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CHAPTER 3. 4-CONFIGURATIONS. 
 

3.0 OVERVIEW 

 As explained in Section 3.1, the first publications dealing with 4-configurations 

appeared before the end of the nineteenth century, but not much development happened 

till relatively recently. 

 In Section 3.2 we present the general results concerning the existence of 

topological and geometric 4-configurations.  The difference between the present case and 

that of 3-configurations is quite striking – there still are gaps in the numbers n for which 

we know that an (n4) geometric configuration exists. 

 The various methods of construction of reasonably sized (n4) geometric 

configurations –– all less than twenty years old –– are detailed in Section 3.3.  These 

constructions are then applied in Section 3.4 to determine the values of n for which it is 

known that a geometric 4-configuration (n4) exist.  Although the development of new 

methods has made the construction of visually understandable 4-configurations possible 

in many cases, for some of the small numbers there still are only unattractive diagrams, 

or no known configurations at all. 

 Section 3.5 sets up the framework for the study of the k-astral 4-configurations; 

these are the configurations with a very high degree of geometric symmetry. 

 Based on that, in Section 3.6 we present one of the few complete results about 

4-configurations  –– the complete enumeration of the 2-astral 4-configurations. These are 

configurations in which there are only two orbits of points, and two orbits of lines, under 

Euclidean symmetries of the configuration. This topic is related to (and depends upon) 

the investigation of the intersection-points of diagonals in regular polygons, in itself a 

subject with a classical flavor but with surprising twists in its unfolding. 

 Section 3.7 is devoted to 3-astral configurations. The presence of three orbits of 

points and three orbits of lines results in a family of configurations with properties very 

different from the ones considered in Section 3.6. 
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 Section 3.8 is concerned with the k-astral 4-configurations with k ≥ 4.  There is 

again a sea-change in properties compared to 2-astral and 3-astral configurations, as well 

as in our knowledge of the possibilities. 

 A few problems not mentioned in the earlier sections are presented in Section 3.9. 



Version 10/18/08 

3.1 COMBINATORIAL 4-CONFIGURATIONS 

The history of configurations (n4) is much shorter than that of configurations (n3), 

and more easily told.   

The first explicit mention of such configurations seems to be in a paper [K11, p. 

440] by Felix Klein in 1879, which deals with quartic curves in the complex plane.  He 

noted that there is a family of 21 points and 21 lines with incidences that make it into a 

(214) configuration, in our terminology –– albeit in the complex plane.  Although this 

particular configuration continued to interest mathematicians (various references can be 

found in Coxeter [C10], and Burnside [B32] discovered it independently), it did not have 

any noticeable direct influence on the study of (n4) configurations in general.  However, 

it did play later a significant role in the theory of geometric configurations, which we 

shall discuss in Section 3.2. 

The first slightly more general treatment of such configurations was by Georges 

Brunel (1856 – 1900) in [B31], a paper that seems to have escaped the attention of all 

writers on the topic of configurations (n4) prior to [G46]1.  In an earlier paper [B30] 

Brunel followed an idea quite popular at that time: a polygon inscribed and circumscribed 

to itself (with sides understood as lines). Clearly, these are a special class of (combinato-

rial or geometric) 3-configurations, which we will discuss in Section 5.2.  Aware of the 

need to distinguish between combinatorial and geometric configurations, in [B31] Brunel 

pursued this idea farther, by considering a "polygon doubly inscribed and circumscribed" 

to itself.  In the current terminology we call such polygons "Hamiltonian circuits (or mul-

tilaterals)" of the configuration, and we will consider them in more detail in Sections 5.2 

to 5.4.  Each line of such a doubly self-inscribed and self-circumscribed "polygon" is in-

cident, besides the two points (vertices of the polygon) that define it as a side of the poly-

                                                
1 Biographical data on Brunel, and comments on his work, may be found in [B2] and, in 
great detail, in [D11]; see also [G29]. 
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gon, with precisely two additional vertices of the polygon.  Brunel determines that any 

combinatorial configuration (n4) must satisfy  n ≥ 13, and gives two constructions.   

In the first, Brunel presents a configuration table (that is actually an orderly con-

figuration table, in the terminology of Section 2.5), and states that while the verification 

that this indeed determines a combinatorial configuration (354) is easy, the graphical rep-

resentation requires some effort.  (Unfortunately, the remarks in [D11, p. LXVIII] con-

cerning the geometric realization of this configurations are, at best, misleading.)  From 

Brunel's statement (especially in view of his later comments concerning the other con-

struction) one may conclude that he had found a geometric realization of this configura-

tion.  In fact, this configuration turns out to be isomorphic to the geometric configuration 

(354) mentioned in [G50], communicated to the authors by Ludwig Danzer.  (See also 

[G49].)  Although no reasonable diagram of this configuration seems to be available, the 

configuration can be described easily enough by a construction of the kind used by 

Cayley and others in similar contexts a century and a half ago.  In the case under discus-

sion, start with seven points in general position in real 4-space; consider the 35  2-planes 

and 35  3-spaces they generate, and intersect this family by a 2-dimensional plane in gen-

eral position to obtains the required geometric configuration (354).  The absence of any 

reasonable geometric symmetry makes this configuration visually unattractive. 

Brunel's second construction yields combinatorial configurations (n4) on which a 

cyclic group operates transitively.  This includes explicitly specified configurations for 13 

≤ n ≤ 16.  Unfortunately, the results Brunel presents are marred possibly by typos, but 

also by outright errors.  Among the latter, in several cases Brunel lists isomorphic doubly 

selfinscribed and selfcircumscribed polygons as distinct.  For example, in case n = 13 

Brunel lists cyclic translates of {0,1,4,6} and {0,1,3,9} as the two polygons, although the 

permutation  (0)(1)(2)(3,4)(5)(6,9,8,10,12,7)(11) maps the first polygon onto the second.  

Moreover, it is rather easy to prove that up to isomorphism, there can be only one such 

combinatorial configuration; this is completely analogous to the proof (in Section 2.2) 
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that the configuration (73) is unique.  But even allowing for these shortcomings, we see 

that Brunel anticipated the corresponding results of Merlin [M8], and even went a bit be-

yond them.  A corrected list would show one cyclic configuration (or polygon) for n = 13 

and 14, three for n = 15, and two for n = 16.  This coincides with the recent list of cyclic 

configurations given by Betten and Betten [B13], to which we shall return soon.  Brunel 

also noted that translates of  {0,1,4,6}  yield a configuration  (n4)  for all  n ≥ 13; this an-

ticipated by nearly a century a result of Gropp [G8]. 

Merlin mentions in [M8] that configurations (n4) have not been investigated sys-

tematically, although some isolated ones were discovered by F. Klein [K11], W. Burnside 

[B32], and others.  Like Brunel, he constructs a combinatorial configuration (134); 

moreover, he proves its uniqueness and minimality.  He also constructs a configuration 

(144) and proves it is unique.  Merlin states that there are exactly three distinct configu-

rations (154) which, however, are not presented.  In fact, he is mistaken.  As shown by 

Betten and Betten [B13], there are four different configurations (154), three of which are 

cyclic and coincide with the three doubly selfinscribed and selfcircumscribed polygons of 

Brunel (who did not comment on the possibility of noncyclic configurations (154), or (n4) 

in general).  In the same context, Merlin makes two additional errors:   

(i) He claims that his three configurations (154) can be distinguished by the num-

ber of vertex-disjoint triangles present in them, which he claims to be 5, 1 and 0, respec-

tively.  In fact, all four configurations (154) have five such triangles, the maximal possi-

ble number.   

(ii) He states that his configurations (134), (144) and (154) have orderly configura-

tion tables; this is correct –– see Section 2.5 –– and has been proved by Steinitz in [S17] 

for all configurations (nk). However, Merlin then claims that it follows that there is no 

Hamiltonian circuit for any of them –– which is wrong.  Steinitz's orderliness result has 
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no such implications, and cyclic 4-configurations such as Brunel's explicit constructions 

in [B31] (of which Merlin is unaware) provide counterexamples to Merlin's claim. 

By a construction analogous to the one devised by Martinetti (in [M2], see Sec-

tion 2.3) for configurations (n3),  Merlin shows that for every n ≥ 30 there are combinato-

rial configurations (n4).  In fact, it is easy to show that there are such configurations for 

all  n ≥ 13;  for example, as noted by Brunel and mentioned above, for all  n ≥ 13  it is 

enough to consider cyclic translates of the "line" {0,1,4,6}. 

Concerning the number N(n) of distinct combinatorial configurations (n4), the 

only known values are those given by Betten and Betten [B13]: the old  N(13) = N(14) = 

1, and their new results  N(15) = 4,  N(16) = 19,  N(17) = 1972, and N(18) = 971171.  

These new numbers seem not to have been independently verified, except for the value 

N(17) = 1972 (see [B29]). 

The configurations (134) and (144) can be obtained as cyclic configurations with 

generating "line" {0,1,4,6}. The four configurations (154) can be characterized as fol-

lows: The three cyclic ones are generated by the "lines"  {0,1,4,6},  {0,1,5,7}  and  

{0,1,3,7},  given already by Brunel.  The other three configurations given by Brunel yield 

isomorphic configurations (two to the first, and one to the second).  Betten and Betten 

[B13] give other generators for the three cyclic configurations: {0,2,8,12},  {0,1,9,11}, 

and {0,1,9,13}, respectively; these are shown in [B13] by Levi incidence matrices  (see 

Section 1.4), – but matrices that do not exhibit the cyclic character of the configurations.  

Their fourth configuration (n4) is clearly illustrated in [B13] by a Levi incidence matrix 

shown in Figure 3.1.1(a).  As it is the only non-cyclic configuration (154), it is necessarily 

selfdual.  An incidence matrix exhibiting one of the selfdualities is shown in Figure 

3.1.1(b); it is obtained by suitable permutations of the rows and columns of the matrix in 

Figure 3.1.1(a). 
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(a)      (b) 

Figure 3.1.1.  (a) A Levi incidence matrix of the non-cyclic  (154)  configuration con-
structed by Betten and Betten [B13].  (b) A selfdual incidence matrix of this configura-
tion.  

Brunel's generating "lines" of the three cyclic configurations (154) given in [B31] 

have an advantage over the ones given by Betten and Betten [B13], even though they are 

isomorphic for the (154) configurations: Brunel's can serve as generating lines for combi-

natorial configurations (n4) for all  n ≥ 15. 

Concerning the (164) combinatorial configurations, it should be noted that the 

three generating lines of the cyclic (154) configurations listed above do serve to generate 

cyclic (164) configurations –– but the three resulting configurations are isomorphic. There 

is one other configuration (164), also cyclic, specified in Betten and Betten [B13] by its 

generating line  {0, 1, 6, 13};  Brunel renders the same configuration, but with a typo; 

when corrected, its generating line is {0,1,3,12}, or equivalently, {0,1,3,–4}.  The gener-

ating lines {0, 1, 6, 13} or {0,1,3,12} do not yield a cyclic configuration for all  n > 16; 

however, if the generating line is taken in the form {0,1,6,–3} or {0,1,5,–2}, which are 

equivalent for (164), then they works for all such  n.  Obviously, any generating line for a 

cyclic configuration is also a generating line for all sufficiently large  n.  
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Besides the two cyclic configurations, Betten and Betten [B13] describe 17 non-

cyclic combinatorial configurations (164); they state that these 19 are the complete list, 

but give no details of the determination of this claim.  There seems to have been no inde-

pendent confirmation of this list.  As with all the listings in [B13], it seems that no atten-

tion was given to finding presentations of the configurations as symmetric as possible; in 

particular, there is no mention of duality or selfduality.  Beyond the cyclic configurations 

already mentioned, and the (154) configuration in Figure 3.1.1(a), this is illustrated by 

one of the seventeen (164) configurations illustrated in Figure 8 of [B13].  This example 

is shown in Figure 3.1.2(a). 

Betten and Betten [B13] state (or at least imply) that there are only two cyclic 

configurations (174); their generating lines given are equivalent to the ones mentioned 

above, {0,1,4,6} and {0,1,5,–2}. 
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(a)      (b) 

Figure 3.1.2.  (a) A (164) combinatorial configuration as illustrated in [B13] by its 

Levi incidence matrix.  (b) A symmetric incidence matrix of the same configuration, il-

lustrating its selfduality. 
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As we shall see in Section 3.2, except for one of the (174), none of the combinato-

rial configurations (n4) with n ≤ 17, is even topologically realizable (see Section 3.2).  

Merlin [M8] shows that the configurations (134), (144) and the three cyclic (154) are not 

geometrically realizable.  But he also notes that geometric configurations (n4) do exist for 

infinitely many values of  n.  His construction uses "stacks" of 3-configurations and ver-

tical lines through their vertices to construct [4,3]-configurations,  and then stacks of du-

als of the projections of these into the plane to construct 4-configurations.  While this 

yields geometric configurations (n4) for infinitely many values of  n,  there are infinitely 

many  n  that are not covered. 

 Much new information on the question of existence of topological and geometric 

4-configurations has become available recently.  We discuss it in the following sections. 

Exercises and problems 3.1 

1. Decide whether the (354) configuration of Brunel is cyclic or not. 

2. Prove that the three cyclic configurations (154) generated by the "lines"  {0,1,4,6},  

{0,1,5,7}  and  {0,1,3,7},  given by Brunel, are distinct (non-isomorphic). 

3. Prove that the three cyclic configurations (154) generated by the "lines"  {0,1,4,6},  

{0,1,5,7} and {0,1,3,7} are isomorphic to the three generated by {0,2,8,12}, {0,1,9,11}, 

and {0,1,9,13}, respectively. 

4. Investigate the duality properties of the three cyclic configurations (154). 

5. Validate the claim that the three generating lines in Exercise 2 yield isomorphic 

configurations (164). 

6.  Show that the cyclic (164) configurations with starting lines {0,1,4,6} and 

{0,1,6,13} are not isomorphic. 
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3.2 EXISTENCE OF TOPOLOGICAL AND GEOMETRIC  

 4-CONFIGURATIONS 

As mentioned in Section 3.1, both Brunel [B31] in 1897 and Merlin [M8] in 1913 

discussed geometric 4-configurations in the real Euclidean plane, and were clear about 

the distinction between combinatorial and geometric configurations. However, neither 

did actually show a drawing of any geometric configuration.   

The first published diagram of a geometric configuration (n4) appeared only in 

[G50], published in 1990.  It is reproduced here as Figure 3.2.1.  As it happens, it is a re-

alization of Klein's configuration (214),  introduced in [K11] and mentioned in Section 

3.1.  The paper [G50] marked the beginning of research of geometric configurations (n4); 

the results of these investigations form the topic of the remaining part of Chapter 3.  The 

results are intimately connected to the study of topological configurations (n4), and we 

shall first describe the known facts concerning these configurations.  

 
Figure 3.2.1.  A geometric configuration (214). 
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The arguments given by Merlin [M8] to establish the non-existence of geometric 

configurations (n4) for  n ≤ 15, do not carry over to topological configurations.  However, 

we have: 

Theorem 3.2.1. (Bokowski and Schewe [B23])  For  n ≤ 16 there are no topologi-

cal configurations (n4). 

This is the best possible, since we also have 

Theorem 3.2.2.  (Bokowski, Grünbaum and Schewe [B22])  Topological configu-

rations (n4) exist for every n ≥ 17. 

In contrast to this situation, we have: 

Theorem 3.2.3.  (Bokowski and Schewe [B24])  For  n ≤ 17 there are no geomet-

ric configurations (n4). 

Theorem 3.2.4.  (Bokowski and Schewe [B24])  There exist geometric configura-

tions (n4) for all  n ≥ 18  except possibly for  n = 19, 22, 23, 26, 37, 43. 

Theorems 3.2.3 and 3.2.4 demonstrate how the understanding of the (n4) configu-

rations has developed during the past twenty years.  In [G50] it was conjectured that there 

are no geometric configurations (n4) with n ≤ 21 other than the configuration in Figure 

3.2.1.  Similar conjectures were repeated in various other publications, such as  [G41], 

[G42], [G43].  However, the recent discovery (see [G47]) of a  (204)  configuration led to 

a modified conjecture, that geometric configurations  (n4)  exist only for  n ≥ 20 .  But 

this was also short-lived, and was resolved in the negative by the discovery of a geomet-

ric (184) configuration by J. Bokowski and L. Schewe [B24].  Thus Theorems 3.2.3 and 

3.2.4 settle the 20-years quest for the smallest geometric configuration  (n4). 
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The history of the Theorem 3.2.4 illustrates the rapid improvement in the under-

standing of configurations (n4).  The first version, in [G47], established that connected  

(n4)  configurations exist for every  n ≥ 21  except possibly if  n = 32  or  n = p  or  n = 2p  

or  n = p2  or  n = 2p2  or  n = p1p2,  where  p, p1, p2  are odd primes and  p1 < p2 < 2p1.  

The number of exceptional cases was soon reduced (in [G41]) to a finite number: There 

are  (n4)  configurations for all  n ≥ 21  except possibly if  n  has one of the following 

thirty two values:  22, 23, 25, 26, 29, 31, 32, 34, 37, 38, 41, 43, 46, 47, 49, 53, 58, 59, 61, 

62, 67, 71, 77, 79, 89, 97, 98, 103, 113, 131, 178, 179.  Newly found construction meth-

ods [G43] reduced the list of possible exceptions to the following ten values:  22, 23, 26, 

29, 31, 32, 34, 37, 38, 43.  All this was while the general belief was that  21  is the small-

est number of points in an (n4) configuration.  After Theorem 3.2.3 was established, and 

additional constructions found, the result became that connected  (n4)  configurations ex-

ist if and only if  n ≥ 18,  except possibly if  n  has one of the eight values  18, 19, 22, 23, 

26, 34, 37, 43.  Finally, the discovery of a (184) configuration led to the result stated 

above [B24]. 

The proofs of Theorems 3.2.3 and 3.2.4 will be given in the next section; here we 

shall give outlines, and some details, of the proofs of Theorems 3.2.1 and 3.2.2. 

The proof of Theorem 3.2.1 given in [B23] is easy for  n ≤ 15.  The case n = 16 is 

much more complicated, and forms the bulk (six pages) of that paper.  It follows a large 

number of a priori possible topological subconfigurations, and in each case leads to a 

contradiction. We have to refer the reader to the original paper.  In contrast, the case 

n ≤ 15 is easily explained, and for fixed  k  is applicable to all combinatorial configura-

tions (nk)  with  n  sufficiently small.  We present the proof from [B23] with only minor 

adaptations. 

Assume that a combinatorial (nk) configuration is realized by pseudolines in the 

projective plane.  Due to the possibility of locally perturbing pseudolines at points that 

are not vertices of the configuration, we may assume that in the arrangement (see Ap-
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pendix A2) generated by the perturbed pseudolines each vertex of the arrangement is in-

cident with either  k  or  2  pseudolines.  Since each of the former accounts for   k(k-1)/2  

pairwise intersections of pseudolines, the total number of vertices of the modified ar-

rangement is  f0 = n + n(n–1)/2 – nk(k-1)/2 = n(n – k2 + k + 1)/2.  Similarly, the number 

of edges of the modified arrangement is  f1 = n(n – k2 + 2k – 1).  From Euler's theorem 

for the projective plane it follows that the number of cells (faces) of the arrangement is f2 

= f1 – f0 + 1 = n(n – k2 + 3k – 5)/2.  On the other hand, arrangements of pseudolines have 

no digons, hence counting incidences of edges and cells yields 3f2 ≤ 2f1.  Therefore we 

have  f(n) = –n2 + nk2 + nk – 5n + 6 ≤ 0 as a necessary condition for the existence of a 

topological realization of a combinatorial (nk).  For fixed k, this function  f(n)  of  n  has 

its only maximum for  n = (k2 + k – 5)/2 and is decreasing for all larger  n.  Simple check-

ing shows that for k = 4 we have  (42 + 4 – 5)/2 < 8  and  f(15) = 6 > 0, hence (n4) is not 

topologically realizable for  n ≤ 15.  Since  f(16) = –10 < 0, this criterion is not applicable 

for n = 16.  On the other hand, this result shows that there are no topologically realizable 

configurations (n5) for n ≤ 24, nor are there any topological (n6) for  n ≤ 36. 

Turning now to Theorem 3.2.2, the first thing to observe is that geometric con-

figurations are, obviously, examples of topological configurations.  Hence, assuming that 

Theorem 3.2.4 can be proved without reliance on Theorem 3.2.2 (as is in fact the case), 

we need only provide examples of topological configurations for those values of  n ≥ 17  

for which there are no known geometric configurations.  These values are n = 17, 19, 22, 

23, 26, 37, 43.  We shall now show such examples, together with a few others that we 

find appropriate for various reasons.  Most of these examples are modified from [B22]. 

In Figure 3.2.2 we show a topological configuration (174) that is a realization of 

the configuration given by Table 3.2.1.  This is taken from [B22], where a proof is out-

lined according to which this combinatorial configuration (174) is the only one admitting 

a topological realization.  It should be noted that this realization has 4-fold rotational 

symmetry in the extended Euclidean plane.  It is not known whether there are realizations 

with any symmetry in the Euclidean plane proper, or whether there are additional combi-

natorial automorphisms.  Since the configuration is the only topologically realizable (174) 
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configuration, it is necessarily self-dual.  (Although it seems not well-known, topological 

configurations in the projective plane do have dual configurations.  This can be inferred 

from results in [G6].) 

1 1 1 1 2 2 2 3 3 3 4 4 4 8 9 10 10 
2 5 8 11 5 6 7 5 6 7 5 6 7 13 13 11 12 
3 6 9 12 8 9 11 12 8 9 11 10 12 15 14 14 16 
4 7 10 13 14 15 16 15 16 17 17 13 14 17 16 15 17 

Table 3.2.1.  A configuration table of the only (174) configuration that admits a topologi-
cal realization. 
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Figure 3.2.2.  A topological configuration (174).  It is a realization of the unique combina-

torial configuration (174), specified in Table 3.2.1, that has a topological realization. 

A topological configuration (184) is shown in Figure 3.2.3. This configuration is 

not isomorphic to the geometric configuration (184) we shall see in the next section, and 

it is not known whether is can be realized geometrically.  On the other hand, it has a six-

fold rotational symmetry. 
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Figure 3.2.3.  An example of a topological configuration (184) with six-fold rotational 

symmetry in the Euclidean plane.  Adapted from [B22]. 
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(a)      (b) 

Figure 3.2.4.  Topological configurations (a) (194) and (b) (234).  Adapted from [B22]. 
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In contrast, all known topological configurations (194) and (234) have only trivial 

symmetry groups. Examples of these configurations are shown in Figure 3.2.4.  

The examples of topological configurations presented so far have been ad hoc, 

obtained essentially through (lots of) trial and error.  Their rather ungainly appearance is 

a reminder of their genesis.  In contrast, the examples of configurations (224) and (264) 

shown in Figure 3.2.5, are members of a systematic family: they are topological exam-

ples of astral configurations; the geometric members of the family will be studied in de-

tail in several sections, starting with Section 3.5.  The two examples in Figure 3.2.5 are 

representatives of configurations (n4) possible for all even n ≥ 22.  In the terms of astral 

configurations we shall discuss in Sections 3.5 and 3.6, these configurations have spans 4 

and 5; other possibilities exist, increasing in number with increasing  n.  Additional in-

formation will be given in the discussion of geometric astral configurations, and in Sec-

tion 5.8. 

     

Figure 3.2.5. Topological configurations (224) and (264), with 11-fold resp. 13-fold dihe-

dral symmetry.  They are typical of topological astral configurations (n4) possible for all 

even n ≥ 22. 
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The examples we provide for (374) and (434) are special cases of a much more 

general construction, that is actually very simple.  Assuming we have a (pk) topological 

configuration, and a (qk) topological configuration, for some k ≥ 2, we can construct an 

(nk) topological configuration, where  n = p + q – 1, in the following way:  Delete one 

pseudoline from the former configuration, and a point from the latter, and make the  k  

pseudolines that are now incident with only  k–1 points, pass through the  k  points that 

are incident with only k–1 pseudolines.  In Figure 3.2.6 is shown the case of (244) and 

(204) geometric configurations, leading to a (434) topological configuration; the signifi-

cant points and lines are shown in red. Another (434) configuration could be obtained by 

pairing in the same way an (184) configuration with a (264).  The same kind of construc-

tion with (204) and (184) configurations (either geometric or topological) yields the last of 

the required topological configurations, (374); alternatively, the topological (174) could be 

paired with the geometric (214).  A different topological configuration (374) is shown in 

[B22].  We shall revisit the same idea for construction of geometric configurations in the 

next section. 

 

Figure 3.2.6. A topological configuration (434). The red points are collinear on the de-

leted line, the red (pseudo)lines were concurrent at a deleted point of the (204) configura-

tion. 
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Since the combinatorial (n4) configurations, for n = 13, 14, 15, 16, as well as a 

large majority of such configurations for n ≥ 17, cannot be realized by topological con-

figurations, two kinds of questions arise naturally. 

First, what relaxation of incidence requirements would be sufficient to enable the 

construction of topological near-configurations realizing these combinatorial ones? 

Second, what are the obstructions preventing topological realizations of some of 

the combinatorial configurations?  For the smallest combinatorial configurations (such as 

(73), (134), (215), (316), (498), ... ) the existence of ordinary points in any family of pseu-

dolines not all of which pass through the same point (see Lemma 2.1.1) can be inter-

preted as such an obstruction.  Indeed, it implies that these configurations cannot have 

topological realizations since all intersections of pairs of pseudolines would have to be 

"used up" in points incident with multiple pseudolines, leading to an absence of ordinary 

points. 

The inequality –n2 + nk2 + nk – 5n + 6 ≤ 0 mentioned above as a necessary condi-

tion for the existence of an (nk) topological configuration is another kind of obstruction.  

It shows that combinatorial configurations (nk)  with  n ≤ k2 + k – 5 cannot be topologi-

cally realized.  Since  n ≥ k2 – k + 1  in all cases, that shows that for each  k  certain val-

ues of  n  lead to topologically non-realizable configurations (nk).  However, it must be 

noted that for quite a few of the relevant pairs  n, k  there exist no combinatorial configu-

rations either – and there is no necessary and sufficient criterion for their existence. 

Exercises and problems 3.2. 

1. Construct the configuration table dual to the one in Table 3.2.1, and show that it is 

realized by the configuration in Figure 3.2.2. 

2. Prove that the topological (184) configuration in Figure 3.2.3 is not isomorphic to 

the geometric (184) configuration shown in Figure 3.3.4 and 3.3.5. 

3. Find a topological (184) configuration that is dual to the one in Figure 3.2.3. 
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4. Construct a topological (374) configuration. 

5. There seems to be no a priori reason that would preclude the existence of topo-

logical (194) or (234) configurations with halfturn symmetry.  Do any exist? 

6. Determine how many topological configurations (264) with dihedral symmetry d13 

exist. 

7. Which multiastral combinatorial configurations (n4) have topological realizations? 
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3.3 CONSTRUCTIONS OF GEOMETRIC 4-CONFIGURATIONS   

The fact that the first graphic realization of any (n4) configuration (see Figure 

3.2.1) is less than twenty years old attests to the difficulties that have to be overcome in 

realizations of such configurations in any intelligible manner.  One reason for this situa-

tion is that an (n4) geometric configuration implies the (non-trivial) satisfaction of 2n 

collinearity conditions, while on the other hand, any finite set of  n  points (not all collin-

ear) has an affine image that depends on 2n – 6 parameters.  Hence there must be some 

dependences – obvious or hidden – between the collinearity conditions in every geomet-

ric configuration (n4).  For a relevant discussion of this topic see Michalucci and Schreck 

[M18]. 

 In contrast to the situation concerning (n3) configurations we have presented in 

Section 2.4, there is no reasonable method or algorithm to go from a combinatorial con-

figuration (n4) to a topological or geometric one –– even if any of these does exist.  Nor 

are any criteria known to distinguish topological configurations which admit geometric 

realizations from those that do not.  Hence, if we wish to find geometric 4-configurations 

we are, by necessity, forced to resort to more or less ad hoc arguments.  This does not 

preclude constructing by the same method large (even infinite) families of examples; 

however, finding such methods or isolated examples is more of an art than a deductive 

science.   

 In this section we shall describe several kinds of such constructions. The various 

families or constructions will be designated in the form (sm), where s is a suitable integer 

(or another short symbol); the reason for such a name is that for appropriate values of  m,  

the construction leads to a configuration (n4) with n = s m (or some other value that de-

pends on  m). 

 Following this preamble, let's turn to some concrete cases.  In most instances, the 

construction starts from some given configuration and yields a 4-configuration. 

 The first construction, which we call (5m), starts with an arbitrary  (m3)  configu-

ration  C; in the example in Figure 3.3.1 this is the (93) configuration shown with blue 
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points and lines.  We select in the plane a line  L  (heavy black line in Figure 3.3.1) which 

misses all the points of  C  and is neither parallel nor perpendicular to any line deter-

mined by any two points of  C.  We construct three additional copies of  C  by stretching  

C through three different ratios in the direction perpendicular to  L; only one such copy is 

shown (red points and lines) in Figure 3.3.1 in order to avoid crowding.  The resulting 

configuration  C*  consists of the four replicas of  C, together with the  m  intersection 

points of  C  with  L  (shown as hollow dots, which are also intersection points with  L  of 

the copies of  C),  and of the  m  lines perpendicular to  L  (shown dashed green) which 

pass through the points of  C  (and the other copies).  Hence this construction yields a 

configuration  C* of type  (n4),  with  n = 5m.  Since –– by Theorem 2.1.3 ––  (m3)  con-

figurations are well-known to exist if and only if  m ≥ 9,  this establishes the existence of 

configurations  (n4)  for all  n ≥ 45  which are divisible by  5.  Very important for the se-

quel is the observation that, as follows from the construction, each such configuration C* 

contains a set of  m  parallel lines.  Moreover, this construction yields "movable" con-

figurations in the sense explained in Section 5.7. 

 It should be noted that this construction ––as well as the ones discussed below –– 

leads in some cases to unwanted incidences, that is, to prefigurations.  However, this can 

in all cases be avoided by selecting appropriate parameters for the construction. 

L

C

 

Figure 3.3.1. An illustration of the (5m) construction. 
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 Our second construction is called (5/2m).  It starts with a (2m3) configuration C 

that has a line L of mirror symmetry with the following properties: No point of C lies on 

the mirror L, no point on L belongs to more than two lines of  C,  and no line of  C is per-

pendicular to  L.  It follows from the mirror property of L that there are  m  points of  L  

at which pairs of lines  of C meet. From  C  another copy is obtained by shrinking  C  to-

wards  L by a certain factor  f  (say f = ½), and then adding the  m  intersection points of 

the lines of the two copies with L, and the  m  lines perpendicular to  L  that pass through 

the points of the two configurations. This is illustrated for (104) and (124) in Figure 3.3.2, 

yielding configurations (254) and (304), respectively.  We note that this construction also 

yields configurations (5m4)  with  m  parallel lines. Moreover, this construction is mov-

able, that is, nontrivial parts of it can be changed in a continuous manner without chang-

ing other nontrivial parts.  (As already mentioned, we shall discuss movable 

    
 

Figure 3.3.2.  A (254) configuration with five parallel lines, and a (304) configuration with 

six parallel lines.  The one at left starts with a (103) configuration, the other one with a 

dihedral astral (123) configuration (blue points and lines); copies of these are obtained by 

shrinking in ratio f = ½ towards the vertical line of symmetry (black line).  Adding the 

five or six intersection points on the line of symmetry (hollow points, at right one at in-

finity) and five or six horizontal lines (green), completes these typical (5/2m) construc-

tions. 
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configurations in Section 5.7.)  This implies that the cross-ratio of the four points on each 

of the new (horizontal) lines (which is the same for all  m  of these lines) can be made 

equal to any predetermined value by an appropriate choice of  f.  In Figure 3.3.3. is 

shown an example of a (143) configuration to which the (5/2m) construction is applicable. 

 A construction of the only known (184) configuration was discovered very re-

cently by J. Bokowski and L. Schewe; it is illustrated in Figure 3.3.4, and two different 

realizations of the same configuration are shown in Figure 3.3.5.  This configuration can 

be considered the smallest member of an infinite family; we shall call this the (6m) con-

struction or family.  The idea to look for such a family came from noticing that the 

original rendering of the configuration (in Figure 3.3.4) contains a well-known subcon-

figuration (93), which we encountered in Figure 1.1.6, see Figure 3.3.6.  This observation 

led to the construction of a whole family of analogous configurations.  The (6m) con-

struction is explained on hand of the typical case illustrated in Figure 3.3.7.  The precise 

membership in the (6m) family has not been determined so far, but the family includes 

members (n4) for every  n = 6m  with odd  m ≥ 3.  An additional example is shown in 

Figure 3.3.8. 

 The next case to consider is (204), first described in [G47], shown in Figure 3.3.9.  

It too was discovered as a single configuration, and the family to which it belongs was  

 
Figure 3.3.3.  A (143) configuration that can be used to construct a configuration (354) by 

the method in Figure 3.3.2; this (354) configuration will have seven parallel lines. 
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Figure 3.3.4.  The only known geometric configuration (184) (after [B24]). 

    

oo

 
Figure 3.3.5.  Two versions of the configuration (184) (red points and black lines) from 

Figure 3.3.4. In each version, adding the three green lines yields a simplicial arrange-

ments of 21 lines (denoted A(21,2) in the catalog [G48]). 

 

found only later; for obvious reasons we call this the (4m) family or construction.  At 

the time of its discovery the construction seemed quite strange; particularly surprising is 

the use of two chiral configurations of the same handedness in order to obtain a mirror 

symmetric configuration.  By now we have a much better understanding of the process, 

although a general proof of the validity of the construction is still not available.   
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Figure 3.3.6.  The configuration (184) from Figure 3.3.4 arises from a copy of the con-

figuration (93)2 taken from Figure 1.1.6, shown here in red points and black lines, by the 

addition of nine additional points and lines (shown in blue). 

A1

A2

A3 A4

A5

D1

D2

D3

D4D5

B1

B2

B3

B4

B5

E1 E2

E3

E4

E5

C1

C2

C3

C4

C5

 

Figure 3.3.7.  A (304) configuration in the (6m) family, the family that includes the con-

figuration (184) in Figure 3.3.4.  More generally, the construction of a ((6m)4) configura-

tion starts with a regular  m-gon  A1, ... Am, where m ≥ 3 is odd.  The point  Bi  is the 

midpoint of Ai and Ai+1, and Ci is selected on Bi,Bi+1 so that the line Ci,Ci+1 passes 

through Ai+2.  Then  Di is determined on Ci,Ci+1 so that DiCi/Ci+1Ci = CiBi+1/BiBi+1, and Ei 

is the midpoint of  Di and Di+1.  Finally,  m  points at infinity (not shown) are added, in 

the directions AiAi+1.  Lines are: AiAi+1, BiBi+1, CiCi+1, DiDi+1, EiEi+1 and AiBi+2.  All sub-

scripts are understood  mod m. 
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Figure 3.3.8.  Shown here is the (6m) construction in the case of the regular 7-gon (black 

lines), leading to a (424) configuration. The seven points at infinity are again not shown; 

they are in the directions of the quadruplets of parallel black and blue lines.  

 

 Extensive experimental evidence led to the general understanding explained be-

low.  It leads to the conclusion that geometric configurations  (n4)  exist for all  n = 4m, 

with  m ≥ 5. 

 The construction can be described as follows; the explanation is illustrated in Fig-

ures 3.3.10 and 3.3.11. We start (see parts (a) in these illustrations) with an astral con-

figuration  m#(b,c;d), which we denote  C, where  b ≥ c > d > 0  in the notation detailed 

in Section 2.6.  We call this the "outer part" of the construction, and we note that the out-

ermost points of the configuration  C  determine diagonals of span  c.  The other  m  

points of  C  determine diagonals of span  b;  through each of the outermost points of  C  

passes one of these diagonals.  The lines of symmetry of the two diagonals of span  c  at 

each outermost point of  C  (one of these is shown by the green line in (a)) can be used as  
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Figure 3.3.9.  A (204) configuration belonging to the (4m) family.  Here m = 5.  The con-

struction uses two astral (103) configurations; one is shown with red points and black 

lines, the other with blue points and green lines. 

 

mirrors to reflect the  m  inner points of  C  as well as the diagonals of span  b  (see parts 

(b) and (c)).  The  m  new points become the outermost points of the "inner part" of the 

configuration we are constructing.  To find the last  m  (inner) lines, we connect each of 

the new "outermost" points with one of the original inner points – specifically, we con-

nect it to the  (b+1)st  of these points, counting in the same orientation as used in calculat-

ing the symbol  m#(b,c;d).  This is indicated by the purple segments in parts (c).  The 

new lines (see parts (d)) pass through previous intersections of two lines, creating the last  

m  points of the  ((4m)4) configuration. 

 It is worth stressing that if the starting outer configuration is the selfpolar  

m#(b,b;d)  as in Figures 3.3.9 and 3.3.10, then the inner configuration is another copy  
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(a)      (b) 

     
(c)      (d) 

Figure 3.3.10.  The steps in the (4m) construction of a (284) configuration from the (143) 

configuration  7#(2,2;1), as explained in the text. 

 

(similar to the outer one) of  m#(b,b;d).  On the other hand, if  b > c  as in the illustration 

in Figure 3.3.11, then the outer and inner parts are the two isomorphic and mutually polar 

configurations with symbol  m#(b,c;d). 

 It is also worth mentioning that if  d > c then this construction (or any analogous 

one I could think of) does not seem to work.  This includes the case of selfpolar configu-

rations  m#(b,c;d)  with  d = (b + c)/2. 
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(a)      (b) 

     
(c)      (d) 

Figure 3.3.11.  Another illustration of the construction.  We start with a  (163)  configura-

tion  8#(3,2;1)  and obtain a  (324)  configuration.  Note that the outer and inner parts are 

not similar, but are polar to each other. 

 
 

 Another infinite family, which we designate as the (5/6m) family, is constructed 

as follows, starting from a 3-astral configuration (n4) with n = 6m, where m ≥ 5.  Let us 

assume this configuration satisfies the following conditions: 
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Figure 3.3.12.  Configurations (244) and (324) from the (4m) family; the latter is different 

from the one in Figure 3.3.11. 

 

(i) It has 2m-gonal dihedral symmetry. 

(ii)  The configuration is encoded by the symbol  (2m)#(s1,t1;s2,t2;s3,t3), where  

si  is the span of the i-th family of diagonals of the ith level polygon Pi, and  ti  is the order 

of the intersection point, counting from the midpoint of the diagonal  si,  and considering 

only diagonals of span  si  of the polygon Pi.  For more details see Section 3.6. 

(iii) s1  and  t3  are distinct, and both are even; this implies m ≥ 5. 

(iv) t1  and  s3  are odd. 

(v) s2  and  t2  have same parity. 

 Condition (iii) implies that both kinds of diagonals ending at points of P1 have 

even lengths.  Therefore, omitting every other point of  P1 and all the lines incident with 

these points leads to a loss of  m  points and  2m  lines.  (Note that, as shown in Figures 

3.3.13 and 3.3.14, "level 1" does not mean that  P1  is the "outermost level".)  The claim 

is that the above conditions imply that one can add to the remaining lines and points  m  

suitable lines through the center to obtain a  ((5m)4)  configuration.  The examples in 

Figures 3.3.13 and 3.3.14 illustrate the construction. 
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    10#(4,1,2,4,1,2)

    

10#(4,3,2,4,3,2)

    

10#(4,3,1,3,1,2)  

Figure 3.3.13.  The three (254) configurations obtainable by the (5/6m) construction. 
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18#(4,1,5,1,7,8)

14#(4,3,2,4,3,2)

12#(2,1,4,2,1,4)

 

Figure 3.3.14.  Configurations (304), (354) and (454) belonging to the (5/6m) family. 
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 The reason the construction works is the following.  All points of a 3-astral con-

figuration with (2m)-gonal dihedral symmetry (that is, based on a regular  (2m)-gon G) 

are on lines through the center that are mirrors for the symmetries of the configuration.  

The points of  G  are on mirrors that enclose angles that are multiples of  p/m.  More spe-

cifically, the two types of points on an  si  diagonal of  P1 are spaced an even multiple of  

p/m  if  si  and  ti  have the same parity, and an odd multiple of  p/m  if these parities are 

different. 

 In view of the above, conditions (iii), (iv) and (v) imply that viewed from the cen-

ter, the points of level 1 are not aligned with the points of the other two levels.  Hence 

these latter points are aligned, and provide the  m  lines required for the formation of a  

((5m)4)  configuration. 

 Since configurations  (2m)#(2,1,4,2,1,4)  and  (2m)#(2,3,4,2,3,4)  exist for all  

m ≥ 5,  our existence claim is justified.  In fact, for every  m ≥ 5 there exist additional 

possibilities.  This is illustrated in Figure 3.3.13, for  m = 5.  This case was the starting 

points of this construction.  Some of the configurations in Figure 3.3.13 were first con-

structed, independently and by ad hoc methods, by T. Pisanski and J. Bokowski. 

 A few other configurations in the (5/6m) family are illustrated in Figure 3.3.14. 

 The constructions we have seen so far started from given configurations that had 

to satisfy certain conditions.  The resulting (n4) configurations always had as  n  a com-

posite number –– more specifically, a multiple of 4, or 5, or 6.  Now we shall describe  

constructions that are applicable quite generally, but are apt to give  (n4)  configurations 

with other values of  n. 

 The general construction, which we call the (3m+) construction, has the interest-

ing feature that it is more easily visualized and explained in 3-space; the resulting con-

figuration is then readily projected into the plane.  We start with an  (m4)  configuration  

C  in the plane.  We assume that this is the  (x,y)-plane in a Cartesian (x,y,z)-system of 

coordinates, and that  C  has  p ≥ 1  lines parallel to the  x  axis, and  q ≥ 1  lines parallel 
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to the  y  axis, such that no two of them have a point of the configuration in common.  

(Note that by an affine transformation –– which does not change incidences –– any two 

sets of parallel lines can be made orthogonal.  The orthogonality is assumed only in order 

to simplify the description.)  We select a real number  h > 1 and keep it constant through-

out the discussion; it is convenient (but not necessary) to think of  h = 10.  We construct 

two copies of  C.  One is  C',  obtained from  C  by stretching  C  in ratio  (h–1)/h  (that is, 

in fact, shrinking it)  towards the  y-axis, stretching it in ratio  (h+1)h  towards the  x-axis, 

and then translating it to the level  z = 1.  A schematic representation of a section parallel 

to the x-axis is shown in Figure 3.3.15.The other is  C",  obtained similarly but by using 

the ratio  (h+1)/h  for stretching towards the  y-axis,  (h–1)h  for the ratio towards the  x-

axis, and translation to the plane  z = –1.  Thus,  C'  is obtained from  C  by the map  

f(x, y, 0) = (x(h–1)/h, y(h+1)/h, 1),  and  C"  by  g(x, y, 0) = (x(h+1)/h,  y(h–1)/h, –1).  It 

is easy to check that for each point  A = (x, y, 0)  the points  A, f(A)  and  g(A)  are col-

linear, and that the points  h(A) = (0, 2y, h)  and  h*(A) = (2x, 0, –h)  are collinear with 

them.  Now, for any four points  Aj  (j = 1, 2, 3, 4)  of  C  that are on a line  L  parallel to 

the x-axis –– that is, have the same  y-coordinate –– the point  h(Aj)  will be the same 

since it does not depend on the  x-coordinate.  Therefore we can conclude that by deleting 

the line  L  from the configuration  C  and its parallels in  C'  and  C",  while adding the  

x

z

H0

 
Figure 3.3.15. A schematic illustration of the (3m+) construction. 
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lines  from  Aj  to  h(Aj),  the points  Aj  and the corresponding points in  C'  and  C"   

will remain incident with four lines, and the new point  h(Aj)  will also be incident with 

four lines.  We deleted three lines and added four, and also added one point.  Thus, from 

the starting  (m4)  configuration we obtained a configuration  (n4)  where  n = 3m+1.  

Analogously, any four points of  C  collinear on a line parallel with the y-axis may lead to 

an additional increase in the number of points and lines; the assumed disjointedness of 

the two families of parallels is needed here to assure that no 5-point lines arises.  Pro-

ceeding similarly with some or all lines parallel to either the  x-axis or the  y-axis, we see 

that from  (m4)  we can obtain configurations  (n4)  for each  n  such that  3m + 1 ≤ n ≤ 

3m + p + q. 

 Next, we have the deleted unions constructions  (DU-1) and (DU-2).  Consider 

any configurations C1 = ((n')4) and C2 = ((n")4), such that the cross-ratio of points of C1 

on a certain line coincides with the cross-ratio of lines through a certain point of C2.  

Then omitting the line and the point in question, and adjusting the positions and sizes of 

the deleted configurations appropriately, we obtain a configuration with n' + n" – 1 

points.  In every case one can use for C2 a polar of C1, to go from (n4) to ((2n-1)4).  This 

is construction (DU-1); illustrations are provided in Figures 3.3.16 and 3.3.17.  For (DU-

2) we need to delete two disjoint lines and two unconnected points, respectively.  An il-

lustration is given in Figure 3.3.18.  Again, the only requirement is that the cross-ratios of 

the appropriate quadruplets of points and of lines be equal. 

 With this we have completed the description of the various constructions that will 

enable us to find geometric configurations (n4) for almost all values of  n ≥ 18.  The proof 

of this assertion, which we have already formulated as Theorem 3.2.4, will be given in 

the next section.  In it we shall utilize various configurations with very high symmetry –– 

astral, multiastral, and other.  Since their construction and properties are both interesting 

and complicated, we are not describing them here; instead, we shall devote to them sev-

eral later sections.   
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Figure 3.3.16.   (414) from two copies of (214) using (DU-1). 
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Figure 3.3.17.   (594) from two copies of (304) using (DU-1).  p+q = 8 
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Figure 3.3.18.  (464) from two copies of (244), using (DU-2).   

 

Exercises and problems 3.3 

1. Carry our the construction of the (354) configuration described in Figure 3.3.3. 

2. Determine whether any of the three configurations (254) in Figure 3.3.13 are iso-

morphic.  

3. Devise a general proof for the validity of the (4m) construction, as detailed in the 

text. 



  Page 3.X.20 

4. Formulate the analog of the (3m+) construction that leads from 3-configurations 

to 3-configurations. Illustrate by a simple example. 

5. The (6m) construction is applicable to regular star-polygons as well.  Explore the 

case of a pentagram, and of one of the regular star-heptagons. 

6. Explain why the (DU-1) construction cannot be applied to get a (434) from (204) 

and (244). 
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3.4 EXISTENCE OF GEOMETRIC 4-CONFIGURATIONS 

 We start with a quick summary description of the construction methods detailed 

in Section 3.3. 

 The (5m) construction is illustrated in Figure 3.3.1.  It starts with an arbitrary (m3) 

configuration and yields an ((5m)4) configuration. 

 The (5/2m) construction is illustrated in Figure 3.3.2.  It starts with appropriate 

configurations ((2m)3) and yields a ((5m)4) configuration; the criteria for usable (m3) con-

figurations are given on page 3.3.3. 

 The (4m) construction starts with an astral configuration ((2m)3) and yields a 4-

orbit dihedral configuration ((4m)4).  As explained on page 3.3.7, it works for most (but 

not all) such configurations with m ≥ 5. 

 The (6m) construction starts with a 3-orbit configuration ((3m)3) and yields a 6-

orbit configuration ((6m)4).  It assumes that  m ≥ 3 is odd.  Some details are given on 

page 3.3.6. 

 (3m+) denotes the construction described in detail on page 3.3.18.  It starts with 

an (m4) configuration and yields an ((3m+p+q)4) 

 Deleted Unions constructions  (DU-1) and (DU-2).  Using (DU-1), from suitable 

configurations C1 = ((n1)4) and C2 = ((n2)4) we obtain a configuration with n1 + n2 – 1 

points and as many lines.  In particular, we can go from any (n4) to ((2n-1)4).   For (DU-

2) we delete two disjoint lines and two unconnected points, and obtain ((2n-2)4) from 

(n4). 

 In addition to these, we use the notation (t-A.m) for the multiastral configuration 

with t orbits and with symmetry group dm. This implies that each orbit has  m  points.  

Details of these configurations and the notation used for them appear in Section 3.5.      

(2-A.m) denotes astral configurations.  If no other indication is given, the references are 

to the "trivial" choices of parameters such as (1,2,3,1,2,3) or (1,2,3,4,2,1,4,3). 
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 It is relatively simple to show that  (n4)  configurations exist for all  n ≥ 210.  In-

deed, by the (5m) construction there is for each  m ≥ 9  a  ((5m)4)  configuration with  

p = m  parallel lines.  It follows by the (3m+) construction that for all  m ≥ 9  and  1 ≤ p ≤ 

m  there exists a  ((15m+p)4)  configuration.  Since  15m = 5(3m),  by the (5m) construc-

tion we can add  p = 0  to the range of  p.  Thus  (n4)  configurations exist all values of  n  

such that  15m ≤ n ≤ 16m;  for  m ≥ 14  these ranges are contiguous or overlapping, and 

so the claim is established. 

 For smaller values of  n  we have to rely on the various constructions described 

above and in Section 3.3.  We found it simplest to arrange the necessary data in a table 

(Table 3.4.1) in which we list examples of configurations (n4) for each  n.  In most cases 

there are other configurations we could have listed –– the present choice is largely acci-

dental.  

 

n Reference or explanation 
 

18 (6m) for m = 3; Figure 3.3.4 

19 Not known 

20 (4m) for m = 5; Figure 3.3.9;  

21 (3-A.m) , 7#(3,2,1,3,2,1); Figure 3.2.1 

22 Not known 

23 Not known 

24 (2-A.m), 12#(5,4,1,4); Figure  XXX; (3-A.m)  

25 (5/2m) for m = 10; starting with (103)10. Figure 3.3.2.   

26 Not known 

27 (3-A.m)  

28 (4m) for m = 7; Figure 3.3.10 

29 Bokowski (unpublished) 

30 (3-A.m)  

31 Bokowski (unpublished) 
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32 (4m) for m = 8.  Figures 3.3.11 and 3.3.12 

33 (3-A.m) 

34 (DU-2) from two (184) 

35 (5/2.m) for m = 7; starting from a (143) shown Figure 3.3.3 

36 (2-A.m) several possibilities with m = 18; (3-A.m), (4-A.m) 

37 Not known 

38 (DU-2) from two (204) 

39 (3-A.m) 

40 (4-A.m) 

41 (DU-1) from (214) Figure 3.3.16 

42 (3-A.m) 

43 Not known 

44 (4-A.m)  

45 (5-A.m) for m = 9; e.g. 9#(1,2,3,4,2,1,2,3,4,2); (3-A.m) 

46 (DU-2) from (244) Figure 3.3.18 

47 (DU-1) from (244) 

48 (2-A.m); (3-A.m); (4-A.m); (6-A.m) 

49 (7-A.m); Figure 3.4.1. 

50 (5-A.m), 10#(1,4,3,2,3,1,4,3,2,3)  

51 (3-A.m) 

52 (4-A.m) 

53 (DU-1) from (274) 

54 (3-A.m) 

55 (5-A.m) 

56 (4-A.m) 

57 (3-A.m) 

58 (DU-2) from (304) 

59 (DU-1) from (304) 

60 (2-A.m); (3-A.m); (4-A.m); (5-A.m); (6-A.m) 10#(1,3,2,4,2,3,4,1,3,2,3,2) 

61 (DU-1) applied to (214) and (414) 



  Page 3.4.4 

62 (DU-1) applied to (214) and (424) 

63 (3-A.m) 

61 – 63 (3m+) from (204) 

64 – 66 (3m+) from (214) 

67 (DU-1) from (334) and (354), obtained by (5/2m) for m = 14. 

68 (4-A.m) 

69 (3-A.m) 

70 (5-A.m) 

71 (DU-1) from (364) 

72 (2-A.m); (3-A.m); (4.-A.m); (6-A.m) 

73 – 76 (3m+) from (244), p+q = 4 

75 (5/2m),  m = 30;  (5-A.m) 

76 – 80 (3m+) from (254) = (5/2m),  m = 10, p+q = 5 

81 (3-A.m), m = 27; (9-A.m), m = 9, 9#{3,4,2,1,4,1,4,3,2,3,4,2,1,4,1,4,3,2} 

82 – 87 (3m+) from (274), p + q = 6 

88 – 95 (3m+) from (294), p + q = 6 

91 – 98 (3m+) from (304),  30#(4,6,9,4,6,9), p + q = 8 

99 (3-A.m), m = 33;  

100 – 105 (3m+) from (334), p + q = 6 

106 – 112 (3m+) from (354) = (5/2m), m = 14, p + q = 7 

109 – 114 (3m+) from (364), 12#(1,2,3,1,2,3), p + q = 6 

115 (5/2.m), m = 46; (5-A.m) 

116 (4-A.m), m = 29 

117 (3-A.m), m = 39 

118 – 123 (3m+) from (394), 13#(1,5,3,1,5,3), p + q = 6 

121 – 128 (3m+) from (404) = (5/2m), m = 16, p + q = 8 

127 – 132 (3m+) from (424), 14#(1,3,5,1,3,5), p+q = 6 

133 _ 139 (3m+) from (444), 11#(1,2,5,4,2,1,4,5), p+q = 7 

136 – 144 (3m+) from (5/2m) = (454), m = 18, p+q =9 

145 – 152 (3m+) from (484), 12#(1,2,5,4,2,1,4,5), p+q = 8 
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151 – 160 (3m+) from (504) = (5/2m), m = 20, p+q = 10 

157 – 164 (3m+) from (524), 13#(1,2,5,4,2,1,4,5), p+q = 8 

165 (5m) (333) 

166 – 173 (3m+) from (554), 11#(1, 2, 3, 4, 5, 1, 2, 3, 4, 5), p+q = 8 

172 – 177 (3m+) from (574), 19#(1,4,7,1,4,7), p+q = 6 

178 – 185 (3m+) from (594), p+q = 8, Figure 3.3.17 

181 – 192 (3m+) from (604) = (5/2m), m = 24, p+q = 12 

193 – 200 (3m+) from (644), 16#(1, 3, 7, 5, 3, 1, 5, 7), p+q = 8 

199 – 207 (3m+) from (664), 11#(1, 2, 3, 4, 5, 4, 2, 1, 4, 3, 4, 5), p+q = 9 

208 – 213 (3m+) from (694), 23#(1,3,5,1,3,5), p+q = 6 

211 – 224 (3m+) from (5m), m = 14 = p+q 

225 (5m) from (453) 

226 – 240 (3m+) from (5m), m = 15 = p+q 

241 – 256 (3m+) from (5m), m = 16 = p+q 

256 – 272 (3m+) from (5m), m = 17 = p+q 

271 – 288 (3m+) from (5m), m = 18 = p+q 

286 – 304 (3m+) from (5m), m = 19 = p+q. 

Table 3.4.1.  Desriptions of the construction of (n4) configurations for n ≤ 304. 

 The arguments presented above, together with the data in Table 3.4.1, constitute a 

proof of Theorem 3.2.4. 

 The known constructions explained above for the configurations (n4) with small  n  

(such as 18, 20, 21, 24, 25) all rely on r-fold rotational symmetry with r ≥ 3.  As a conse-

quence, none of these constructions can be carried out in the rational projective plane.  

While there is no proof available showing that some or all these configurations are not 

realizable in the rational projective plane, it is a challenging problem to decide for which  

n  is such a realization possible.  An easy argument shows that if we start with rational 

configurations then (5m) constructions can be performed so as to yield rational configura-

tions.  Similarly for (5/2m) and (3m+) constructions. 
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Figure 3.4.1.  A (7-A.m) configuration (494), with symbol 7#(2,1,2,1,3,2,3,2,1,2,1,3,2,3). 

Exercises and problems 3.4 

1. Decide whether a suitable affine (or projective) image of the (184) configuration 

shown in Figure 3.3.4 can be put in the rational plane. 

2. Determine for which n can one find a configuration (n4) in the plane over a quad-

ratic extension of the rationals. 
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3.5 ASTRAL 4-CONFIGURATIONS 
 In this section we start our investigation of a special class of 4-configurations 

which we call k-astral for some k ≥ 2.  They are of interest for several reasons.  To begin 

with, such configurations were the first 4-configurations for which geometric realizations 

were found (see, for example, [G50], [G40], [B20], and the other publications that will be 

mentioned later).  Next, they have a clear-cut definition that leads to a natural notation, as 

well to construction of the configuration given its symbol.  Finally, they exhibit a variety 

of phenomena that add interest to their study, such as the relation of a configuration to its 

dual (actually, its polar) configuration, and questions of realizability versus representa-

tion. 

 k-astral configurations have appeared under several different names, and with 

several different definitions – not all of which coincide in all cases.  In several publica-

tions configurations we call k-astral have been termed celestial. The intention in the pre-

sent account of these configurations is to have an easily implementable decision algo-

rithm for checking the membership of either a given configuration to the class, or of a 

symbol for correspondence to a geometric configuration. 

 Definition 3.5.1.   A (n4) configuration C is k-astral provided all the following 

conditions are satisfied: 

 (A1) k ≥ 2 and n = k·m, for some m ≥ 7. 

 (A2) The points of C are at the vertices of k regular convex m-gons, with com-

mon centers and such that all angles subtended from this center by the various points of C 

are multiples of π/m. 

 (A3) C has symmetry group dm; the vertices of each k-gon form an orbit. 

 (A4) Each line of C contains two points from each of two m-gons (point orbits); 

each point is incident with two lines each from two line orbits. 

 We have already encountered various configurations that are k-astral, for example 

the ones in Figures 1.1.2 and 1.5.1(a). Two additional examples are shown in Figure 

3.5.1. 
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(a)      (b) 

Figure 3.5.1. (a) A 3-astral configuration (424) with symbol  14#(5,3;2,4;1,3).  (b) A 

4-astral configuration (454) with symbol  12#(5,4;3,2;4,5;2,3). 

 Some comments deserve to be made regarding k-astral configurations. 

 (i) In most cases the  k  regular m-gons have different sizes; however, in 

some cases with k ≥ 3  there may be pairs of polygons with the same size. We shall give 

examples later. 

 (ii) The conditions in Definition 3.5.1 could be weakened at the expense of 

complicating the verification. 

 (iii) It will turn out to be convenient to consider the case of connected k-astral 

configurations separately from the case of disconnected ones. 

 Theorem 3.5.1.  Each k-astral configuration C can be assigned a symbol 

m#(s1,t1;s2,t2; ... ,sk,tk) in such a way that C is the only configuration from which that 

symbol arises.  At most 2k distinct symbols correspond to each configuration; such sym-

bols are said to be equivalent.  The family of equivalent symbols can be obtained from 
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any one of them by cyclic permutations of an even number of steps of the 2k entries in 

parentheses, or by reversal of these. 

 Proof.  The proof consists of a description of the steps leading from the configu-

ration to one of the symbols, and observing the stages at which distinct symbols may 

arise.  The main tools in the derivation are a notation for the intersection points of the di-

agonals determined by each of the regular m-gons, and the "characteristic paths" along 

lines of the configuration. 

 For a regular convex m-gon M, the span s of a diagonal S is the number of edges 

of M between the endpoints of S, taken as the smaller of the two possible numbers; hence 

s ≤ m/2. Despite talking about "endpoints", by "diagonal" we understand both the ele-

mentary-geometric meaning of the term as a segment, as well as the whole line deter-

mined by this segment.  In Figure 3.5.1, the outer polygon has diagonals of spans 3 and 5 

for both configurations (a) and (b). 

 The intersections of a diagonal S of span  s  with the other diagonals of span  s  of 

the same polygon M are denoted by the symbol (s//t), where  t  is the position of the inter-

section points on S, counting from the midpoint of S.  (Instead of (s//t), the notation [[s,t]] 

has also been used.) Thus, for example, each endpoint of S has symbol (s//s). The inter-

section points are not limited to the diagonal considered as a segment, but continue "out-

side" and exist for all t < m/2.  If m is even, one may consider the point-at-infinity on S as 

having t = m/2.  An illustration of the notation (s//t) is given in Figure 3.5.2. 

 The use of polar coordinates is particularly convenient for the intersection points 

(s//t), since it is easily seen that in the setting of Figure 3.5.2, such a point has coordinates 

(cos s·π/m / cos t·π/m, t·π/m).  If the endpoints of the diagonal are not on the unit circle 

but at distance r, then the first polar coordinate needs to be multiplied by r. 

 A characteristic path P of a (connected) k-astral configuration C consists of k 

segments of lines of the configuration, determined as follows.  The procedure we describe 

here is illustrated by the example in Figure 3.5.3.   
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A = (1, !)

O

B = (1,0)C

!

D

 

Figure 3.5.2.  The determination of the symbol (s//t) of an intersection point of diagonals 

of a regular m-gon.  Here  m = 12, the diagonals are of span s = 4, the vertices of the 

m-gon with unit radius have polar coordinates (1, ν), where ν is a multiple of  π/m. In the 

diagram ν = 4π/m, angle DOB is 3π/m, so that s = 4, t = 3.  This gives for D the symbol 

(s//t) = (4//3). The right triangles OCA and OCD imply that OD = cos s·π/m / cos t·π/m, 

hence D has polar coordinates (cos s·π/m / cos t·π/m, t·π/m). 

 As the first step we orient all lines of C in the same sense, generally taken to be 

counterclockwise as seen from the center.  Next, we choose an arbitrary point P0 of C and 

through it an arbitrary line L1 for which P0 is the earlier of the two points in the same or-

bit; this involves the choice of one line from the two orbits of points through P0.  On L1 

we take the first point (in the orientation we adopted) of the other orbit of points incident 

with L1, and denote it P1.  We choose as line L2 a line through P1 that is in the orbit dif-

ferent from L1, and for which P1 is the earlier point in its orbit.  On L2 we choose the ear-

lier point in the orbit different from the one of P1, and denote it P2.  Continuing in the 

same way, we select the line Lj+1 through the already selected point Pj that is in the orbit 

different from Lj, and for which Pj is the earlier point among the points on Lj+1 belonging  
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P0 = P3

P1

P2

L1 L2

L3

 

Figure 3.5.3. An illustration of the construction of a characteristic path (shown green) 

and the corresponding symbol of the configuration, according to the description given in 

the text.  Since P1 = (4//2), P2 = (3//4), P3 = (2//3), and k = 3 while m = 9, the resulting 

symbol of this (274) configuration is 9#(4,2;3,4;2,3). 

to the orbit different from the orbit of the earlier point Pj.  This continues until we reach 

the line Lk and the point Pk. (in Figure 3.5.3 we have k = 3.) This point Pk necessarily be-

longs to the same orbit as the starting point P0; in the illustration Pk coincides with P0, but 

this is not necessarily the case.  Figure 3.5.4 illustrates the possibility of Pk being differ-

ent from P0. By using the notation (sj//tj) for the point Pj, the characteristic path 

P0,L1,P1,L2,P2, ... Lk,Pk  determines a symbol m#(s1,t1;s2,t2; ... ;sk,tk) for the configuration.  

 What are the possible alternative symbols for a configuration?  We arbitrarily 

chose the orientation of the lines, the starting point of the characteristic path, and the 

starting line through that point.  The choice of orientation does not lead to any new sym-

bols since a k-astral configuration has dihedral symmetry group dk.  However, the other  
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P3

P1 P2
L1

L2

L3

P0

 

Figure 3.5.4. Another illustration of the construction of a characteristic path and the 

symbol of the configuration.  Since P1 = (4//3), P2 = (2//3), P3 = (1//3), and k = 3 while 

m = 9, the resulting symbol of this (274) configuration is 9#(4,3;2,3;1,3), and P3 ≠ P0. 

two choices obviously matter, and in general lead to 2k distinct symbols –– k choices of 

the orbit of the starting point of the path, and two choices for the starting line through that 

point.  As an illustration we show in Figure 3.5.5 the four characteristic paths and the re-

sulting four equivalent symbols for the 2-astral configuration (484).   

 The various equivalent symbols for a given k-astral configuration arise in one of 

the following two ways.  For a given characteristic path, selecting on this path a different 

point as the starting point clearly permutes the symbols (sj//tj) cyclically, that is, by an 

even number of steps in the symbol m#(s1,t1;s2,t2; ... ;sk,tk) of the configuration.  This 

yields up to k distinct symbols.  On the other hand, if we consider a diagonal of span  s,  

the symbol (s//t) for the tth  intersection point (counting from the midpoint) can be inter-

preted as saying that on the orbit of all points (s//t) the same diagonal line has span  t,  

and the original endpoints (that gave span  s  to the diagonal) now have symbol  (t//s).  
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This means the following: Starting with a given characteristic path but traversing it in the 

opposite direction, will reverse the roles of  sj  and  tj  in all the diagonals, as well as the 

order of the points.  Hence this leads to the reversal of all the entries in the original sym-

bol, thus accounting for (up to) an additional  k  symbols. 

 The construction of the symbols for a k-astral configuration (n4) leads to several 

notable properties of the symbols and the configurations.  For ease of reference we list 

them as a continuation of the entries in Theorem 3.5.1. 

 (A5) Since the symbol (s//s) denotes the endpoints of a diagonal of span s, 

(hence would not constitute a step in the characteristic path) any two adjacent entries in 

the symbol m#(s1,t1;s2,t2; ... ;sk,tk) must be different; this includes the requirement that  s1  

and  tk  are distinct. 

 Next, as obvious from the reasoning concerning the symbol (s//t) and visible in 

Figure 3.5.2, the polar angle of the point (s/t) differs from 0 by a multiple of  π/m.  The 

parity of that multiple is the same as the parity of  s+t.  Since the endpoint of a character-

istic path leads to a point in the orbit of the starting point, and the polar angles of any two 

such points differ by a multiple of 2π/m, it follows that the sum of all entries in the paren-

theses of a symbol m#(s1,t1;s2,t2; ... ;sk,tk) must be even, or equivalently, that  

 (A6)     δ = ½   Σ1≤j≤k
  (sj – tj )    is an integer. 

 If condition (A6) is not satisfied in a symbol that fulfils all other requirements, 

then the last point of the characteristic path ends midway between points of the orbit of 

the starting point –– and consequently has only two lines incident with it, just as the start-

ing point is incident with only two lines.  We shall discuss this in more detail later, but 

already here we can supply in Figure 3.5.6 an example of such a situation. 
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P0

P0

P0

P0

 
Figure 3.5.5.  Four characteristic paths (green) for a 2-astral (484) configuration; all pro-

ceed counterclockwise.  In order to avoid excessive clutter, in each path only the starting 

point is labeled.  The path on top starts in the outer ring of points; it leads to the symbol 

24#(5, 2; 7, 8), since the first point of the inner ring that is encountered by the path has 

symbol  (5//2), and the first point met after that in the outer ring has symbol (7//8).  The 

other characteristic paths lead to the symbols 24#(7, 8; 5, 2),  24#(2, 5; 8, 7), and 24#(8, 

7; 2, 5), respectively, in counterclockwise order of the starting points. 

 

 One additional –– and very important and useful –– property of all k-astral 4-

configurations follows from the comments we made after the introduction of the (s//t) 

notation.  Since the radius of a point (s//t) of a regular convex m-gon with circumradius  r 

is  r · cos (s·π/m) / cos (t·π/m),  the distance of the point Pj from the center is (assuming the 

starting point of the characteristic path is at unit distance from the center): 

   Π1≤i≤j
  (cos (si·π/m) / cos (ti·π/m)). 
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Figure 3.5.6.  The symbol 15#(4,2;1,3;2,3) satisfies all conditions for a valid symbol of a 

3-astral 4-configuration (454), except (A6). The characteristic path (green) that starts at 

the top point (large red) leads to a point (blue) at an in-between position. Both the starting 

point and the end point of the path are incident with just two lines each –– hence the 

symbol does not correspond to any 4-configuration. 

Since the endpoint of any characteristic path is in the same orbit as the starting point, this 

yields 

 (A7)  Π1≤j≤k
  cos (sj·π/m)  =  Π1≤j≤k

  cos (tj·π/m)  

 It is easy to verify that in all examples of k-astral configurations presented in this 

section the condition (A7) is fulfilled.   

 The appropriateness of the characteristic path approach to the notation for k-astral 

4-configurations can be seen in the straightforward translation of the characteristic path 

into the reduced Levi diagram of the configuration.  Without entering in lengthy descrip-
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tions of the procedure (which is essentially taken from Boben and Pisanski [B20]), we 

show in Figure 3.5.7 a typical example.  The configuration 20#(9,8;2,6;1,4) and a charac-

teristic path leading to this symbol are shown in part (a), while part (b) presents a reduced 

Levi diagram of this configuration.  In part (c) we show the reduced Levi diagram of the  

 
(a) 

p

r

q

L

M

N

0,9

0,8

0,2

0,6

0,1

1,–3

Symmetry group  c20                  

p

r

q

L

M

N

0,s1

0,t1

0,s2

0,t2

0,s3

!,t3–!

Symmetry group  cm  
(b)       (c) 

Figure 3.5.7.  (a) The 3-astral configuration 20#(9,8;2,6;1,4) and a characteristic path . (b) 

The corresponding reduced Levi graph of 20#(9,8;2,6;1,4) .  (c)  The reduced Levi graph 

of the 3-astral configuration m#(s1,t1;s2,t2;s3,t3).   
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general case of a 3-astral configuration  m#(s1,t1;s2,t2;s3,t3).  The corresponding situation 

for a k-astral configuration differs only in the length of the circuit, so that it contains k 

white and k black points.  The value of δ is determined by (A6). 

 Next, we explore what happens if the 2k entries between parentheses of a symbol 

m#(s1,t1;s2,t2; ... ;sk,tk) of a k-astral configuration C are changed by a cyclic permutation 

that moves them an odd number of steps.  What –– if anything –– can we say about a 

configuration C* that would correspond to  m#(t1,s2;t2, ... ,sk;tk,s1) ? 

 Considering the well-known relations between points and lines polar to them with 

respect to a circle of a given radius and center (illustrated in Figure 3.5.8, see also, for 

example, [<C12 Chapter 6]), we see that for a configuration corresponding to the symbol 

m#(t1,s2;t2, ... ,sk;tk,s1), the distance of the line Lj of C* that is polar to the point Pj of C 

with respect to a circle of unit radius should satisfy 

 distance(O, Lj) = OPj* = Π1≤i≤j
  (cos (ti·π/m) / cos (si·π/m)) = 1/OPj =  

 1/Π1≤i≤j
  (cos (si·π/m) / cos (ti·π/m)) = Π1≤i≤j

  (cos (ti·π/m) / cos (si·π/m)). 

O

P

L

P*

 
Figure 3.5.8.  If the point P and the line L are polars of each other with respect to the cir-

cle of radius r and center O, then the distance between O and L is the same as the distance 

OP*, and the relation between the distances is OP·OP* = r2. 
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Hence distances from the center O of all lines of the putative configuration C* are correct 

for them being the polars of the points of C, and since incidences and symmetry are all 

preserved under polarity, we can conclude: 

Theorem 3.5.2.  If the symbol m#(s1,t1;s2,t2; ... ;sk,tk) corresponds to a k-astral 

4-configuration then the symbol m#(t1,s2;t2, ... ,sk;tk,s1) corresponds to a k-astral 4-

configuration that is polar to the former with respect to the unit circle with center at the 

common center of both configurations. 

 A notational remark.  Unless there is a definite reason to do otherwise, we shall 

always strive to use the lexicographically highest symbol for each k-astral 

4-configuration. 

 Several concepts simplify the listing and classification of possible k-astral con-

figurations. One is based on the observation that if we switch the positions of two entries 

separated by an odd number of other entries in the symbol of an astral configuration, the 

modified symbol automatically satisfies all the conditions listed above, except possibly 

(A5).  By repeated application of this observation while avoiding a violation of (A5), we 

arrive to the conclusion that it is sensible to introduce the cohort concept and notation.  

For a k-astral configuration with symbol m#(s1,t1;s2,t2; ... ;sk,tk)  the cohort symbol is 

m#{s, t} = m#{{s1,s2, ... ,sk},{t1,t2, ... ,tk}}; it stands for all the valid assignments of suit-

able permutations of the si's and permutations of the ti's into a symbol for a k-astral con-

figuration.  For example, for the configuration in Figure 3.5.1(a) the symbol is 

14#(5,3;2,4;1,3), and the cohort symbol is 14#{{5,2,1},{4,3,3}}; This cohort symbol in-

dicates, and is shared by, the six distinct 3-astral configurations 14#(5,4;2,3;1,3),  

14#(5,3;2,4;1,3).  14#(5,3;2,3;1,4),  14#(5,4;1,3;2,3),  14#(5,3;1,4;2,3), and 

14#(5,3;1,3;2,4). 

 The second comes from the observation that all the conditions, except possibly 

(A5), are satisfied if in the cohort symbol m#{s,t} the sets  s  and  t  are the same.  As an 

example, the configuration we used in Figure 3.5.3 has symbol 9#(4,2;3,4;2,3), hence  s = 

t ={4,3,2}.  Since the condition (A7) is satisfied without the need to make any calcula-
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tions, we shall say that the cohort 9#{{4,3,2},{4,3,2}} is trivial. On occasion we shall 

use "trivial" also for an individual configuration in a trivial cohort.  For odd k, a typical 

representative of a trivial cohort is  m#(a,b;c, ... ;u,v;w,a;b,c; ... ,u;v,w), while for even  k  

we can use  m#(a,b;c,d; ... ;v,w;b,a;d,c; ... ;w,v).  We should mention here that there can-

not be any 2-astral configurations of the trivial type. 

 We shall say that a cohort symbol m#{s,t} of k-astral configurations is systematic 

provided  m  and the elements of  s  and  t  depend on one or more parameters in such a 

way that the validity on (A7) can be ascertained using only trigonometric identities and 

without the need to calculate specific values of the parametrized si's and ti's.  As we shall 

illustrate in Section 3.6, the cohort with  m = 6k, s = {3k-j,j}, t = {3k-2j,2k} is a system-

atic 2-astral cohort. 

 If a k-astral configuration belongs neither to a trivial cohort nor to a systematic 

one, we shall say that the configuration and its cohort are sporadic.  For k = 2 all spo-

radic configurations are known, and we list them in Section 3.6.  However, already for 

k = 3 we have only examples of such configurations (as discussed in Section 3.7), but no 

complete characterization. 

 If a cohort symbol m#{s,t} of a k-astral configurations contains the same integer 

in both s and t, a cohort symbol of a (k-1)-astral configurations may result if this integer 

is deleted from both  s  and  t.  As is easily verified, all the conditions for (k-1)-astral 

symbol are automatically verified, except possibly (A5).  We call clade of m#{s,t} all the 

cohorts resulting from one or several applications of this procedure. This will be illus-

trated in Section 3.7. 

* * * * * * 

 We end this section with an unsolved problem of methodology in the study of  k-

astral configurations.  We required in the definition that the symmetry group of every as-

tral configuration is dk.  In fact, the other conditions show that this happens automatically 

if we require that the cyclic group ck is a symmetry group of the configuration.  The char-
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acteristic path, the symbol, and the reduced Levi graph of each k-astral configuration are 

all based on the cyclic group.  The reason is that (as far as I know) nobody has come up 

with a reasonable version of all these based on the dihedral symmetry group.  The con-

struction of a reduced Levi graph that is based on the dihedral symmetry is certainly fea-

sible – but does not appear to be useful.  How come? 

Exercises and problems 3.5 

1. Devise symbols for the configurations in Figure 3.5.9. 

     

Figure 3.5.9. Two 3-astral 4-configurations. 

2. What are the symbols for the objects in Figure 3.5.10.  Devise a characteristic 

path in each and find out. 

3. Superimpose each object in Figure 3.5.10 with a copy rotated 12° about the cen-

ter. What is the result? Can you find a symbol for it? 

4. Find the dual configurations of the ones in Figure 3.5.9. 

5. Find a symbol for the 4-configuration in Figure 3.5.11. 
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Figure 3.5.10. Not configurations! 

 

Figure 3.5.11. A configuration (604). 
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3.6 2-ASTRAL 4-CONFIGURATIONS 

 Following the terminology introduced in Section 3.5, a geometric 4-configuration 

(that is, an (n4) configuration for some integer  n) is called 2-astral provided there are 

precisely two orbits of points and two orbits of lines under the symmetry group of the 

configurations, and the other conditions spelled out in Section 3.5 are satisfied.  Since  

k = 2 is the smallest value of  k  possible in a 4-configuration, following the convention 

proposed in Section 1.5 we shall call such configurations astral for short.  An astral 4-

configuration cannot have points at infinity, since any line through such a point would 

have to have three points of a single orbit in the finite part of the plane.  Hence we need 

to consider only what happen in the Euclidean plane.  

 The astral 4-configurations have been completely characterized.  To present this 

characterization we need an appropriate notation; this was set up in Section 3.5.  Here we 

shall present the list of these astral configurations (Theorem 3.6.1).  Before giving the 

proof that our list is complete we have to digress into explanations of some of the detailed 

results about intersection of diagonals in regular polygons –– a topic that has its own in-

teresting and convoluted history. Finally, a proof of completeness of the list will be 

given; the first such proof is that of L. Berman [B3], [B4]. 

 The notation for astral 4-configurations has evolved in several stages since the 

first publication on the topic in [G39].  The notation used here, introduced in Section 3.5, 

is the one that was found most suitable for the present purpose as well as for the generali-

zation to k-astral 4-configurations that we shall consider in Section 3.7.  The notation is 

explained by the example of a (484) astral configuration shown in Figure 3.5.5. One of its 

symbols is 24#(8,7;2,5); the configuration belongs to the cohort 24#{{8,2},{7,5}}; this 

cohort contains only one other configuration, with symbol 24#(8,5;2,7).  Both configura-

tions are shown in Figure 3.6.1. 

 In the next two figures we show the smallest astral 4-configurations.  The unique 

(244) is shown in Figure 3.6.2, while the six configurations (364) appear in Figure 3.6.3.  

Additional illustrations appear in several other sections, but in particular in Section 5.9. 
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(a)      (b) 

Figure 3.6.1.  The only two 2-astral configurations (484) in the cohort 24#{{8,2},{7,5}}.  

(a) The configuration 24#(8,7;2,5).  (b) The configuration 24#(8,5;2,7). 

 

 
Figure 3.6.2.  The smallest astral 4-configuration. It is a sporadic and selfdual (244), with 

symbol  12#(5, 4; 1, 4). 
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Figure 3.6.3.  The six configurations (364) belong to three cohorts:  18#{{6,1},{5,4}},  

18#{{7,2},{6, 5},  18#{{8,1},{7,6}}.  Near each configuration we show the lexico-
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graphically highest among its symbols.  Although it is not obvious from the symbols or 

the diagrams, the three configurations at left are isomorphic.  This isomorphism is estab-

lished by the labels near their vertices.  Since these configurations are isomorphic, their 

polars (shown at right) are also isomorphic to each other; they are not isomorphic to the 

other three configurations. 

 

 After these preliminaries, here is the detailed result. 

 Theorem 3.6.1.1  Astral 4-configurations m#(s1, t1; s2, t2) must satisfy all the con-

ditions from Section 3.5, and in particular the equation (A7): 

cos(s1π/m)·cos(s2π/m) = cos(t1π/m)·cos(t2π/m). 

The symbols of these configurations are: 

(i) The systematic configurations with symbols (6k)#(3k-j, 2k; j, 3k-2j)  for  k ≥ 2,  

1 ≤ j < 3k/2,  with j ≠ k. 

(ii) The systematic configurations with symbols (6k)#(2k, j; 3k-2j, 3k-j) for  k ≥ 2,  

1 ≤ j < 3k/2,  with j ≠ k.   By the general results of Section 3.5, these configurations are 

polar to the ones in (i) with the same values of k and j. 

 For even k and j = k/2, the configurations in (i) and (ii) are selfpolar, hence coin-

cide.  If  k = f·g and j = f·h, with f ≥ 2, g ≥ 2, then both (6k)#(3k-j, 2k; j, 3k-2j) and 

(6k)#(2k, j; 3k-2j, 3k-j) are disconnected.  Each consists of  f  equidistributed copies of 

(6g)#(3g-h, 2g; h, 3g-2h) or (6g)#(2g, h; 3g-2h, 3g-h)  and is denoted by (f) (6g)#(3g-h, 

2g; h, 3g-2h) or (f) (6g)#(2g, h; 3g-2h, 3g-h), respectively. 

 For simpler formulation, we can say that the configurations in (i) and (ii) are in 

the cohorts of (6k)#{{3k-j},{3k-2,2k}}for  k ≥ 2,  1 ≤ j < 3k/2,  with j ≠ k. 

(iii) The 27 symbols of the sporadic configurations listed in Table 3.6.1, and their 

multiples. 

                                                
1  I am indebted to L. Berman and T. Pisanski for a number of comments and cor-
rections. These led to the present formulation, which I hope is more informative and use-
ful than the statements in previous publications. 

Branko Grünbaum � 6/2/08 8:33 AM

Branko Grünbaum � 6/2/08 8:32 AM

Comment: P. 3.6.6, L. 1:   3k-j 

Comment:  
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30#(7,6;1,4)  30#(7,4;1,6) 
30#(8,6;2,6) 
30#(11,10;1,6)  30#(11,6;1,10) 
30#(12,10;6,10) 
30#(12,11;2,7)  30#(12,7;2,11) 
30#(13,12;1,8)  30#(13,8;1,12) 
30#(13,12;7,10)  30#(13,10;7,12) 
30#(14,12;4,12) 
30#(14,13;6,11)  30#(14,11;6,13) 
42#(13,12;1,6)  42#(13,6;1,12) 
42#(18,17;6,11)  42#(18,11;6,17) 
42#(19,18,5,12)  42#(19,12;5,18) 
60#(22,21;2,9)  60#(22,9;2,21) 
60#(25,24;5,12)  60#(25,12;5,24) 
60#(27,26;3,14)  60#(27,14;3,26) 

Table 3.6.1.  The complete list of connected sporadic astral 4-configurations. The three 

stand-alone symbols denote selfpolar configurations, the paired symbols correspond to 

configurations polar to each other. 

 Here too, the cohorts notation allows a more condensed listing: 

30#{{7,1}{6,4}},  30#{{8,2},{6,6}},  30#{{11,1},{10,6}},  30#{{12,6},{10,10}}, 

30#{{12,2},{11,7}},  30#{{13,1}12,8}},  30#{{13,7},{12,10}},  30#{{14,4},{12,12}}, 

30#{{14,6},{13,11}},  

42#{{13,1},{12,6}},  42#{{18,6},{17,11}},  42#{{19,5},{18,12}}, 

60#{{22,2},{21,9}},  60#{{25,5},{24,12}},  60#{{27,3},{26,14}}. 

 

 The proof of the theorem will be interwoven with an account of the history of its 

development.  In view of all the interest in configurations during the last quarter of the 

19th century (as well as the sporadic interest later), it is hard to understand that no 

graphical representation of any 4-configuration appeared in print prior to [G50] in 1990.  

The configuration shown above as Figure 3.6.2 was one of the configurations shown in 
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that paper.  Another was the (214) configuration that gave the paper its title; we shall en-

counter it again in Section 3.7. 

 In the early 1990 I found several 4-configurations in addition to the ones in [G50], 

with two or three orbits of points (and of lines); these were found by drawing with such 

software as was available to me (mainly MacDraw), until I was initiated to Mathe-

matica® through friendly persuasion by Stan Wagon.  (A few other k-astral 4-

configurations with various k's were communicated to my by J. F. Rigby.)  With pro-

grams in Mathematica it was possible to "experimentally" find all possible astral configu-

rations with reasonably small numbers of vertices.  This led to the understanding that 

there are systematic infinite families of such configurations, as well as an apparently fi-

nite number of sporadic configurations.  I became convinced that I have a complete de-

scription, and presented this in seminars and courses during the 1990s; the results were 

published in 2000 [G40], together with formal demonstrations of the geometric realizabil-

ity of these configurations. This covers the existence aspect of Theorem 3.6.1. 

 The main tool for the proof of completeness was the observation that an astral 

configuration m#(s1, t1; s2, t2) has a realization by straight lines if and only if the same 

points are reached starting from one of the regular polygons regardless of which of two 

diagonals we are following. In other words, the points described by (s1//t1) must coincide 

with the points (t2//s2). (Note that the designation (s2//t2) used in determining the symbol 

of the configuration refers to the diagonals as looked from the other polygon.)  This leads 

to the following necessary condition for the existence of an astral configuration 

m#(s1,t1;s2,t2) 

(1)  cos(s1π/m)·cos(s2π/m) = cos(t1π/m)·cos(t2π/m). 

Due to the dihedral symmetry of such configurations, this is also a sufficient condition 

for the existence.  Moreover, criterion (1) is easily implemented for computational 

searches; the results of these calculations led to the classes listed in Theorem 3.6.1. 

 For the convenience of use of Theorem 3.6.1 we list in Table 3.6.2 the cohort 

symbols of the systematic astral configurations (n4) with n ≤ 100. 
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12#{{5,1},{4,4}. 

18#{{8,1},{7,6}},  18#{{7,2},{6,5}},  18#{{6,1},{5,4}}. 

24#{{11,1},{10,8}},  24#{{10,2},{8,8}},  24#{{9,3},{8,6}},  24#{{8,2},{7,5}}. 

30#{{14,1},{13,10}},  30#{{13,2},{11,10}},  30#{{12,3},{10,9}},  

30#{{11,4},{10,7}},   30#{{10,3},{9,6}},   30#{{10,1},{8,7}}. 

36#{{17,1},{16,12}},  36#{{16,2},{14,12}},  36#{{15,3},{12,12}}, 36#{{14,4},{12,10}},  

36#{{13,5},{12,6}},  36#{(12,4},{11,7}},  36#{{12,2},{10,8}}. 

42#{{20,1},{19,14}},  42#{{19,2},{20,16}},  42#{{18,3},{15,14}}, 

42#{{17,4},{14,13}},  42#{{16,5},{14,11}},  42#{{15,6},{14,9}},  

42#{{14,5},{13,8}},  42#{{14,3},{12,9}},  42#{{14,1},{11,10}}. 

48#{{23,1},{22,16}},  48#{{22,2},{20,16}}, 48#{{21,3},{18,16}},    

48#{{20,4},{16,16}}, 48#{{19,5},{16,14}},  48#{{18,6},{16,12}},   

48#{{17,7},{16,10}},  48#{{16,6},{15,9}},  48#{{16,4},{14,10}},  

48#{{16,2},{13,11}}. 

Table 3.6.2.  The cohort symbols of all systematic astral (n4) configurations with  

n ≤ 100.  Disconnected configurations are in italics. 

 Once the characterization of the astral configurations has been guessed, it is easy 

to see that the symbols listed above correspond to actual geometric configurations, and 

are not results of an approximation error in the computations. 

 Indeed, for the symbols in part (i) we have to show that 

(2)  cos((3k-j)π/(6k))·cos(π(6k)) = cos(2kπ/(6k))·cos((3k-2j)π/(6k)). 

 In view of the trigonometric identity 

(3)  (cos a)·(cos b) = ½ (cos(a+b) + cos(a-b)) 

validity of (2) is equivalent to 

  ½ (cos 3kπ/(6k) + cos((3k-2j)π/(6k))) = (cos π/3)·cos((3k-2j)π/(6k)). 

Since cos π/2 = 0 and cos π/3 = ½, this is valid for all k and j; hence (2) is correct. The 

same calculation shows that the symbols in (ii) correspond to astral geometric configura-
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tions as well.  The fact that the above arguments did not rely on particular values of the 

cosines involved shows that (i) and (ii) are symbols of systematic configurations. 

 The existence of the sporadic configurations proceeds somewhat analogously, but 

needs to rely on information specific to the angles involved.  For example, concerning the 

configuration 30#(8,6;2,6) we note that (1) becomes 

  cos 8π/30 · cos 2π/30 = (cos 6π/30)2, 

which by (3) is equivalent to 

  ½ (cos 10π/30 + cos 6π/30) = (cos 6π/30)2 

Since cos π/3 = ½ and cos π/5 = ¼ (1 + √5), this reduces to 

  (12 + 4√5)/16 = (6 + 2√5)/8, 

which is obviously true. 

 Using other explicit algebraic values for cosines, similar arguments can be made 

for the other sporadic configurations with symbols that start with 30 or 60.  Among the 

values that can be used are 

  cos 2π/30 = (–1 + √5+ √6(5 + √5))/8, 

  cos 4π/30 = (1 + √5+ √6(5 - √5))/8, 

  cos 8π/30 = (1 – √5+ √6(5 + √5))/8, 

and so on. 

 For the symbols that involve 42 it is convenient to follow a slightly different path. 

The validity of the first of these symbols, 42#(13,12;1,6), is by (1) and (3) equivalent to 

  cos π/3 + cos 2π/7 = cos 3π/7 + cos π/7 

that is 

  1 + 2cos 2π/7 + 2cos 4π/7 + 2cos 6π/7 = 0. 

But this is simply an expression of the fact that the centroid of a regular heptagon, cen-

tered at the origin and with one vertex at (1,0), is itself at the origin.  An completely 

analogous reasoning shows the validity of the other symbols involving 42. 
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 What is still missing is a proof that there are no other astral 4-configurations. 

Since these configurations are determined by intersections of diagonals of regular poly-

gons, and since these have been extensively studied and completely determined, in the 

late 1990's it seemed to me that it should be very easy to supply the proof of complete-

ness.   

 In reality this task proved far from simple, and it was first successfully carried out 

in 2001 in the PhD work of L. Berman [B4], [B3].  Berman's rather complicated argu-

mentation relied on the complete description of intersections of diagonals of regular 

polygons, given by Poonen and Rubinstein [P8] in 1998.  Theirs was a new proof (and a 

much more convenient presentation) of material that has been contained, to a large ex-

tent, in earlier publications of G. Bol [B26] in 1933 (with some misprints) and J. F. Rigby 

[R3] in 19802.  For regular n-gons with prime n, or with any odd n, it has been proved by 

many authors that there are no intersections of more than two diagonals; references to 

these papers and other related material can be found in [R3], and especially in [P8].  

 However, independently of these developments, an approach that is easier to ap-

ply for our purposes was published by G. Myerson [M21] in 1993; it came to my atten-

tion only recently.  Myerson's result (his Theorem 4) that is relevant to our proof can be 

formulated as follows. 

 Theorem 3.6.2. (Myerson [M21]) . The equation 

  sin π/6 · sin t = sin(t/2) sin(π/2 – t/2) 

is valid for all t. The only other solutions of the equation 

(4)  sin x1π · sin x2π = sin x3π · sin x4π  

in rational x1, x2, x3, x4 with 0 < x1 < x3 ≤ x4 < x2 ≤ ½ are given in Table 3.6.3. 

                                                
2  In contrast to other writers on the topic, Rigby considers the multiple intersections 
of diagonals outside the n-gon as well.  However, his intended [R3, p. 222] investigation 
of outside intersections of four or more diagonals seems not to have been published, and 
remains an open problem. 
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 Label x1 x2 x3 x4  
––––––––––––––––––––––––––––––––––––––––– 
 1 1/21 8/21 1/14 3/14 
 2 1/14 5/14 2/21 5/21 
 3 4/21 10/21 3/14 5/14 
 4 1/20 9/20 1/15 4/15 
 5 2/15 7/15 3/20 7/20 
 6 1/30 3/10 1/15 2/15 
 7 1/15 7/15 1/10 7/30 
 8 1/10 13/30 2/15 4/15 
 9 4/15 7/15 3/10 11/30 
 10 1/30 11/30 1/10 1/10 
 11 7/30 13/30 3/10 3/10 
 12 1/15 4/15 1/10 1/6 
 13 2/15 8/15 1/6 3/10 
 14 1/12 5/12 1/10 3/10 
 15 1/10 3/10 1/6 1/6 
 
Table 3.6.3.  The complete list of sporadic solutions of equation (4) as given by Myerson 
in [M21]. 
 
 The result of Theorem 3.6.2 gives an immediate solution to the completeness 

question of Table 3.6.1.  Indeed, we only have to recall that sin α = cos(π/2 – α) in order 

to see that the rows of Table 3.6.3 correspond (in an appropriate permutation) to the rows 

of Table 3.6.1.  For example, rows with labels 1, 2, 3 correspond to the entries involving 

42 of the earlier table, while those labeled 4, 5, and 14 correspond to the last three rows 

of table 3.6.1. 

 This completes the proof of Theorem 3.6.1. 

 

Exercises and problems 3.6. 

 

1. Verify the complete correspondence between Myerson's list in Table 3.7.3 and the 

list of sporadic symbols in Table 3.6.1. 

2. Verify the validity of the existence claims made above for all sporadic configura-

tions. 

3.  Draw the configuration  36#(15,12; 3,12) =  (3) 12#(5,4;1,4).  Is it selfpolar? 
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4. Prove that the configurations 18#(6,5;1,4) and 18#(6,4;1,5) shown in Figure 3.6.3 

are not isomorphic. 

5. Determine whether the pairs of polar configurations in Figure 3.6.3 are in appro-

priate orientation to exhibit the polarity, or does one member of the pair have to be ro-

tated. 
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3.7 3-ASTRAL 4-CONFIGURATIONS 

 The 3-astral 4-configurations have a lot in common with the 2-astral configura-

tions we studied in Section 3.6, but they also have many properties and peculiarities that 

are not present in the earlier case.  This is the main reason for treating them in a separate 

section. 

 It seems to me that the 3-astral configurations are arguably the most interesting 

type of configurations. The reason for this assessment is that they are more general in the 

opportunities for investigation than the 2-astral 4-configurations considered in the preced-

ing section, but are still experimentally quite accessible.  As we shall show, there are 

many open problems that seem very attractive, as well as tractable with an appropriate 

investment of effort.  Naturally, k-astral configurations with k ≥ 4 have their own attrac-

tion and appeal, but with increasing k they are harder to investigate and, in any case, 

much less is known about them. 

 The first graphic presentation in a published paper of any 4-configuration1 was 

that of a 3-astral (214) in [G50]; here we show it in Figure 3.7.1.  As with 2-astral con-

figurations, 3-astral ones will be illustrated in various section; several are shown in Sec-

tion 5.9. 

 The notation we use for the k-astral configurations is the one introduced in Sec-

tion 3.5, based on characteristic paths.  In the case of 3-astral configurations there are, in 

general, 6 different characteristic paths, leading to distinct symbols. We preferentially 

choose the symbol that is lexicographically the highest. 

 For 3-astral configurations our approach is completely analogous to the treatment 

of 2-astral configurations in Section 3.6.  It would be nice if at this stage we could formu-

late a theorem analogous to Theorem 3.6.1, and give necessary and sufficient conditions 

for symbols corresponding to geometric 3-astral 4-configurations.  However, we have  

                                                
1  Kárteszi [K5] in 1986 and Zeitler [Z8] in 1987 came very close to finding such 4-
configurations. In the diagrams they show one only has to delete some lines, and make all 
copies of one of the shown lines, to get a 3-astral 4-configuration, with m = 10 in the 
former and m = 12 in the other. 



  Page 3.7.2 

P0

P1

 
Figure 3.7.1.  The 3-astral 4-configuration (214).  This configuration is 3-astral with sym-

bol 7#(3,2;1,3;2,1) obtained from the characteristic path that starts at P0 and has as its 

next point P1. This configuration belongs to the "trivial" type. 

only partial information; the most important criterion is the condition (A7) from Section 

3.5, the analog of the trigonometric condition in Theorem 3.6.1: 

Theorem 3.7.1.  If m#(s1,t1;s2,t2;s3,t3) is the symbol of a geometric 3-astral 4-

configuration then 

(*)  cos s1π/m · cos s2π/m · cos s3π/m = cos t1π/m · cos t2π /m· cos t3π/m. 

 This is an expression of the fact that each characteristic path has its endpoint in 

the same orbit as its starting point.  Conversely, if a symbol satisfies (*) and the natural 

conditions listed in Section 3.5 then in general there exists a geometric 3-astral 4-

configuration with the symbol in question. 

 The natural conditions just mentioned are: 

(**) No entry is equal to either of the two adjacent entries, the first and last considered 

as adjacent; 

(***) Each entry is smaller than m/2. 

(****) The sum of all sj and tj entries in the symbol is even. 



  Page 3.7.3 

 There are two deep deficiencies in this theorem.  One unsatisfactory aspect of 

Theorem 3.7.1 (and of the analogous statements one can make for k≥ 4) is that we do not 

have any analogue of Myerson's Theorem 3.6.2, hence we cannot devise a list of all the 

configurations in question.  As is stated in [M21], Myerson's methods could probably 

lead to a complete, explicit list of solutions of (*), but this appears to be a momentous 

task –– a task that has not been carried out.  This is the first big problem concerning 

3-astral 4-configurations. 

 The other problem is euphemistically covered by the italicized words "in general".  

We shall discuss later in the section the known and the unknown results in this direction. 

 For the presentation of known solutions of (*) satisfying all the necessary condi-

tions it is convenient to distinguish three kinds of symbols m#(s1,t1;s2,t2;s3,t3) or the cor-

responding cohorts m#{{s1,s2,s3},{t1,t2,t3}}, which we shall call "trivial", "systematic", 

and "sporadic".  The terminology was introduced in Section 3.5, and here we only briefly 

remind the reader of the meaning of these terms.  

• In accordance with this terminology, trivial symbols (and 3-astral configurations) 

have the form m#(b,c;d,b;c,d), where b, c, d are different positive integers, each less than 

m/2.  Since the terms on the two sides cancel each other without any calculations and the 

other conditions are automatically satisfied, the label "trivial" seems appropriate –– not in 

any derogatory sense but as describing the mathematically simplest case.  In other words, 

trivial are those astral configurations for which the cohort symbol  m#{s,t} is of the spe-

cial form m#{s,s}.  Figure 3.7.1 shown an example of a trivial 3-astral configuration.  

From the general properties of equivalent symbols and symbols of dual configuration dis-

cussed in Section 3.5 it follows that all trivial 3-astral configurations are selfdual; the 

same applies to all trivial k-astral configurations with odd k. Indeed, m#(b,c,d,b,c,d) has 

as dual m#(c,d,b,c,d,b), which is the same as the original; the argument is analogous for 

other odd k.  Obviously, the polar of a trivial configuration is itself trivial. 

• Systematic symbols are those that contain infinite families for which the validity 

can be verified by formal trigonometric calculations, without the need to determine val-
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ues of the trigonometric functions that depend on specific parameters.  At present, four 

such families m#{s,t} of 3-astral 4-configurations are known, mostly through unpub-

lished work of L. Berman. 

(1) m = 2q,  s = {q-p,q-2r,p},  t = {q-2p,q-r,r} 

(2) m = 3q,  s = {q+p,q-p,p},  t = {q,q,3p} 

(3) m = 6q,  s = {3q-p,r,p},  t = {3q-2p,2q,r} 

(4) m = 10q,  s = {5q-p,2p,p},  t = {|5q-4p|,4q,2q}. 

Here p, q and r are any positive integers, and the possibilities have to be understood in the 

sense of cohorts, that is, all permutations within  s  and within  t, as well as interchanging 

s  and  t,  are allowed provided conditions (**) and (***) are satisfied; condition (****) is 

fulfilled automatically.  If all the entries are distinct the cohort contains 12 distinct con-

figurations; equality of some entries reduces this number.   

 For example, in family (4) with m = 20, q = 2. For p = 1 we have s = {9,2,1} and t 

= {8,6,4}; this leads to a total of 12 distinct symbols: 20#(9,8;2,6;1,4),  20#(9,8;2,4;1,6),  

20#(9,6;2,8;1,4),  20#(9,6;2,4;1,8),  20#(9,4;2,8;1,6),  20#(9,4;2,6;1,8), and six more in 

which the positions of 1 and 2 are interchanged.  Switching the two sets of parameters 

yields additional 12 symbols, but no new configurations, since these symbols are equiva-

lent to the earlier dozen.  For p = 3 we have s = {7,6,3} and t= {8,4,2} leading again to 12 

different symbols. For p = 2 and p = 4 we get trivial symbols only, while p ≥ 5 exceeds 

the bound in (***).  On the other hand, the cohort of 9#{{4,2,1},{3,3,3}} consists of just 

two configurations, shown in Figure 3.7.2.  As mentioned above, in some cases the re-

sulting symbols become trivial. 

 The verification that the above symbols of the four families satisfy condition (*) 

is quite straightforward. We illustrate this only for family (2), for which condition (*) re-

duces to the verification of 

 cos(q+p)π/m · cos(q-p)π/m · cos pπ/m = (cos qπ/m)2 · cos 3pπ/m. 

Since q = m/3, the value of cos qπ/m = cos π/3 = ½, and standard trigonometric identities 

yield 
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(a)      (b) 
Figure 3.7.2.  The only two distinct members in the cohort 9#{{4,2,1},{3,3,3}} of family 
(2) for q = 3, p = 1.  (a)  9#(4,3,2,3,1,3);  (b)  9#(4,3,1,3,2,3). 
 

 2 cos (q+p)π/m · (cos qπ/m  + cos (q-2p)π/m ) = cos 3pπ/m , so 

 cos (q+p)π/m + 2 cos (q+p)π/m · cos (q-2p)π/m = cos 3pπ/m , 

 cos (pπ/m + π/3) + cos (2q-p)π/m + cos 3pπ/m = cos 3pπ/m , and finally 

 cos (pπ/m + π/3) + cos (-pπ/m +2π/3) = 0,  

which is obviously true.  

 Similar calculations validate the other families of symbols. 

• Sporadic symbols and configurations are those that do not belong to any of these 

two families.  For example, 18#(5,4;1,3;1,2) shown in Figure 3.7.3 is sporadic –– at 

least for the time being.  The reason for this qualification is that although the symbol is 

neither trivial nor belongs to one of the four families in (ii), it may well be part of a still 

not discovered infinite (systematic) family. 

 In Table 3.7.1 we give a list of cohorts of the sporadic 3-astral configurations (n4) 

with n ≤ 108.  It was obtained by numerically solving equation (*), and eliminating du-

plicates and symbols that correspond to trivial or systematic 3-astral configuration. An  
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Figure 3.7.3.  The sporadic configuration 18#(5,4;1,3;1,2). 

unexpected result of these computations is that such sporadic configurations exist only 

for  n  that are multiples of 12. 

 One additional comment concerning Table 3.7.1.  Some of the cohort symbols 

contain the same symbol in both parts.  This implies that the crucial relation (*) will be 

satisfied even if the symbol is deleted from both parts. In such a case the reduced cohort 

symbol belongs to a 2-astral 4-configuration.This brings us to other open problems:  

 Do there exist any other systematic families besides the ones in (ii) above? 

 Is the list of connected sporadic 3-astral configurations finite? 

 It is worth noting that there is no known visible cue in a given 3-astral configura-

tion whether it is trivial, systematic, or sporadic.  It takes working out its symbol and 

looking at the criteria in order to decide where it belongs. 

 We turn now to the second deficiency in Theorem 3.7.1.  It parallels the problems 

with the Steinitz theorem on 3-configurations encountered in Chapter 2, and did not arise 

for 2-astral 4-configurations. 
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m = 18 

{5, 1, 1}, {4, 3, 2} {6, 2, 1}, {5, 4, 2}* 
{6, 3, 2}, {5, 5, 1} {7, 1, 1}, {6, 4, 3} 
{7, 4, 2}, {6, 6, 1} {7, 6, 1}, {7, 5, 4}*A 
{8, 2, 1}, {6, 6, 5}a {8, 3, 2}, {7, 5, 5} 
{8, 4, 3}, {7, 7, 1} {8, 5, 4}, {7, 6, 6}b 
{8, 6, 1}, {8, 5, 4}*bA {8, 6, 3}, {7, 7, 5} 
{8, 7, 2}, {8, 6, 5}*a 
 
m = 24 
{6, 2, 1}, {5, 3, 3} {8, 2, 1}, {7, 5, 1}*A 
{8, 3, 2}, {7, 5, 3}*A {8, 3, 3}, {7, 6, 1} 
{8, 6, 2}, {7, 6, 5}*A {9, 2, 1}, {8, 5, 3} 
{9, 8, 2}, {9, 7, 5}*A {10, 3, 2}, {9, 7, 1} 
{10, 5, 3}, {9, 8, 1} {10, 6, 5}, {9, 9, 1} 
{10, 7, 5}, {8, 8, 8} {10, 8, 2}, {10, 7, 5}*A  
{10, 9, 3}, {10, 8, 6}*B {11, 2, 1}, {8, 8, 8} 
{11, 3, 2}, {9, 8, 7} {11, 3, 3}, {10, 7, 6} 
{11, 5, 3}, {10, 9, 2} {11, 6, 2}, {9, 9, 7} 
{11, 6, 5}, {9, 9, 8} {11, 8, 2}, {11, 7, 5}*A 
{11, 8, 3}, {10, 9, 7} {11, 9, 3}, {11, 8, 6}* B 
{11, 10, 2}, {11, 8, 8}* 
 
m = 30 
{7, 2, 1}, {6, 4, 2}*A {7, 3, 1}, {6, 4, 3}*A 
{7, 5, 1}, {6, 5, 4}*A {8, 2, 1}, {6, 6, 1}*B 
{8, 3, 2}, {6, 6, 3}*B {8, 4, 2}, {6, 6, 4}*aB 
{8, 4, 2}, {7, 6, 1}a {8, 5, 2}, {6, 6, 5}* 
{8, 7, 1}, {8, 6, 4}*A {8, 7, 2}, {7, 6, 6}*bB 
{9, 1, 1}, {8, 4, 3} {9, 2, 1}, {7, 6, 3} 
{9, 4, 2}, {7, 7, 3} {9, 7, 1}, {9, 6, 4}*eA 
{9, 8, 2}, {9, 6, 6}*cB {10, 1, 1}, {8, 6, 4} 
{10, 2, 1}, {7, 6, 6}b {10, 2, 1}, {8, 7, 2}*bC 
{10, 3, 1}, {8, 7, 3}*dC {10, 3, 1}, {9, 6, 1}*dD 
{10, 3, 2}, {9, 6, 2}*D {10, 4, 1}, {8, 7, 4}*C 
{10, 4, 2}, {7, 7, 6} {10, 4, 3}, {9, 6, 4}*eD 
{10, 4, 3}, {9, 7, 1}e {10, 6, 1}, {8, 7, 6}*C 
{10, 6, 3}, {9, 8, 2}c {10, 6, 4}, {8, 7, 7} 
{10, 7, 1}, {10, 6, 4}*A {10, 7, 3}, {9, 7, 6}*D 
{10, 8, 2}, {10, 6, 6}*B {10, 8, 3}, {9, 8, 6}*D 
{10, 9, 1}, {9, 8, 7}*C {11, 1, 1}, {8, 7, 6}  
{11, 2, 1}, {10, 6, 2}*E {11, 3, 1}, {9, 6, 6}c 
{11, 3, 1}, {9, 8, 2}c {11, 3, 1}, {10, 6, 3}*cE 
{11, 4, 1}, {10, 6, 4}*E {11, 5, 1}, {10, 6, 5}* E 
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{11, 6, 1}, {10, 8, 2} {11, 7, 1}, {10, 7, 6}*fE 
{11, 7, 1}, {11, 6, 4}*fA {11, 7, 3}, {10, 9, 2} 
{11, 7, 6}, {10, 10, 2}j {11, 8, 1}, {10, 8, 6}*E 
{11, 8, 2}, {11, 6, 6}*B {11, 8, 4}, {10, 10, 1} 
{11, 8, 7}, {10, 10, 6} {11, 9, 1}, {10, 9, 6}*E 
{11, 10, 1}, {11, 8, 7}*gC {11, 10, 3}, {11, 9, 6}*D 
{12, 1, 1}, {10, 8, 4} {12, 2, 1}, {10, 7, 6}f 
{12, 2, 1}, {11, 6, 4}f {12, 2, 1}, {11, 7, 1}*fF 
{12, 3, 2}, {11, 7, 3}*F {12, 4, 2}, {10, 7, 7}h 
{12, 4, 2}, {11, 7, 4}*hF {12, 5, 2}, {11, 7, 5}*F 
{12, 6, 1}, {10, 8, 7}i {12, 6, 1}, {10, 10, 1}*iG 
{12, 6, 2}, {10, 10, 2}*jG {12, 6, 2}, {11, 7, 6}*jF 
{12, 6, 3}, {10, 10, 3}*kG {12, 6, 3}, {11, 9, 1}k 
{12, 6, 4}, {10, 10, 4}*lG {12, 6, 6}, {11, 8, 7}g 
{12, 6, 6}, {11, 10, 1}g {12, 7, 1}, {10, 10, 4}l 
{12, 7, 1}, {12, 6, 4}*lA {12, 7, 6}, {10, 10, 7}*mG 
{12, 7, 6}, {11, 10, 4}m {12, 8, 2}, {12, 6, 6}*gB 
{12, 8, 2}, {11, 8, 7}*gF {12, 8, 2}, {11, 10, 1}g 
{12, 8, 6}, {10, 10, 8}*G {12, 9, 2}, {11, 9, 7}*F 
{12, 9, 6}, {10, 10, 9}*nG {12, 10, 1}, {12, 8, 7}*qC 
{12, 10, 2}, {11, 10, 7}oF {12, 10, 2}, {11, 11, 4}o 
{12, 10, 3}, {12, 9, 6}*nD {12, 11, 1}, {10, 10, 10}p 
{12, 11, 1}, {12, 10, 6}*pE {12, 11, 4}, {12, 10, 7}*H 
{12, 11, 6}, {11, 10, 10}*G {13, 2, 1}, {10, 10, 6}r 
{13, 2, 1}, {12, 6, 6}r {13, 2, 1}, {12, 8, 2}*rJ 
{13, 3, 1}, {10, 9, 8}s {13, 3, 1}, {12, 8, 3}*sJ 
{13, 4, 1}, {12, 8, 4}*J {13, 4, 2}, {10, 10, 7} 
{13, 4, 3}, {12, 9, 1} {13, 5, 1}, {12, 8, 5}*J 
{13, 6, 1}, {10, 10, 8}t {13, 6, 1}, {12, 8, 6}*tJ 
{13, 6, 2}, {11, 11, 1} {13, 6, 3}, {11, 9, 8} 
{13, 6, 4}, {12, 8, 7}q {13, 6, 4}, {12, 10, 1}q 
{13, 6, 6}, {11, 10, 8}u {13, 7, 1}, {12, 8, 7}*qJ 
{13, 7, 1}, {12, 10, 1}*qK {13, 7, 1}, {13, 6, 4}*qA 
{13, 7, 2}, {12, 10, 2}*K {13, 7, 3}, {12, 9, 6}n 
{13, 7, 3}, {12, 10, 3}*nK {13, 7, 4}, {12, 10, 4}*K 
{13, 7, 5}, {12, 10, 5}*K {13, 7, 6}, {10, 10, 10}p 
{13, 7, 6}, {12, 10, 6}*pK {13, 7, 6}, {12, 11, 1}p 
{13, 7, 7}, {12, 11, 4} {13, 8, 2}, {13, 6, 6}*uB 
{13, 8, 7}, {12, 10, 8}*vK {13, 9, 1}, {12, 9, 8}*J 
{13, 9, 6}, {13, 10, 3}*D {13, 9, 7}, {12, 10, 9}*wK 
{13, 9, 7}, {12, 12, 3}w {13, 10, 1}, {12, 10, 8}*vJ 
{13, 10, 1}, {13, 8, 7}*vC {13, 10, 2}, {12, 11, 6} 
{13, 10, 3}, {13, 9, 6}*D {13, 10, 4}, {12, 12, 1} 
{13, 10, 6}, {12, 11, 8}y {13, 10, 7}, {12, 12, 6}x 
{13, 11, 1}, {12, 11, 8}*yJ {13, 11, 1}, {13, 10, 6}*yE 
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{13, 11, 4}, {12, 10, 10}x {13, 11, 4}, {12, 12, 6}x 
{13, 11, 4}, {13, 10, 7}*xH {13, 11, 7}, {12, 11, 10}*zK 
{13, 12, 2}, {13, 11, 7}*zF {13, 12, 3}, {13, 10, 9}*L 
{13, 12, 6}, {13, 10, 10}*G {14, 1, 1}, {12, 10, 8} 
{14, 2, 1}, {11, 10, 10} {14, 3, 2}, {11, 11, 9} 
{14, 4, 1}, {12, 12, 1}*M {14, 4, 2}, {12, 11, 7}aa 
{14, 4, 2}, {12, 12, 2}*aaM {14, 4, 3}, {12, 10, 9}w 
{14, 4, 3}, {12, 12, 3}*wM {14, 4, 3}, {13, 9, 7}w 
{14, 5, 4}, {12, 12, 5}*M {14, 6, 1}, {12, 11, 8}y 
{14, 6, 1}, {13, 11, 1}*yN {14, 6, 2}, {11, 11, 10}bb 
{14, 6, 2}, {13, 11, 2}*bbN {14, 6, 3}, {13, 11, 3}*N 
{14, 6, 4}, {12, 12, 6}*ccM {14, 6, 4}, {13, 10, 7}cc 
{14, 6, 4}, {13, 11, 4}*ccN {14, 6, 5}, {13, 11, 5}*N 
{14, 7, 1}, {12, 10, 10}cc {14, 7, 1}, {12, 12, 6}cc 
{14, 7, 1}, {14, 6, 4}ccA {14, 7, 3}, {12, 11, 9} 
{14, 7, 4}, {12, 12, 7}*M {14, 7, 6}, {12, 11, 10}z 
{14, 7, 6}, {13, 11, 7}*zN {14, 7, 6}, {13, 12, 2}z 
{14, 8, 2}, {13, 11, 6} {14, 8, 2}, {14, 6, 6}*B 
{14, 8, 4}, {12, 12, 8}*M {14, 8, 4}, {13, 12, 1} 
{14, 8, 6}, {13, 11, 8}*N {14, 8, 7}, {13, 10, 10}dd 
{14, 9, 4}, {12, 12, 9}*M {14, 9, 6}, {13, 11, 9}*N 
{14, 9, 6}, {14, 10, 3} {14, 9, 8}, {13, 13, 3} 
{14, 10, 1}, {13, 12, 6}dd {14, 10, 1}, {14, 8, 7}*ddC 
{14, 10, 2}, {12, 11, 11} {14, 10, 3}, {13, 11, 9} 
{14, 10, 3}, {14, 9, 6}*D {14, 10, 4}, {12, 12, 10}*iiM 
{14, 10, 4}, {13, 12, 7}ii {14, 10, 6}, {13, 11, 10}*eeN 
{14, 10, 6}, {13, 13, 2}ee {14, 10, 7}, {12, 12, 11}ff 
{14, 10, 8}, {13, 13, 6} {14, 10, 10},{13, 12, 11}gg 
{14, 11, 1}, {14, 10, 6}*eeE {14, 11, 4}, {12, 12, 11}*ffM 
{14, 11, 4}, {14, 10, 7}*ffH {14, 12, 1}, {13, 13, 7} 
{14, 12, 2}, {14, 11, 7}*F {14, 12, 3}, {14, 10, 9}*L 
{14, 12, 6}, {13, 12, 11}*ggN {14, 12, 6}, {14, 10, 10}*ggG 
{14, 12, 8}, {13, 13, 10}hh {14, 13, 1}, {14, 12, 8}*hhJ 
{14, 13, 2}, {14, 11, 10}* {14, 13, 4}, {13, 12, 12}*M 
{14, 13, 7}, {14, 12, 10}*K 
 
m = 36 
{8, 4, 1}, {7, 5, 3} {11, 2, 1}, {10, 5, 3} 
{11, 7, 6}, {10, 10, 2} {12, 2, 1}, {10, 8, 1}*A 
{12, 3, 2}, {10, 8, 3}*A {12, 4, 1}, {11, 7, 1}*B 
{12, 4, 2}, {11, 7, 2}*B {12, 4, 3}, {11, 7, 3}*B 
{12, 5, 2}, {10, 8, 5}*A {12, 5, 3}, {11, 8, 1} 
{12, 5, 4}, {11, 7, 5}*B {12, 7, 2}, {10, 8, 7}*A 
{12, 8, 4}, {11, 8, 7}*B {12, 9, 2}, {10, 9, 8}*A 
{12, 9, 4}, {11, 9, 7}*B {12, 10, 4}, {11, 10, 7}*B 
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{12, 11, 2}, {11, 10, 8}*A {13, 4, 1}, {12, 7, 3} 
{13, 10, 5}, {12, 12, 2} {13, 12, 2}, {13, 10, 8}*A 
{13, 12, 4}, {13, 11, 7}*B {14, 2, 2}, {13, 6, 5} 
{14, 7, 3}, {13, 10, 1} {14, 11, 7}, {12, 12, 10} 
{14, 12, 4}, {14, 11, 7}*B {14, 13, 5}, {14, 12, 8}* 
{15, 2, 1}, {14, 7, 5} {15, 3, 2}, {13, 10, 5} 
{15, 3, 2}, {14, 8, 4} {15, 3, 3}, {13, 11, 1} 
{15, 6, 3}, {14, 10, 2} {15, 10, 3}, {14, 11, 7} 
{15, 12, 2}, {15, 10, 8}*A {15, 12, 4}, {15, 11, 7}*B 
{15, 13, 5}, {15, 12, 8}* {15, 14, 4}, {15, 12, 10}* 
{16, 4, 2}, {15, 10, 3} {16, 5, 4}, {15, 11, 1} 
{16, 7, 5}, {15, 12, 1} {16, 8, 4}, {15, 12, 3} 
{16, 8, 7}, {15, 13, 1} {16, 10, 8}, {15, 14, 3} 
{16, 12, 4}, {16, 11, 7}*B {16, 13, 5}, {16, 12, 8}* 
{16, 15, 3}, {16, 12, 12}*C {17, 2, 1}, {14, 12, 12} 
{17, 2, 1}, {15, 14, 3} {17, 3, 2}, {14, 13, 11} 
{17, 5, 3}, {16, 11, 8} {17, 5, 4}, {15, 12, 11} 
{17, 6, 1}, {14, 14, 10} {17, 7, 2}, {15, 13, 10} 
{17, 7, 3}, {16, 13, 4} {17, 7, 5}, {15, 15, 3} 
{17, 8, 4}, {15, 13, 11} {17, 8, 7}, {15, 13, 12} 
{17, 10, 5}, {15, 14, 11} {17, 12, 2}, {17, 10, 8}*A 
{17, 12, 3}, {16, 13, 11} {17, 12, 4}, {17, 11, 7}*B 
{17, 13, 5}, {17, 12, 8}* {17, 14, 4}, {17, 12, 10}* 
{17, 15, 3}, {17, 12, 12}*C {17, 16, 2}, {17, 14, 12}* 
 

Table 3.7.1.  A list of all sporadic 3-astral 4-configurations (n4) with n ≤ 72.  In the cohort 

notation used, each entry corresponds to a cohort of configurations. Reducible cohorts are 

indicated by an asterisk following the symbol.  Equal upper-case letters indicate that the 

configurations reduce to the same 2-astral configuration.  In case of the symbols for m = 

30, some have a common factor 2; however, they are not disconnected, since in each case 

the symbol corresponding to entries one-half of the ones given would violate condition 

(****).  Equal lower-case letters attached to the symbols indicate that the symbols share 

one of the parentheses; while it is not clear what this commonality implies, it is signaled 

to ease possible investigations.   
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 The problem is that in the discussions in Sections 3.5, 3.6, and (so far) in 3.7 we 

did not worry about possible unintended incidences of points and lines.  However, such 

incidences may well happen, as is shown by the example in Figure 3.7.4.  The reason is 

easily discerned from the symbol of the configuration, as first pointed out in [B20].  In 

the language of the characteristic paths this happens when a segment of the path (or the 

line it determines) passes through a point that is in the same orbit as the endpoint of an-

other segment of the path, but is not itself a vertex of the path.  This is illustrated in Fig-

ure 3.7.4(b), where the characteristic path starts at the red point of the middle orbit and 

goes towards the innermost orbit of points, but the second segment contains the blue 

point of the orbit of the starting point.  That causes each point of this orbit to be on six 

lines. This description is easily translated in the language of the configuration symbols: 

As we step from one entry of the general symbol m#(s1,t1;s2,t2; ... ;sk,tk) to the next, a 

consecutive string of entries needs to be changed in only its first or else its last terms in 

order to obtain a valid symbol for an h-astral configuration with h < k and the same m.  In 

the 3-astral example in Figure 3.7.4, its symbol  12#(5,4;1,5;4,1) contains the string 

5,4;1,5.  If the last entry is changed to 4, the resulting symbol  12#(5,4;1,4)  corresponds 

to the 2-astral configuration we have seen in Figure 3.6.2.  Since the configuration in 

Figure 3.7.4 is selfdual, it is clear that there necessarily are lines that meet six of its 

points. We formulate this in the general case of k-astral configurations by the following 

requirement: 

(A8) The symbols of a k-astral configuration m#(s1,t1;s2,t2; ... ;sk,tk) should not contain 

a string such that changing one of the ends of the string results in a valid symbol for an h-

astral configuration with the same m and with h < k. 
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(a)      (b) 

Figure 3.7.4.  (a)  The trivial 3-astral configuration 12#(5,4,1,5,4,1) is not a configuration 

at all –– it is a prefiguration due to the presence of an orbit of points each incident with 

six lines, and an orbit of lines each incident with six points.  (b)  The explanation for this  

situation, as detailed in the text.  

Exercises and problems 3.7 

1. Find the symbols for the two configurations in Figure 3.7.5, and decide whether it 

is trivial, systematic or sporadic. Find all the other configurations that are in the same co-

horts. 

2. Find other examples of unintended incidences like the ones in Figure 3.7.4. 

3. Find all systematic configurations with m = 20, and draw three of them. 

4. The configuration in Figure 3.7.5a has its lines parallel in sets of six, three on 

each side of the center.  Find a 3-astral 4-configuration in which the points appear in col-

linear sets of six. 
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(a)      (b) 

Figure 3.7.5.  Identify these configurations. 

5. Is there a trivial 3-astral configuration in which the points are in collinear sets of 

six? 

6. Find the symbol of the configuration in Figure 3.7.6, and explain your findings. 

7.  Prove that the configuration (213) in Figure 3.7.1 is the only k-astral configuration 

(213) for any k. 
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Figure 3.7.6.  An interesting configuration. 
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3.8 k-ASTRAL CONFIGURATIONS FOR k ≥ 4 
 

 As in the preceding three sections, configurations with 4 or more orbits of points 

that are known in greatest detail are those k-astral ones in which a dihedral symmetry 

group acts transitively on the points (and lines) of k different orbits, and each orbit has 

the same number of points.  We shall discuss these first.  Although the definitions are 

completely analogous to the ones in previous cases, striking differences in properties led 

us to separate the present case from the cases of 2- and 3-astral configurations.  The main 

change is in the possibility of various unintended incidences not encountered earlier; 

hence it is clear that in a number of cases we can speak only of representations and not of 

realizations.  But before we get to that, let us review the definitions. 

 A k-astral 4-configuration (nk), with n = k·m, is a configuration with a dihedral 

symmetry group dm that operates transitively on each of  k  orbits of points situated at 

vertices of a regular m-gon, and  k  orbits of lines, provided all orbits have the same 

number of elements and each element is incident with two elements of the other kind 

from each of two orbits.  As detailed in Section 3.5, we can attach to each k-astral con-

figuration a well-determined set of mutually equivalent symbols, derived from the con-

sideration of the characteristic paths possible in the configuration. 

 This is illustrated in Figure 3.8.1, where a characteristic path starts at P0, and goes 

on to P1, and other points that are not labeled to avoid clutter. Since  P1 has symbol        

(2 // 1), and the following points of the characteristic path shown have symbols (5 // 3),  

(4 // 5), (1 // 2)  and (3 // 4), while the orbits have size 11, –– the symbol of this configu-

ration is 11#(2,1;5,3;4,5;1,2;3,4).  Hence it is a 5-astral configuration. 

 A similar procedure leads in the case of the symbol  9#(2,1;4,2;1,3;2,3;1,3) to the 

diagram shown in Figure 3.8.2(a).  Here we came face to face with a serious problem: 

Our graphics, which frequently show only (slightly elongated) segments that are neces-

sary to connect all points that are incident according to the symbol, are misleading.  Con-

figurations consist of lines, not segments, –– and if the segments we used are extended to 

the rim of the diagram, additional incidences become evident; thus, we do not have a  
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Figure 3.8.1.   A 5-astral configuration (554) with symbol 11#(2,1;5,3;4,5;1,2;3,4) and 

symmetry group d11. 

configuration at all.  Instead, we have a prefiguration, that can be interpreted as a repre-

sentation of the abstract configuration 9#(2,1;4,2;1,3;2,3;1,3). 

 As mentioned already in Section 3.7, the explanation of the problem is that the 

characteristic path essentially crosses itself at a configuration point. This is detectable 

from the symbol of the configuration, and leads to the following condition we repeat here 

from Section 3.7 in a slight reformulation; the condition was signaled by Boben and 

Pisanski in [B20]: 

(A8) The symbols of a k-astral configuration m#(s1,t1;s2,t2; ... ;sk,tk) should not contain 

a string of even length such that changing at most one of the ends of the string results in a 

valid symbol for an h-astral configuration with the same m and with h < k. 
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P0
P1

     
(a)      (b) 

Figure 3.8.2.    Problems with realization of 9#(2,1;4,2;1,3;2,3;1,3). 

 

 If condition (A8) is not fulfilled, the symbol m#(s1,t1;s2,t2; ... ;sk,tk) encodes for a 

representation by a prefiguration, and not for a realization by a configuration.  In the ex-

ample of Figure 3.8.2, the symbol can be written in the equivalent form 

9#(1,3;2,1;4,2;1,3;2,3). Then the string 3,2,1,4,2,1 can be replaced by 4,2,1,4,2,1, which 

leads to the trivial 3-astral configuration 9#(4,2;1,4;2,1). 

 The change in (A8) consists in the words "at most", which really mean that the 

string itself should be usable in a configuration symbol.  This could not have happened 

with 3-astral configurations, but can happen in the situation considered here. 

 As an example we show in Figure 3.8.3 the result of drawing the configuration 

that corresponds to the symbol 12#(5,4;1,4;1,4;5,4). The expected (484) configuration did 

not come about.  Instead, we obtained a prefiguration that looks as having three orbits of 

points and lines but points in one orbit are incident with six lines while lines of one orbit 

are incident with six points. 

 The explanation for the (mis)behavior of the symbols in these cases is the rather 

obvious failure of (A8): The characteristic path returns to one orbit three times; in other  
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P3
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Figure 3.8.3.  Given the symbol 12#(5,4;1,4;1,4;5,4) for a 4-configuration (484), the soft-
ware produced this result which has three orbits of points and three of lines; it would be a 
(364) configuration, if it were not for the middle orbit of points: Each appears to be on six 
lines! In fact, these are two coinciding points of the configuration, and the lines with span 
5 also represent two lines of the configuration. 

P3

P2

P1

P0

P4

 

Figure 3.8.4. For the symbol 18#(8,6;1,7;2,5;7,6) we obtain the prefigurations shown. It 
does have four orbits of lines, each incident with two points from each of two point or-
bits; but there appear to be only three point orbits, one of which consists of points inci-
dent with eight lines.  These actually represent pairs of coinciding points of th configura-
tion. 



  Page 3.8.5 

 

Figure 3.8.5.  The symbol 18#(8,6;7,5;2,7;1,6) leads to a prefiguration (polar to the one in 

Figure 3.8.4) in which each line of one orbit is incident with eight points (in four different 

orbits). 

 
Figure 3.8.6.  The characteristic path of the prefiguration corresponding to the 5-astral 
symbol 14#(5,1;3,2;4,3;2,5;1,4) contains the string 3,2,4,3,2,5; replacing its last entry by 
4 we get the symbol of the 3-astral trivial configuration 14#(3,2;4,3;2,4).  The blue point 
is a vertex of the characteristic path, but is also in the relative interior of a different seg-
ment of this path; hence an orbit of points that are on six lines each.  The line of that 
segment is clearly incident with six points, as are all lines in its orbit. 
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words, a proper string of the symbol already codes for a 4-configuration, and so does the 

remaining part, hence there are six or more lines through each point of the appropriate 

orbit.  In fact, the points of the middle orbit are doubled-up, and so are the span-5 lines. 

Other examples are given in Figures 3.8.4 and 3.8.5. 

 The example in Figure 3.8.6 shows that if the relative interior of a segment of the 

characteristic path contains the endpoint of another segment, unexpected incidences oc-

cur as well. 

 There is one more set of circumstances in which unexpected incidences of a dif-

ferent kind occur; it was also signaled by Boben and Pisanski in [B20]. It is illustrated by 

Figure 3.8.7, in which points of one orbit are on five lines while lines of one orbit contain 

five points. To avoid such incidences, the following condition is imposed by Boben and 

Pisanski beyond the ones we already require: 

 (A9) The symbol of a k-astral configuration m#(s1,t1;s2,t2; ... ;sk,tk) should not 

contain a string of odd length, such as  si,ti;si+1,ti+2; ... ;sj, such that 

  si + ti + si+1 + ti+2 +  ... + sj  is an even integer  and  

 Πi≤g≤j
  cos (sg·π/m)  =  Πi≤g≤j-1

  cos (tg·π/m) . 

 
Figure 3.8.7.  12#(3,2,3,4,2,3,1,3,4,1) is not a 4-configuration. 
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 Clearly, the 5-astral configuration 12#(3,2,3,4,2,3,1,3,4,1) in Figure 3.8.7 violates 

this condition: The sum of the string of the first five entries is 14, and  

cos π/4 cos π/4 cos π/6 = cos π/6 cos π/3. 

Hence the unintended incidences. 

Exercises and problems 3.8 

1. The symbol of the prefiguration in Figure 3.8.7 contains many pairs of equal en-

tries.  Explain why canceling any such pair would not yield an example violating condi-

tion (A9). 

2. The string s1,t1,s2 with m = 12 is in a sense the only known source of examples 

violating condition (A9).  By this is meant that one can obviously add the same numbers 

to the even and odd position (2 was added in the example of Figure 3.8.7), and one can 

use multiples of the string with the appropriate multiples of  m.  Decide whether there are 

any essentially different strings. 

3. Prove that no 4-astral configuration can violate condition (A9). 

4. The symbol that yielded the example in Figure 3.8.2 belongs to the cohort 

m#{{4,2,2,1,1},{3,3,3,2,1}} with m = 9, while the one in Figure 3.8.1 corresponds to 

m = 11.  Why are the results different in the two cases? 

5. Does the cohort 9#{{4,2,2,1,1},{3,3,3,2,1}} contain any geometrically realizable 

configurations? 

6. List all the configuration symbols for 4-astral configurations {284). 

7. Draw the (potential) configuration 7#(3,2;1,3;1,3;2,1;3,1) and describe what hap-

pens. 

8. Find some systematic families for 4-astral configurations, other than the ones that 

arise from an  h-astral configuration with h < k by insertion of matched pairs. 
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3.9 OPEN PROBLEMS 

 

 Among the most intriguing open problems concerning 4-configurations are the 

following. 

 1. Is there any analog for 4-configurations of Steinitz's theorem (Theorem 

2.6.1)? This theorem can be interpreted as saying that every connected combinatorial 

3-configuration can be represented geometrically in the plane if one incidence is 

disregarded.  How much of a combinatorial 4-configuration can be realized? 

 2. Can any of the cyclic configurations (n4) with generating lines {0,1,6,-3} 

or {0,1,5,-2}, described in Section 3.1, can be geometrically realized (for any n ≥ 18)?  

Cany any  cyclic 4-configurations be geometrically realized? 

 3. It is clear that there are some 4-configurations that can be geometrically 

realized in rational plane; as an example we may take the configuration LC(4) introduced 

in Section 1.1, and other similarly built configurations.  Can any astral (or k-astral) 

configuration that can be geometric realized (or represented) in the Euclidean plane be 

realized (or represented) in the rational plane?  (It is well known that this cannot be done 

in a k-astral way.) 

 4. The astral configuration (244) in Figure 3.6.2 and the 3-astral 

configuration (214) in Figure 3.7.1 have the property that the underlying combinatorial 

configurations have groups of automorphisms that act transitively on the flags of the 

configuration. (A flag consists of a line and a point, incident with each other.)  The 

configuration LC(4) mentioned above has the same property.  Do there exist any other 4-

configurations with a single orbit of flags (under automorphisms)? 
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