (M1).  A flo-

ral configuration (724) obtained by the same method is shown in Figure 4.5.12.  Figure 

4.5.13 shows a (984) floral configuration in which the points of the protofloret are at ver-

tices of a regular heptagon, and the lines are diagonals of that heptagon.  In contrast, the 

protofloret in Figure 4.5.14 is a (64, 122) configuration without any symmetry, used to 

construct by method (M1) a floral (1084) configuration with d9 symmetry.   

 Construction method (M2) is illustrated by Figure 4.5.15 that shows a floral 

(1503, 756) configuration with d5 symmetry, in which the protofloret is a (153) configura-

tion with d5 symmetry; analogs of this configurations are the only example found so far 

of floral configurations in which each line is incident with six points. Construction 

method (M2) also yields the (724) configuration in Figure 4.5.16, in which the points of 

the protofloret are at the vertices of an isogonal dodecagon; the shape of the protofloret is 

variable. 

 Another method of constructing floral configurations starts with a floral [q,k]-

configuration  F2, with protofloret F1.  Using F1 as protofloret we can construct a 3-strata 

floral configuration F3. With this terminology, F2 would be a 2-strata configuration, and 

F1 a 1-stratum configuration.  This construction method is illustrated in Figure 4.5.17.  It 

shows a 3-strata floral (4,8)-configuration (2504,1258), in which the protofloret F1 has 

points at the vertices of a regular pentagon. The second stratum is a (254) floral configu- 
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ration obtained by the (M3) method; with it as protofloret the complete configuration is 

obtained by the (M1) construction.   

 
(a) 

     
(b)           (c) 

Figure 4.5.8.  Floral configurations (364). The protofloret in (a) has points at the vertices 

of a regular hexagon, and symmetry group d2; the configuration is obtained by the (M2) 

method and has symmetry group d6.  The other two configurations are obtained from it by 

the (M4) construction, which involves changing the size of the protofloret, and deleting 

different lines from the original. 
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Figure 4.5.9.  A floral configuration (1284) with 16 florets and symmetry group d8, ob-

tained by construction (M4) from a (1284) configuration reached through the (M1) 

method.  The special lines are again shown in blue, but the mirrors are not shown. 

 

Clearly, this procedure could be repeated to 4-strataconfigurations, and so on; however, 

the diagrams become for to crowded for visual comprehension. 

 Here is a brief comparison of our floral configurations with the presentation in 

[B12].  The main and fundamental difference is that in [B12] the protoflorets are consid-

ered as only sets of points that are restricted to coincide with either the vertices of a  
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Figure 4.5.10.  A floral [5,4]-configuration (1205, 1504), constructed by method (M1).  

The protofloret is a (65, 152) configuration consisting of the vertices of a regular pentagon 

and its center, and all the lines determined by these six points. The protofloret has sym-

metry group d5, the configuration has d10. 

 

regular polygon, or the vertices of an isogonal but not regular polygon; a further restric-

tion related the symmetries of the protofloret to those of the configuration.  The main ex-

position in [B12] is restricted to 4-configurations, with more general types mentioned  
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Figure 4.5.11.  A floral [3,4]-configuration (723, 544) obtained using construction (M1), 

and with symmetry group d6.  The protofloret is a (63,92) configuration, with symmetry 

group d2; there are 12 florets.  The color conventions are the same as in Figure 4.5.3.   

 

 

Figure 4.5.12.  A floral configuration (724) obtained by method (M1). The protofloret has 

points at vertices of a regular hexagon, and symmetry group d3.  The configuration has 

twelve florets and symmetry group d6.  
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Figure 4.5.13.  A floral configuration (984) obtained by method (M1).  Both the protoflo-

ret and the configuration have symmetry group d7. 

 

only briefly as "generalized floral configurations".  The lines of the protofloret are left to 

be examined in each case.  With these differences in mind, the classification of floral 

configurations into five varieties can be explained in our terminology as follows.  Varie-

ties (A) and (C) of [B12] are obtained by the (M1) construction, (B) and (D) by the (M2) 

method.  The protoflorets in (A) and (B) have points coinciding with vertices of isogonal, 

non-regular polygons, those in (C) and (D) at vertices of regular polygons. Variety (E) 

consists of configurations obtained by the (M3) method; they have no degrees of freedom 

beyond similarities.   
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Figure 4.5.14.  A floral (1084) configuration with protofloret a (64, 122) configuration de-

void of any symmetry. The configuration was constructed using method (M1) and has 18 

florets and symmetry group d9. 

 

 Many of the configurations illustrated in this section do not fit into the classifica-

tion of [B12], since they do not satisfy the definition of floral configurations adopted 

there. Those that do are: Figure 4.5.1 is of variety (A), Figure 4.5.16 of variety (B), Fig-

ures 4.5.12 and 4.5.13 are of variety (C), Figures 4.5.2, 4.5.5(a) and 4.5.8(a) are of vari-

ety (D), and 4.5.5(b,c,d) of variety (E).  Figure 4.5.17 is analogous to the generalized flo-

ral configuration (5124, 2568) in [B12]. 
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Figure 4.5.15.  A (1503, 756) floral configuration with d10 symmetry, resulting from the 

(M2) construction using as protofloret a (153) configuration with d5 symmetry. 
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Figure 4.5.16. A floral configuration (724) obtained by method (M2). The points of the 

protofloret are at the vertices of an isogonal 12-gon, and the protofloret has symmetry 

group d2. 
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Figure 4.5.17. A floral [4,8]-configuration (2504,1258) with three strata. The protofloret 

F0 of the first stratum has points at the vertices of a regular pentagon. Using method 

(M2), five copies of the protofloret form a second stratum F1, which is a floral configura-

tion (254).  By method (M1), ten copies of F1 form the third stratum F2. The protoflorets 

of the first two strata have symmetry group d5, as does the complete configuration. The 

protofloret of the first stratum in each second stratum floret is shown in blue, and one 

second stratum protofloret is shown in green (and blue).  The lines incident with one flo-

ret of the first stratum are shown in red. 

 

 We conclude with a brief description of chiral floral configurations.  We have al-

ready encountered a wide class of these, when investigating the chiral astral 3-

configurations in Section 2.  In Figure 4.5.18 we show two examples of such configura-
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tions.  Many additional examples can be found in Sections 2.7 (a protofloret consists of 

two points and two lines) and 2.9 among the multiastral 3-configurations. 

 
Figure 4.5.18. Two 3-astral configurations (153) that are also chiral floral configurations. 

 A different example of a chiral floral 4-configuration was first presented in [B12], 

it is reproduced in Figure 4.5.20b.  A general method of generating such floral configura-

tions is based on the (M1) construction, and illustrated in a simple case in Figure 4.5.19.  

The crucial step is the replacing of one-half of the florets in the dihedral configuration by 

their mirror images. 

 

Figure 4.5.19.  (a) An application of the (M1) construction to a (61) configuration (that is, 

a protofloret consisting of six points and six lines). (b) Replacing one half of the florets 

by their  mirror images yields a chiral floral configuration. 
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Figure 4.5.20.  (a) An adaptation of the (M1) construction to the case in which not all 

lines in a protofloret are perpendicular to one of the mirrors.  (b) Replacing half of the 

florets by their mirror images yield a chiral floral configuration. 

 

Exercises and problems 4.5 

1. Construct your own floral configurations, using each of the four methods (Mi) . 

2. Using the Martinetti "module" shown in Figure 2.4.2, show that a chiral floral 

(geometric) configuration  (n3) can be constructed for every n = 10m, m ≥ 3. 
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4.6 TOPOLOGICAL CONFIGURATIONS 

 

 Studies of topological configurations have begun only in the very recent past.  

While in many ways analogous to geometric configurations, there are significant differ-

ences that deserve to be investigated in more detail. Here I will try to present the material 

that is available at this time. 

 The distinction between geometric and topological configurations became evident 

long ago, through Schroeter's proof [S6], [S8] that one of the ten combinatorial configu-

rations (103) cannot be geometrically realized; see Section 2.1 for more details. The fact 

that it almost can be realized geometrically (as in Figure 1.2.2, with lines just a bit bent) 

means that it is topologically realizable. However, neither this, nor the fact that it is not 

known whether there exist geometrically non-realizable 3-connected (n3) configurations 

with n > 10 that are topologically realizable, resulted in any consistent effort to find clari-

fication.  It took almost forty years after Schroeter's discovery for Levi [L3] to even de-

fine the appropriate concepts. 

 Another rather frustrating aspect of the situation concerning topological 

3-configurations comes about through Steinitz's theorem (see Section 2.6). In the case of 

topological 3-configurations unintended incidences pose no problem, and one may for-

mulate the resulting statement as follows: 

 Theorem 4.6.1.  Every connected combinatorial 3-configuration with n ≥ 9 can 

be realized by pseudolines if the incidence of an arbitrary point-line pair is disregarded. 

 Naturally, just as in the case of the Steinitz theorem itself, the unfulfilled inci-

dence can always be restored by allowing a curve of degree at most 2.  But there is no 

guarantee that this curve can be chosen in such a way that we obtain a topological con-

figuration.  As we have seen in Section 2.1, for n = 7 or 8 this is, in fact, impossible and 

there is no topological realization of these configurations. 

 A separate question is whether in certain families of 3-configurations (such as as-

tral, or 3-astral, or others) there exist topological configurations that cannot be realized by 

geometric ones of the same character. An affirmative answer to one of these questions 
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arises from the examples in Section 2.7 (in particular, see Figure 2.7.6).  However, the 

full extent of such situations for connected astral 3-configurations has not been deter-

mined.  More precisely, in Figure 4.6.1 we show four different astral 3-configurations of 

pseudolines which arise from unintended incidences in geometric astral configurations –– 

all four resulting in the same astral 4-configuration (244). 

 A different situation happens with the astral 3-configuration 12#(5,1;3). Its draw-

ing does not produce either the intended (243), nor a (244).  Instead, the resulting family 

of points and lines has some points on three lines and some on four, while some line are 

incident with just three points and some with 4.  This is illustrated in Figure 4.6.2(a).  

Again it is possible to avoid unintended incidences by replacing one orbit of lines by 

pseudolines, as indicated in Figure 4.6.2(b). 

 In all these cases it is not known whether actual geometric realizations of the 

3-configurations can be obtained if one does not impose symmetry restrictions. 

 Concerning topological 4-configurations, we have already discussed in Section 

3.2 the non-existence of topological (n4) configurations for n ≤ 16 and the fact that for 

every n ≥ 17 there exist topological (n4) configurations. Very recently, L. Berman [B4], 

determined the conditions for the existence of astral (that is, 2-astral) configurations of 

pseudolines with dihedral group of symmetries.  The main result of [B9] is the following:  

 Theorem 4.6.2.  Astral topological configurations (n4) exist if and only if n is 

even and n ≥ 22. 

 For the existence part of the proof it is sufficient to provide examples.  An astral 

(224) configuration of pseudolines was first shown in [G50], and has been reproduced in 

several other publications; see Figure 4.6.3.  Applying the notation we used in Sections 

3.5 and 3.6 to topological configurations, this is 11#(5,4;1,4).  It can be used as a tem-

plate for all even  n = 2m ≥ 22: For each  m ≥ 11, the symbol m#(5,4;1,4) represents such 

a configuration.  An example (with m = 17) is provided in Figure 4.6.4.  To establish the 

inequality for n, it is necessary to first notice that due to the requirements for topological  
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12#(4, 4; 2) 

12#(5, 1; -1) 12#(5, 1; 3)

12#(4, 4; 1)  

 

Figure 4.6.1.  Four instances where an astral geometric 3-configuration (123) leads to the 

astral 4-configuration (244).  The pseudolines can avoid the unintended incidences. 
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astral configurations, one can assume the configuration to be connected, have its points 

coincide with the vertices of two concentric regular m-gons, and have the concept of 

"span" of diagonals available –– just as for geometric configurations. Then it is easy to 

verify that the shorter span must be at least 4, hence the larger span at least 5, and there-

fore m greater than twice 5. (This is an abbreviated version of the detailed arguments in 

[B3].) ♦  

 
(a)      (b) 

Figure 4.6.2.  A drawing (a) of the astral 3-configuration 12#(5,1;3) produces no geomet-
ric configuration, but can be modified to a topological configuration (b). 

 
Figure 4.6.3.  A topological astral configuration (224), that can be described as 
11(5,4;1,4). 
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 A more detailed description of astral topological 4-configurations is given in [B9] 

as well.  It concentrates on those with dihedral symmetry. With a slight modification of 

the notation in [B9], we may summarize the results as follows.  Using the symbol 

m#(b,c;d,e) in the same meaning as explained in Sections 3.5 and 3.6, we note that: 

• The configuration points of the inner orbit can be situated on a circle of a radius 

that can vary between certain limits; 

• The points of the inner orbit are either aligned with those of the other orbit (Type 

1), or else situated at positions that enclose with them angles that are odd multi-

ples of π/m (Type 2). 

• m#(b,c;d,e) and m#(d,e;b,c) are equivalent; moreover c ≠ d and b ≠ e; we conven-

tionally assume that b < e; 

• It follows that c < b and d < e, and b – c > e – d; 

• For Type 1 configurations we have b – c ≡ e – d ≡ 0 mod 2, and 

 For Type 2 configurations we have b – c ≡ e – d ≡ 1 mod 2. 

 

Figure 4.6.4.  An astral topological configuration (344) of Type 2. It can be specified as 

17#(5,4;1,4). 
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 While these conditions impose many restraints on astral topological configura-

tions, it is also clear that most of them cannot be "straightened" or "stretched" into geo-

metric astral configurations. The reason in that the geometric m#(b,c;d,e) configurations 

exist only if m is a multiple of 6, while no such restriction holds in the topological case. 

 The smallest topological astral configurations is 11#(4,1;4,5) shown in Figure 

4.6.3 above. It is the only astral configuration (224), and is of Type 2. The smallest astral 

topological configuration of Type 1 is 13#(5,1;4,6), shown together with 17#(5,1;4,6) in 

Figure 4.6.5. 

 Even when m is divisible by 6 there are topological astral configurations 

m#(b,c;d,e) that are not stretchable.  The smallest such configuration is 18#(6,1;5,8), 

shown in Figure 4.6.6. 

     

(a)      (b) 

Figure 4.6.5.  Two astral topological configuration of Type 1. (a) The configuration 

13#(5,1;4,6), the smallest such configuration.  (b) Another (344) topological astral con-

figuration, that can be specified as 17#(5,1;4,6). 
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 Berman's paper [B9] contains a number of other results that we cannot get into 

here.  It should only be mentioned that there are examples of essentially chiral configura-

tions, that is, configurations that are astral under a cyclic symmetry group but are not 

even isomorphic to an astral configuration with mirror symmetries.  Such configurations 

do not exist for geometric astral configurations.  An example of an essentially chiral as-

tral configuration is shown in Figure 4.6.7.  A complete description of such configura-

tions is still lacking, as is also any treatment of k-astral topological configurations for 

k ≥ 3. 

 An interesting conjecture in [B9] can be formulated as follows: 

 Conjecture 4.6.1.  If the outer orbit of points in a astral topological configuration 

m#(b,c;d,e) with dihedral symmetry is on a circle of radius 1, then the inner orbit is on a 

circle of radius r, where  

0 < r < cos((b–c–1)π/m)/cos(π/m). 

 

 For a study of simplicial arrangements of pseudolines see [B8]. 

 

Figure 4.6.6.  The astral topological configuration 18#(6,1;5,8), the smallest configura-

tion with m divisible by 6 that is not a geometric astral configuration. 
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Figure 4.6.7.  A chiral astral configuration (304) that is not isomorphic to any astral con-

figuration that admits mirror symmetries. One of the pseudolines is drawn by heavy seg-

ments. It can be labeled 15#(6,1;5,7), and the fact that 6 – 1 ≡ 1 mod 2 while 7 – 5 ≡ 0 

mod 2 shows that it cannot be dihedral of either Type 1 or Type 2. 

 

Exercises and problems 4.6 

 

1. Justify the claims that the configurations in Figures 4.6.5a and 4.6.6 are the small-

est of their kind. 

2. What is the smallest topological 5-configuration you can find? 

3. How many distinct astral topological configurations (264) and (304) can you find? 

4. What are the smallest topological 3-astral 4-configurations you can find? 

5. Generalize the statement (in the proof of 4.6.2) that the symbol m#(5,4;1,4) de-

scribes a valid topological astral 4-configuration for each m ≥ 11. What about analogous 

statements for 3-astral configurations? 
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4.7 UNCONVENTIONAL CONFIGURATIONS 
 
 In this section we shall consider several families of objects that we shall call "con-

figurations" even though they do not fit the definition of that word accepted in all the 

other sections of this book.  

 The first of these families are "configurations of points and circles".  Some exam-

ples are shown in Figures 4.7.1 and 4.7.2.  In analogy to configurations of points and 

lines we may denote them by a symbol such as (pq, nk), where p, n are the numbers of 

points and of circles, and q, k are the number of circles incident with each point and the 

number of points incident with each circle; in case the numbers are equal, we use the no-

tation (nk).  Hence the three configurations shown are (43), (83,64), and (104).   

 Several aspects of configurations of points and circles deserve notice. 

 First, such configurations are generalizations of configurations of points and lines 

in a very direct way: Every configurations of points and lines in the projective plane can 

be shown as a configuration of antipodal pairs of points and great circles in the model of 

the projective plane on the sphere; a stereographic projection then maps this into a con-

figuration of points and circles in the plane.  However, these are only very special cases 

of such configurations –– none of those in Figures 4.7.1 and 4.7.2 is of this kind. 

 Second, in all but name, configurations of points and circles made their appear-

ance before configurations of points and lines.  For example, the configuration in Figure 

4.7.1b is an illustration of a theorem of A. Miquel [M19a] dating to 1838, asserting that if 

four pairwise intersections of four circles are concyclic, the other four intersections of the 

same pairs are concyclic as well.  This is one of several results of Miquel, some of which 

have been greatly generalized by many writers, starting with Clifford [C2**] in 1871 and 

de Longchamp [L4*] in 1877. One of the achievements are the so-called "chains of theo-

rems" bearing the names of Clifford and de Longchamps. The former establishes the ex-

istence of configurations of points and circles ((2n-1)n) for all n ≥ 1.  The cases n = 1 or 2 

are trivial, and n = 3 is shown in Figure 4.7.1a.  For more recent works on this topic and 

its relatives see, for example, Ziegenbein  [Z8*], Rigby [R3*], Longuet-Higgins [L5*], 

Longuet-Higgins and Perry [L5**], and references given there to other works. 
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 Third and last –– why is there no greater activity regarding these configurations?  

I venture to guess that the preoccupation with just a few specific results (such as the 

"chains of theorems") tended to discourage more general inquiries.  There are various 

subclasses of circle configurations that may well be worth investigating: Are pairs of cir-

cles required to intersect twice, are touching circles allowed, can disjoint circles appear, 

are straight lines admitted, does one wish to consider symmetries in the inversive plane, –

– the choices and possibilities are very wide and almost entirely unexplored.  (The inver-

sive plane seems an appropriate setting for many of the considerations of symmetries of 

configurations of points and circles; see, for example Coxeter [C7], Eves [E2], Yaglom 

[Y1].) 

 The configuration (104) in Figure 4.7.2 is an example of configurations ((2n)n) 

that exist for all n ≥ 5 and exhibit remarkable symmetry in the inversive plane. The (104) 

configuration has a single orbit of points and a single orbit of circles under inversive 

transformations. I do not know what other configurations are as symmetric, but probably 

there are many additional ones. 

    

(a)      (b) 

Figure 4.7.1.  Configurations of points and circles.  (a) A (43) configuration.  (b) A (83,64) 

configuration. 
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Figure 4.7.2. A (104) configuration of points and circles. 

 The second family of "unconventional configurations" is illustrated by the exam-

ples in Figures 4.7.3 and 4.7.4.  The objects in this family are the traditional points and  

 
Figure 4.7.3.  An infinite 3-configuration with 4-fold dihedral symmetry and single tran-

sitivity classes of points and of lines under the group of similarity transformations. 
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lines of the Euclidean plane, and the configurations satisfy all the conditions assumed 

throughout the book –– except the requirement that there are only finite numbers of 

points and of lines.  More precisely, we are now looking at infinite families of points and 

lines such, for some finite k, each point is incident with k lines, each line with k points, 

and the family is discrete in the sense that every point [line] has a neighborhood that con-

tains no other point [line] of the family.  We shall call a family of this kind an infinite k-

configuration. 

 While many different kinds of infinite k-configurations (or of analogously defined 

infinite [q,k]-configurations) can be contemplated, the two examples we show have few 

orbits of points and of lines under similarity transformations. 

 

Figure 4.7.4. An infinite 5-configuration obtained by repeated inscribing/circumscribing 

of copies of the astral configuration 5#(2,2;1). The copies are distinguished by colors. 
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 These configurations can be interpreted as an iterative analogue of the (4m) con-

struction we considered in Section 3.3.  The infinite 3-configuration in Figure 4.7.3 arises 

by repeatedly inscribing (42) configurations in each other.  A construction of this type can 

be performed starting with any regular m-lateral, leading to an infinite 3-configuration 

with m-fold dihedral (or  cyclic –– with a suitable placement of the m-laterals) symmetry.  

Such configurations can therefore be considered as infinite analogues of the families of 

inscribed/circumscribed multilaterals we shall consider in Section 5.3. 

 The infinite 5-configuration in Figure 4.7.4 arises in the same way from repeated 

inscription/circumscription of copies of the astral configuration (103) shown in Figures 

1.3.3 and 1.5.4.  It is the only example of this kind that I found in the literature; it is ex-

plicitly mentioned in van de Craats' paper [V1].  It is clear that this type of construction 

can be carried out with other astral 3-configurations. 

 The third (and last) family of unconventional configurations is illustrated by the 

remaining figures of this section.  In these configurations the role of points and lines are  

 

Figure 3.7.5. An infinite [3]-configuration with a single orbit of points and of lines under 

isometric symmetries of the plane. 
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different, although there are infinitely many of both: Each point is on precisely k lines for 

some finite k, but each line contains infinitely many points.  We call such configurations 

infinite [k]-configurations. To avoid complications we also require that there be no ac-

cumulation points or lines.  It is again convenient to consider configurations with a high 

degree of symmetry under the group of isometric maps of the plane.  It is easy to verify 

that infinite [k]-configurations exist for all k ≥ 1. 

    

Figure 4.7.6. Examples of infinite [4]- and [6]-configurations. 

    

Figure 4.7.7. Examples of infinite [5]- and [4]-configurations. 
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Figure 4.7.8. Additional example of infinite [4]- and [5]-configurations. 

 

Exercises and problems. 

1. Construct the (124) and (144) analogues of the configuration of points and circles 

in Figure 4.7.2. 

2. Decide whether there are configurations (nk) of points and circles for arbitrarily 

large k. 

3. Modify the construction in Figure 4.7.3 to obtain a chiral infinite 3-configuration 

(that is, with cyclic symmetry group) and with a single orbit of points and one of lines. 

4. Justify the claim that the van de Craats construction fan be carried out for other 

astral 3-configurations. 

5. Is there any infinite k-configuration such that its points have no accumulation 

point? 

6. Find infinite [k]-configurations that differ in some essential aspect from the ones 

shown here. 

7. Construct infinite configurations of points and circles that share some features 

with the infinite configurations of points and lines described above. 



Version 10/18/08  Page 4.8.1 

 

4.8 OPEN PROBLEMS 
 
 There is so little known about the various kinds of configurations described in this 

section that it seems presumptuous to propose specific problems about any of them. But 

let us try to present a few that would seem capable of being solved within our lifetime.  

1. Are any cyclic 5-configurations geometrically realizable? Any cyclic k-

configurations for k ≥ 6 ? 

2. Develop a theory of k-astral 5-configurations for some k ≥ 4. 

3. Determine whether there exist k-configurations (nk) for all sufficiently large n, 

that is for n ≥ N(k), where N(k) depends on k only.  Similar question for unbalanced con-

figurations, taking into account the divisibility properties resulting from the symmetry of 

the incidence relation. 

4. Clarify the relation between the configurations ((4r)3, (3r)4) for r ≥ 5 and cubic 

curves in the real plane. Can such curves contain all vertices of configurations of this 

kind for all r ?  Are all such configurations realizable with all vertices on suitable cubic 

curves?  If not, what are the smallest ones that are not realizable in that manner? 

5. Consider geometric configurations of points and lines realized in 3-dimensional 

Euclidean or extended Euclidean space and spanning it.  Find some that are astral in that 

setting, but have no astral realization in the plane. 

6. There seems to be no information whatsoever available concerning k-astral 4-con-

figurations for k ≥ 3. 

7. Develop some concept and some results on configurations of curves –– that is, 

objects that can be described as "topological configurations of points and circles" in the 

same sense that configurations of pseudolines are "topological configurations of points 

and lines". 

8. Is it possible to use astral 4-configurations to construct infinite k-configurations 

with an accumulation point, for some k ? 
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