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CHAPTER 2. 3-CONFIGURATIONS. 
 

2.0 OVERVIEW 

 This is the longest of our chapters, reflecting not only the long history of the topic 

of 3-configurations to which the overwhelming majority of the early works was devoted, 

but also the much more recent discovery of the deficiencies in the original works of a 

century or more ago, and their correction.  We also present the recent developments that 

center on the study of configurations with a high degree of symmetry. 

 Section 2.1 investigates the existence of combinatorial, topological, and geometric 

configurations (n3) for various values of n. 

 In Sections 2.2 and 2.3 this is made more detailed by describing the efforts to 

determine the numbers of distinct configurations (n3) for specific values of n. These 

investigations started in the first period of the study of configurations more than a century 

ago, but have been resumed and advanced only in the recent past. 

 Section 2.4 is devoted to the attempts to construct all combinatorial configurations 

(n3) recursively. This goal seemed to have been achieved by V. Martinetti some 125 years 

ago –– but a few years ago his result was shown to be incomplete. The corrected result 

was obtained in the doctoral thesis of M. Boben! 

 Sections 2.5 and 2.6 present the result of the 1894 doctoral thesis of E. Steinitz.  

This is a remarkable work, even though it has a significant blemish in its geometric part. 

It is interesting that the last part of this work has remained undeciphered ever since 

Steinitz wrote it –– nobody claims to understand what he is claiming! However, it is clear 

that at least some parts of the claim are not true. 

 The next three sections represent recent developments. These are investigations of 

3-configurations with remarkably large cyclic or dihedral symmetry groups. 

 Section 2.10 deals with some unexpected aspects of duality and polarity of these 

configurations. 

 Finally, Section 2.11 makes explicit a few of the most intriguing problems about 

3-configurations. 
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2.1  EXISTENCE OF 3- CONFIGURATIONS 

 

Among the questions attacked and solved in the early years of the study of con-

figurations is the one we formulated as question (A) in Section 1.1.  We can now formu-

late it more specifically as follows: 

 

Determine all values of n such that there exists a combinatorial, or a topological, 

or a geometric configuration (n3). 

 

The complete answer to this problem is given by: 

 
Theorem 2.1.1.  Combinatorial configurations (n3) exist if and only if  n ≥ 7. 
 
Theorem 2.1.2.  Topological configurations (n3) exist if and only if  n ≥ 9. 
 
Theorem 2.1.3.  Geometric configurations (n3) exist if and only if  n ≥ 9. 
 
To prove Theorem 2.1.1 we note that the inequalities of Section 1.3 imply, for 

k = 3, that n ≥ 7.  Hence we only have to show that for each n ≥ 7 there exist a combina-

torial configuration (n3).  Of the various ways of fulfilling this task, probably simplest is 

the listing of a configuration table for a cyclic (n3), as illustrated in Table 2.1.1. We shall 

encounter this configuration repeatedly, and we reserve the symbol C3(n) for it.  Besides, 

the existence of topological and geometric configurations (n3) for  n ≥ 9  implies the exis-

tence of the corresponding combinatorial ones. 

 1 2 3 4 ..… n–3 n–2 n–1 n 

 2 3 4 5 ….. n–2 n–1 n 1 

 4 5 6 7 ….. n 1 2 3 

Table 2.1.1.  A configuration table for the cyclic combinatorial configuration C3(n) for  

n ≥ 7.  It also shows that for  n ≤ 6  this would not be a configuration, since some pairs of 

points would belong to two different lines. 

This completes the proof of Theorem 2.1.1.  
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In the exercises at the end of the section we shall enlarge upon the configurations 

C3(n), and other cyclic configurations. 

The configuration C3(7)  is known as the Fano configuration; it was described  

by Gino Fano in 1891 [F1, p. 111] in connection with his axiomatic studies of projective 

geometries.  In fact, it was found earlier (in 1888) by Schönflies [S2], who dismissed it 

by saying that "a configuration 73 with all points distinct does not exist", as well as by 

Schroeter [S6], also in 1888. Schönflies' assertion makes a limited sort of sense when one 

realizes that he was thinking of geometric configurations –– albeit in the complex projec-

tive plane! Schroeter was the first to stress the distinction between combinatorial and 

geometric configurations, and between geometric configurations in the real plane as dis-

tinct from the ones in the complex projective plane. 

The configuration C3(8) is known as the Möbius-Kantor configuration.  In the 

prehistory of configurations it was described by Möbius in 1828 [M20], who proved that 

it cannot be realized geometrically in the real Euclidean plane. The configuration was 

later described by Kantor in 1881 [K3], although not as a combinatorial configuration but 

as a configuration geometric in the complex plane.  Reye noted in 1882 [R2] that C3(8) 

does not exist as a geometric configuration in the real plane. In the same paper [K3] the 

three configurations (93) are described by Kantor for the first time, as geometric 

configurations in the real plane. 

To prove Theorems 2.1.2 and 2.1.3 it is sufficient to show that geometric configu-

rations (n3) exist for each  n ≥ 9, and that topological configurations  (n3)  do not exist for 

n = 7, 8. 

 
To establish the latter, we shall first prove a lemma. 

 

Lemma 2.1.1.  Let  C  be a family of pseudolines in the real projective plane, 

such that no point is incident with all members of C.  Then there is a point that is con-

tained in precisely two of the pseudolines in C. 

 

Such a point is customarily called an  ordinary point of the family  C. 
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Proof of the lemma.  If all intersection points of pseudolines in C are ordinary, 

there is nothing to prove. Otherwise, there exist “triangles” (that is, regions of the plane) 

bounded by three pseudolines and such that, at one of the vertices of this “triangle”, one 

of the pseudolines L incident with that vertex V enters the interior of the “triangle”.  In-

deed, start with any non-ordinary point of C, and three arbitrarily chosen pseudolines 

through V.  Then any pseudoline L* not through V will determine a triangle with the re-

quired properties.  See Figure 2.1.1.  Call such a triangle a good triangle.  Among the 

(possibly many) good triangles of C find the (or one) that has a minimal area.  Then the 

pseudoline L that enters the triangle at V must meet L* at some point P on the boundary 

of the “triangle”.  Now  P  has to be an ordinary point of C, since any pseudoline through 

P different from L and L* would belong to a “good” triangle with smaller area. 

 

 

V

L

L*
P

 
 

Figure 2.1.1.  Any vertex incident with three or more pseudolines of a family C as 

in Lemma 2.1.1 can serve as one of the vertices of a “good” triangle. 

 

Resuming now the proof of the non-realizability by pseudolines of any combina-

torial configuration (73), we note that if a realization were possible, then the seven points 

of such a configuration would account for 21 pairwise incidences of points and pseu-

dolines. On the other hand, seven pseudolines can have at most 7(7–1)/2 = 21 pairwise 
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intersections, that is, at most 21 pairwise incidences with points of the configuration.  

Thus all intersection points of the pseudolines would be at points of the configuration, 

hence triple points, and there would be no ordinary points – contradicting Lemma 2.1.1.  

It follows that  there is no realization of combinatorial configurations (73) by pseudolines.  

This completes the proof of this part of our assertion. 

Concerning the case of topological configurations (83), let us assume we have a 

realization C of such a configuration by pseudolines.  We begin by selecting one of them, 

say L.  It is met by six other pseudolines in the three vertices of C that are on L. Hence 

there is one pseudoline L* of C that meets L in an ordinary point, which is not a vertex of 

C.  Choosing the line-at-infinity to pass through that point, we can represent L, L* and 

the vertices of C incident with them as shown in Figure 2.1.2. 
L

L*

 
Figure 2.1.2.  Two of the pseudolines and the six vertices discussed in the proof. 

 
The remaining six pseudolines must all pass through the three vertices on L and 

through the three vertices of L*, as well as through the two remaining vertices of C. Let 

V be one of these two vertices; without loss of generality we can assume that it is in the 

“strip” between L and L*; then, since at the point of intersection the pseudolines must 

cross each other, the three pseudolines pass through V as schematically shown in Figure 

2.1.3. 

L

L*

V

 
Figure 2.1.3.  The arrangement of the pseudolines incident with the vertex V. 
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Now the last three pseudolines, that are incident with the last vertex of C, must be 

connected either by the scheme represented in Figure 2.1.4 by the dotted connections, or 

by the dashed ones. Since in either case two of them meet in a point (that therefore must 

be the last vertex) that is inaccessible to the third, it follows that the realization of (83) by 

pseudolines is impossible. 

 

L

L*

V

 
Figure 2.1.4.  The three dotted connections or the three dashed ones are schematic 

representations of the relative positions of the three pseudolines that should be incident 

with the last vertex  of C. 

 

The proof of the weaker result that geometric configurations (73) and (83) do not 

exist is much older and simpler. For example, Schroeter [S6] argues that, in the notation 

used in Table 2.2.2, if a geometric realization of the configuration (73) were possible, the 

points 2, 3, 4, 5 would generate a complete quadrangle (in the sense of projective geome-

try), with diagonal points 1, 6, 7.  But these points are collinear in (73) while diagonal 

points of a complete triangle cannot be collinear unless the starting points are collinear; 

hence there is no geometric configuration.  A different proof of the impossibility of geo-

metric realization of the (73) configuration appears in Bokowski-Sturmfels [B25, p. 39]; 

it relies on the method of “final polynomials”.  Essentially the same proof is used by Levi 

[L3, p. 95].  It shows that (73)  can be “realized” only in projective planes with character-

istic 2.  Sidorov's statement in [S15]  that (73) is realizable in the complex plane is plain 

wrong. 
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The method of "final polynomials" is used by Bokowski–Sturmfels [B25 p. 35] to 

show that (83) cannot be geometrically realized in the real plane, although it can be real-

ized in the complex plane. That result itself belongs to the “prehistory” of configurations; 

it appears (in somewhat different formulation) in Moebius [M20, p. 445], as described by 

Schroeter [S6, p. 239]. An explicit calculation of feasible coordinates of points of a reali-

zation of (83) by Moebius [M20] as well as by Levi [L3, p. 99], shows that such coordi-

natization is possible only using complex numbers. 

The only publication I am aware of in which the non-existence of topological 

configurations (73) and (83) has been considered (and proved) is Levi’s book [L3, pp. 95, 

100].  However, his proofs are quite laborious, and part of the argumentation in case of 

(83) is left to the reader to complete. Instead of our Lemma 2.1.1 Levi relies on a lemma 

(Satz 21, [L3, p. 85]) that we may formulate as follows: No topological configuration 

(nk) with k ≥ 3 contains as vertices all points determined by its pseudolines.  This is 

clearly a weaker version of the Lemma 2.1.1.  On the other hand, Kelly and Rottenberg 

prove in [K7] the stronger result that every family of  n  pseudolines, not all incident with 

one point, must determine at least 3n/7 ordinary points.  That result is a generalization of 

the well-known result of Kelly and Moser [K6] for families of straight lines.  This topic 

has had an interesting history, and is still subject of widespread interest. It is not possible 

to enlarge upon it here; the interested reader should consult [B28], where Section 7.2 pre-

sents details and gives a large number of references. 

 

In order to complete the proof of Theorem 2.1.3 (hence also of Theorem 2.1.2) we 

shall describe the construction of a suitable geometric configuration (n3). 

 

 We shall show that for  n ≥ 9,  the cyclic combinatorial C3(n) configuration of 

Table 2.1.1 can be realized as a geometric configuration of points and lines (see Figure 

2.1.5).  We begin by placing the first triplet on the  x-axis in a coordinate system, with 

point  2  at the origin  and point  4  at  x = 2;  we shall specify the location of the point  1  

shortly.  We draw a line through  2  with positive slope, and place on it  3  near to  2, so 
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that the line  3,4  has negative slope small in absolute value, and place  5  on the same 

line sufficiently far to the right so that  4,5  has positive slope.  On line  3,4  we locate  6  

so that its  x–coordinate is larger than the  x–coordinate of  5,  then on  4,5  we locate  7  

so that its  x–coordinate is larger than that of  6, and so on up to and including the line 

through  n–5  and  n–4  on which we locate  n–2  so that its  x–coordinate is larger than 

that of  n–3.  Clearly, all these steps can be carried out.  Now, the choice of location for 

vertex  1  determines the only possible position of vertex  n–1  (since it is on the already 

determined lines  1,n–2  and  n–4,n–3), as well as the position of vertex  n  (which must 

be on the by now determined lines  2, n–1  and n–3,n–2).  The only remaining question is 

whether the last triplet  1,3,n  is collinear –– and this depends on the choice of  1  (see 

Figure 2.1.5).  It is easy to check that if  1  is chosen to be on the  x–axis between points  

2  and  4  and near to  2 (see part (a) of Figure 2.1.5),  then the halfplane determined by 

the line  1,n  and containing the positive  x-axis contains the point  3  in its interior.  On 

the other hand, if  1  is chosen between  2  and  4  but near to  4 (see part (b)),  then  3  in 

not in the interior of that halfplane determined by  1,n  that contains the positive  x–axis.  

Due to the continuity of all construction steps, it follows that there must exist a position 

of vertex  1  for which the line  1,n  passes through the point  3  –– thus yielding the de-

sired geometric realization of the combinatorial configuration in question. ¨ 

 

It should be noted that the construction fails unless  n – 5 > 3;  this provides an 

explanation why this construction requires  n ≥ 9. 

 

This proof is quite analogous to the first published proof by Schroeter [S6].  The 

main difference is that in the last part, instead of the continuity argument used in our 

proof, Schroeter gives a purely geometric proof which utilizes properties of sets of points 

on cubic curves.  On this topic he published a book in the same year [S7].  The advantage 

of Schroeter’s proof over ours is that it shows that the cyclic configuration of Table 2.1.1 

can be geometrically realized, for every n > 9, by a linear construction – that is, with just 

a straightedge.  This implies that all these configurations can also be geometrically real-

ized in the rational plane.  In their combinatorial guise these configurations were studied, 

more or less simultaneously, by Schoenflies [S2] and Martinetti [M2]. 
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1

2
3

4

5

6

7

8

9

(a)

1

2
3

4

5

6

7

8

9

(b)  
 

Figure 2.1.5.  An illustration (for n = 9) of the construction of a geometric realization of 

the cyclic combinatorial configuration C3(n) from Table 2.1.1. 

* * * * * * 

 A few remarks seem appropriate at this time. 

 Early papers on configurations often considered configurations in the complex 

plane. Obviously, all geometric configurations as considered here (that is, in the real 

Euclidean plane) can also be considered as being in the complex plane. The interesting 

point is that in the complex plane Theorems 2.1.2 and 2.1.3 require modification: There 

exists a geometric configuration (n3) in the complex plane if and only if n ≥ 8. The fact 

that a configuration (83) exists in the complex plane was first announced by Kantor [K3], 

although in “prehistoric” formulation it goes back at least to Moebius [M20, p. 445]. 



Version10/18/08  Page 2.1.9 

 

 Like many other writers on configurations in the last quarter of the nineteenth 

century, Kantor [K3] did not make explicit what kind of configurations (n3) he is investi-

gating.  This is particularly amusing in connection with the configuration (83), which he 

describes as two quadrangles, each inscribed to and circumscribed about the other.  Only 

later does he make an off-hand remark that at most four of the eight vertices of the con-

figurations are real !!!  

 

 The cyclic configuration C3(7) is the only configuration (73); this will be proved 

explicitly in Section 2.2.  The configuration (73) does not appear in the paper by Kantor 

[K3] in which he considers configurations (n3) for n ≤ 9.  Although he relies on some 

combinatorial arguments, the combinatorial configuration (73) was probably invisible to 

him since it cannot be realized in the complex plane; it seems that he was considering 

only configurations that have realizations in the complex plane, although he is not ex-

plicit about that.  On the other hand, (73) appears in many other publications and guises –

– for example, as a Steiner triple system on 7 elements, as the projective plane of order 2, 

and several others. 

 

 Levi [L3] established Theorem 2.1.1 by considering generalizations of the cyclic 

configuration C3(n) in Table 2.1.1. The same idea appeared earlier, most explicitly in 

Schönflies [S2].  A generalization of this is the cyclic configuration C3(n,m), which  con-

sists of triples {j, j+1, j+m}, for 1 ≤ j ≤ n, all entries taken  mod n.  Such configurations 

were studied (with slightly different notation) by Levi [L3, p. 91].  Levi proved that 

C3(n,m) is a combinatorial configuration whenever 3 ≤ m < n/2.  He does not discuss 

their geometric realizability, and mentions no earlier works on any cyclic configurations.   

 

 There are familiar diagrams intended to illustrate the Fano (73) and Möbius-

Kantor (83) configurations, shown in Figure 2.1.6.  They are not topological configura-

tions, since they involve one "line" that is a circle.  If one of the incidences is not insisted 
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upon, then this line can be "opened up" and a geometric realization of the resulting sub-

figuration is obtained. 

1 2 3

4

56

7

1 2 3

4

56

7

8

 
Figure 2.1.6. Diagrams often used to illustrate the combinatorial Fano (73) and Moebius-

Kantor (83) configurations. The labeling shown is the "greedy" one: it uses a new mark 

only if unavoidable. 

Q1

Q3

Q4

Q5

Q6

Q7

Q2

L1 L2 L3 L4 L5 L6 L7

X X X

X X X

X X X

X X X

X X X

X X X

X X X
 

Figure 2.1.7. A Levi incidence matrix for the Fano (73) configuration, which shows that it 

is cyclic and selfdual.   
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Exercises and problems. 

 

1. Find the isomorphism between the labeling of the points of the configurations (73) 

and (83) in Figure 2.1.6 and the cyclic configuration C3(7)  and C3(8) . 

2. Use the illustration of the Moebius-Kantor (83) configuration given in Figure 

2.1.6 to find a Levi incidence matrix for it.  Can you use it to show that the configuration 

is selfdual? 

3. A general cyclic configuration C3(n,a,b) consists of triples {j, a+j, b+j}, for given 

a, b with 0 < a < b < n and for 1 ≤ j ≤ n, all entries taken  mod n.  The configuration 

C3(n) in Table 2.1.1 is, in this notation, C3(n,1,3).  Determine for which n, a, b is 

C3(n,a,b) a combinatorial configuration.  As a first step, investigate configurations 

C3(n,1,m). (This was done as early as 1895, by G. Brunel in [B30].) 

4. Is C3(n,1,4) geometrically realizable for some  n?  Generalize. 
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2.2 ENUMERATION OF 3-CONFIGURATIONS (Part 1) 

 

 We turn now to the presentation of the results known about the number of non-

isomorphic configurations (n3) of the three kinds, for each value of n — as far as these 

numbers are known.  As we shall see, this is not very far.  Moreover, we have to discuss 

some other questions concerning these enumerations. 

 

 For the purposes of this section, we shall denote by #c(n), #t(n) and #g(n) the 

number of non-isomorphic combinatorial, topological or geometric configurations (n3), 

respectively. We begin with: 

 

 Theorem 2.2.1.  The complete list of known numbers #c(n) , #t(n) and #g(n)  is 

given in Table 2.2.1. 

 

 We start by presenting the proofs of the enumerations for n ≤ 8. Following this we 

shall first discuss the case n = 9, then the rather unexpected situation for n = 10, and 

finally the cases of n ≥ 11. Some general considerations will be explained next, with 

exercises and problems to follow. 

 

 From Section 2.1 we already know that all three numbers are 0 for n ≤ 6. Now we 

first show that each of the (combinatorial) configurations (73) and (83) is unique.  This 

follows easily from the consideration of the formation of their configuration tables. For 

(73), starting with the three lines that contain 1 and then continuing by using the freedom 

of assigning labels to previously uncommitted points in the only possible way, we obtain 

the unique configuration table shown in Table 2.2.2.  For (83) we first note that since 

each point is connected (by a line of the configuration) to six other points, it is fails to be 

connected to a unique point. Designating the unconnected pairs by {1,5},  {2,6},  {3,7}, 

and {4,8}, a similar procedure leads to the unique configuration table shown in Table 

2.2.3. The uniqueness of these configurations has been known since early in the study of 
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configurations. The uniqueness of (83) seems to have been established first by Kantor 

[K3], while #c(7) = 1 was proved by Martinetti [M2, pages 3,4] ; for other proofs see, for 

example,  Levi [L3, pp. 94, 98], Hilbert–Cohn Vossen [H4]). 

 

 n #c(n) #t(n) #g(n) 

 ≤ 6 0 0 0 
 7 1 0 0 
 8 1 0 0 
 9 3 3 3 
 10 10 10 9 
 11 31 31 31 
 12 229 229 229 
 13 2,036 
 14 21,399 
 15 245,342 
 16 3,004,881 
 17 38,904,499 
 18 530,452,205 
 19 7,640,941,062 
 
Table 2.2.1.  The numbers of non-isomorphic configurations (n3) of the three kinds, for 
each n.  All known values are shown. 
 
 
 1 1 1 2 2 3 3 
 2 4 6 4 5 4 5 
 3 5 7 6 7 7 6 
 
Table 2.2.2.     A configuration table of the unique combinatorial configuration (73). 
 
 
 1 1 1 2 2 3 3 5 
 2 4 7 4 5 4 6 6 
 3 6 8 7 8 5 7 8 

 
Table 2.2.3. A configuration table of the unique combinatorial configuration (83). 

 Similar arguments can be applied to the determination of the different combinato-

rial configurations (93).  Easier to carry out is an application of the "remainder figures" 

method described in Section 1.4.  First comes the observation that each point fails to be 
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connected to precisely two other points.  Drawing an edge (segment) between any two 

unconnected points, we see that the unconnected pairs form one or more circuits. (This is 

the deficiency graph of this configuration introduced in Section 1.4.) Since a circuit has 

to have at least three points, there are four potential sets of circuits:  A single 9-circuit, a 

6-circuit and a 3-circuit, a 5-circuit and a 4-circuit, and three 3-circuits.  It is obvious that 

different sets of circuits imply that the configurations are not isomorphic, since any iso-

morphism preserves connected pairs of points, hence also disconnected pairs. Similarly to 

the earlier cases, it is possible to show that each case corresponds to a (unique) configura-

tion, except that the case of one 5-sided and one 4-sided circuits corresponds to no con-

figuration.  The reason for this is the following:  Assume that it is possible, and consider 

the lines incident with the vertices of the 4-circuit.  Two lines correspond to the “diago-

nals” of the 4-circuit, while each of the four vertices has to be on two additional lines, all 

distinct and different from the earlier two; this would require the existence of at least 10 

lines.  Hence such a possibility cannot lead to a configuration.  The result, using these or 

other arguments, appears in Kantor [K3], Martinetti [M2], Schroeter [S6], and again in 

Levi [L3, p. 103], Hilbert–Cohn Vossen [H4], Gropp [G23]. 

 Configuration tables of the three combinatorial configurations (93) are shown in 

Tables 2.2.4, 2.2.5, and 2.2.6.  All three of these configurations can be geometrically real-

ized; this was first proved by Kantor [K3], and more thoroughly analyzed by Schroeter 

[S6].  Representative examples of such realizations are shown in Figure 2.2.1, and the 

same representatives are shown in Figure 2.2.2 with the circuits formed by non-connected 

pairs of points. 

1 1 1 2 2 2 3 3 3 
4 5 6 4 5 6 4 5 6 
7 8 9 8 9 7 9 7 8 

Table 2.2.4. A configuration table for the configuration (93)1.  
 

1 1 1 2 2 2 3 3 4 
3 4 5 4 5 6 5 6 7 
7 6 8 8 7 9 9 8 9 

Table 2.2.5. A configuration table for the configuration (93)2.  
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1 1 1 2 2 2 3 3 3 
4 5 8 4 5 7 4 6 7 
7 6 9 6 8 9 5 9 8 

Table 2.2.6. A configuration table for the configuration (93)3.  
 

(93)1

1

2

3

4

5
6

7

8

9

(93)2

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8
9

(93)3  

Figure 2.2.1.  Examples of the three types of geometric configurations (93).  The claim by 
Steinitz [S19, p. 489] that H. A. Schwarz [S12] found the form of the configuration (93)3 
with 3-fold rotational symmetry is not correct. 
 

 

(93)1 (93)2 (93)3  
Figure 2.2.2.  The circuits formed by the non-connected pairs in the three types of geo-
metric configurations (93). 
 
 Concerning the (103) configurations, we start by presenting in Table 2.2.7 con-

figuration tables for all ten combinatorial configurations.  The existence of precisely ten 

non-isomorphic combinatorial configurations (103) has been established repeatedly, by 

more-or-less brute force enumeration; historical details and references will be given be-
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low.  In order to prove that these configurations are distinct, we shall use the concept of 

"remainder figures" which was introduced in Section 1.4: For each vertex of the com-

binatorial configuration (103) consider the three vertices that are not on any of the 

lines passing through the given vertex.  There are three possibilities concerning these 

three points: Either all three are on one configuration line, or they determine two lines 

of the configuration, or they determine three such lines (a trilateral or “triangle”).  

We shall denote the three possibilities by  I, V, ∆.  No other situations are possible. In-

deed, if the three points were collinear, but on a line that is not in the configuration, there 

would be nine configuration lines through them, and three additional lines through the 

original vertex – while only ten lines are available. But if the three points are not collin-

ear, they determine a triangle. If none of the three lines determined by the points were a 

configuration line, the configuration would again have to have at least 12 lines. On the 

other hand, if just one of the lines determined by the sides of the triangle were a line of 

the configuration, then there would have to be present in the configuration at least 1 + 2 + 

2 + 3 + 3 = 11 lines.  Thus, the three cases listed earlier are the only ones possible. 

 The above arguments that the remainder figure in case of (103) must be one of I, 

V, ∆  are taken from Schroeter [S8], together with his notation.  By very exhaustive and 

exhausting argumentation one can show that only ten combinations of the different re-

mainder figures (listed in Table 2.2.8) can occur in a combinatorial configuration (103), 

and that each corresponds to a unique isomorphism type of combinatorial configurations, 

represented by one of the ten configurations in Table 2.2.7. The detailed discussion of the 

possible combinatorial configurations depending on the kind and number of the remain-

der figures is spread over 22 pages in [S8]. It leads to the conclusion that each column in 

Table 2.2.8 corresponds to one and only one combinatorial configuration (103). 

As far as geometric realizations go, in Figure 2.2.3 are shown sketches similar to 

the ones in the first enumeration of the (103) configurations by Kantor [K4]; our Figure 

1.2.2 is a copy of one of the Kantor diagrams.  The diagram of (103)1 is easily checked to 

be an illustration of the Desargues configuration.  We shall encounter  (103)10 in Section 

2.6 as the astral configuration denoted 5#(2,2;1). 
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   (103)1         (103)2  
1 1 1 8 2 3 2 3 4 5 1 1 1 8 2 3 2 3 4 5 
2 4 6 9 4 5 6 7 6 7 2 4 6 9 4 7 6 5 6 7 
3 5 7 0 8 8 9 9 0 0 3 5 7 0 8 8 9 9 0 0 

   (103)3         (103)4  
1 1 1 8 2 3 2 3 4 5 1 1 1 8 2 3 2 3 4 5 
2 4 6 9 4 6 7 5 6 7 2 4 6 9 4 6 5 7 6 7 
3 5 7 0 8 8 9 9 0 0 3 5 7 0 8 8 9 9 0 0 

    (103)5         (103)6  
1 1 1 8 2 3 2 4 3 5 1 1 1 8 2 3 2 5 3 4 
2 4 6 9 4 7 5 6 6 7 2 4 6 9 4 7 6 7 5 6 
3 5 7 0 8 8 9 9 0 0 3 5 7 0 8 8 9 9 0 0 

    (103)7         (103)8  
1 1 1 2 4 6 5 3 7 2 1 1 1 3 5 7 2 6 4 2 
2 4 6 8 8 9 7 5 3 4 2 4 6 8 8 9 7 5 3 4 
3 5 7 9 0 0 8 9 0 6 3 5 7 9 0 0 8 9 0 6 

    (103)9         (103)10  
1 1 1 2 4 6 5 3 2 3 1 1 1 3 2 7 5 6 4 2 
2 4 6 8 8 9 7 5 7 4 2 4 6 8 8 9 7 5 3 4 
3 5 7 9 0 0 8 9 0 6 3 5 7 9 0 0 8 9 0 6 
Table 2.2.7.  The ten non-isomorphic combinatorial configurations (103), in the notation 
of Schroeter [{S2]. They were first determined by Kantor [K4], using other methods 
and different notation and labeling. 
 

 (103)1  (103)2  (103)3  (103)4  (103)5  (103)6  (103)7  (103)8  (103)9  (103)10 

I 10 4 2 6 1 1 0 0 0 0 
V 0 6 6 0 3 9 9 3 6 0 

∆  0 0 2 4 6 0 1 7 4 10 
 X VIII V II I IX III VI IV VII 
 B G D C H F E J K A 
Table 2.2.8.  The number of occurrences of the different remainder figures in the ten 
combinatorial configurations  (103). The last two rows give the notation by Martinetti 
[M2] and Kantor [K4 
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0
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0
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8

2

7

0
(103)9

 
Figure 2.2.3. Sketches of configurations (103), analogous to the ones presented in Kan-
tor’s paper [K4]. 
 

 One of the most striking features exhibited by Table 2.2.1 is the inequality  

#t(10) = 10 > #g(10) = 9.  This arises because the diagram in Figure 2.2.4, which appears 

to show a (103) geometric configuration (which is a cleaner drawing of the configuration 
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(103)4 in Figure 2.2.3), cannot in fact be realized by straight lines—although the dia-

gram clearly indicates that a topological realization is possible.  

 

6

0

2

1

7

4

3

5

9 8

 
Figure 2.2.4. An apparent geometric realization of the combinatorial configuration 

(103)4, which was also shown in Figure 1.2.2.  However, both diagrams are misleading. 

This configuration is not isomorphic to any configuration of points and (straight) lines.  

On the other hand, the “lines” are (very mildly curved) pseudolines, hence a topological 

realization of this configuration is possible.  

 

 The impossibility of a geometric realization of (103)4 can be established as fol-

lows.    

 The complete quadrangle  2,3,8,9  contains the three pairs of opposite sides 

23-1   28-4   29-5 

89-0   39-7   38-6 

while the complete quadrangle 6,7,9,0 contains the three pairs of opposite sides 

67-1   60-4   70-5 

90-8   97-3   96-* 
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By a basic theorem of projective geometry, the three pairs of lines of each quadrangle 

intersect the line 145 in three pairs of points of an involution. But these involutions must 

coincide, since two of the pairs coincide: 1 and 890∩145,  and  4 and 379∩145.  Then the 

point paired with 5 in the involution must be the intersection point of the three lines 145, 

368, 96*. This cannot be 6, since then 145 would contain four points; the only alternative 

is that 368 and 96* coincide – but then 368 would contain the fourth point 9. Hence the 

configuration (103)4 cannot be realized geometrically. 

This proof of the impossibility of a geometric realization of the configuration (103)4 is 

due to Schroeter [S8]. The difference between topological and geometric realizability 

seems to have been taken as a challenge by many people, leading to a variety of proofs of 

geometric non-realizability, or at least mention of it; see Carver [C2], Laufer [L1], van de 

Craats [V1], Glynn [G2], Killgrove et al. [K10], Sternfeld et al. [S22], and others.  

Zacharias [Z5] is not aware of the earlier works and attempts to enumerate all the (103) 

configurations. There are several errors in [Z5] (as well as in the review [T1] by To-

gliati); corrections appear in [Z7]. Some other publications discuss just the enumeration 

of combinatorial (103) configurations; for example, we may mention Betten and Schu-

macher [B15]. 

This situation makes it even more important to make sure that the remaining nine combi-

natorial configurations (103) are geometrically realizable. Following Schroeter [S8], we 

present here a method of stepwise construction for each of the nine geometric configu-

rations  (103).  The method leads to several important conclusions; among them are: 

the number of parameters needed to determine each of these configurations (that is, 

the number of "degrees of freedom"), the possibility of constructing each of them us-

ing only an unmarked ruler, and the possibility of realizing each in the rational plane 

(or, equivalently, with all vertices at points of the integer lattice).  Since these are 

quite non-trivial results, which can be found in few of the more recent publications, 

Schroeter's constructions are shown in Figure 2.2.5.  Naturally, each of these con-

structions requires justification, which is given in the paper; examples follow. 
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From the configuration table for (103)1 we see that the intersections (24,35) = 8, (26, 37) 

= 9  and  (46, 57) = 0 are collinear, hence by the Desargues' theorem the triangles 246 and 

357 are in perspective from a point – which in the table is identified as 1.  This justifies 

the construction in Figure 2.2.5.  Moreover, it enables one to find out how many degrees 

of freedom are there in the construction (precisely 11), and that the construction is linear. 

By this is meant that only systems of linear equations need to be solved, and hence that it 

can be carried out in the rational plane (the plane in which only points with rational coor-

dinates are considered). 

2

3

4

5

6

8

1

7

9

0

0 = (5  7)  (4  6)

8 = (2  4)  (3  5)

2, 3, 4, 5, 6  arbitrary;

1 = (2  3)  (4  5)

7  arbitrary on  (1 6)

9 = (3  7)  (2  6)

Configuration (103)1

1

 

6 5

4
3

2

1

9

p

7

8 0

Configuration 

(103)2

2, 3, 4, 5, 6  arbitrary;

9 = (2  6)  (3  5)

1 = (2  3)  (4  5)

p = (2  3)  (5  6)  auxiliary point

7 = (1  6)  (4  p)

8 = (3  7)  (2  4)

0 = (5  7)  (4  6)  
 

7

8
4

5

6

0

1

p

q

9

3

2

Configuration (103)3 4, 5, 6, 7, 8  arbitrary

0 = (4  6)  (5  7)

1 = (4  5)  (6  7)

p = (4  7)  (5  6)  auxiliary point

q = (1  p)  (5  8)  auxiliary point

9 = (7  q)  (8  0)

3 = (5  9)  (6  8)

2 = (7  9)  (4  8)
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Configuration  (103)5

1, 3, 5, 7  arbitrary

0  arbitrary on  (5  7)

6 = (3  0)  (1  7)

p = (1  5)  (3  7)  auxiliary point

q = (5  6)  )3  7)  auxiliary point

r = (3  5)  (6  p)  auxiliary point

9 = (1  q)  (0  r)

2 = (1  3)  (5  9)

4 = (1  5)  (6  9)

8 = (3  7)  (9  0)

1

3

5

7

0

6

p

q

r

9

2

4

8

 

2, 3, 4, 5, 7  arbitrary

1 = (2  3)  (4  5)

8 = (2  4)  (3  7)

p = (2  7)  (3  4)  auxiliary point

6 = (1  7)  (5  p)

9 = (2  6)  (5  7)

0 = (4  6)  (3  5)

2

3

4

5

7

8

1

p

6

9

0

Configuration (103)6

  

1, 2, 6, 8, 0  arbitrary

4 = (2  6)  (8  0)

9 = (2  8)  (6  0)

p = (1  4)  (2  8)  auxiliary point

q = (1  6)  (2  0)  auxiliary point

r = (6  0)  (p  q)

5 = (1  4)  (8  r)

7 = (1  6)  (8  r)

3 = (5  9)  (7  0)
2

6

8

0

4

9

3

7

5

rq

p

1
Configuration (103)7
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Configuration (103)8

1, 3, 4, 6  arbitrary

5 arbitrary on (1  4)

2 = (1  3)  (4  6)

p = (1  6)  (3  4)  auxiliary point

q = (3  4)  (5  6)  auxiliary point

r = (1  6)  (3  5)  auxiliary point

s = (3  6)  (5  p)  auxiliary point

8 = (2  s)  (q  r)

7 = (1  6)  (2  8)

9 = (3  8)  (5  6)

0 = (3  4)  (5  8)

 

1, 3, 6, 9  arbitrary

4  arbitrary on  (3  6)

5 = (1  4)  (3  9)

p = (1  3)  (6  9)  auxiliary point

q = (1  6)  (4  9)  auxiliary point

r = (1  9)  (3  6)  auxiliary point

8 = (5  r)  (p  q)

2 = (1  3)  (8  9)

7 = (1  6)  (5  8)

0 = (4  8)  (6  9)

1

3

6
9

4

5

p

q
r

8

2

7

0

Configuration (103)9
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Configuration  (103)10

1, 3, 4, 6  arbitrary

5  arbitrary on  (1  4)

2 = (1  3)  (4  6)

p = (1  6)  (3  4)  auxiliary point

q = (3  4)  (5  6)  auxiliary point

r = (3  6)  (2  p)  auxiliary point

8 = (1  q)  (5  r)

7 = (1  6)  (5  8)

9 = (3  8)  (5  6)

0 = (2  8)  (3  4)  
Figure 2.2.5.  The construction of the nine geometric configurations (103) following 

Schroeter [S8]. 

For the combinatorial configuration (103)2 we see that the triangles 246 and 357 are again 

perspective from point 1,  but the sides of the triangles 246 and 375 (in that order!) inter-

sect in the collinear points 8, 9 and 0, hence by Desargues they must be perspective from 

some point.  This is a point  p  that is not a point of the configuration.  The construction 

now follows.  Note that in this case there are only 10 degrees of freedom. 

Arguments of similar kinds can be made in the seven remaining cases.  They are ex-

plained in detail in Schroeter [S8].  The steps outlined with each construction enable the 

determination of the degree of freedom of each configuration. The result -- after taking 

into account that projective transformations account for eight degrees of freedom, which 

are not deemed essential in the present context – is shown in Table 2.2.9. 

 (103)1  (103)2  (103)3  (103)4  (103)5  (103)6  (103)7  (103)8  (103)9  (103)10 
 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 3 2 2 -– 1 2 2 1 1 1 

Table 2.2.9. The number of degrees of freedom beyond projective transformations, for 
each of the geometric configurations (103). 
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Exercises and problems. 

1. Since the configuration (73) is combinatorially unique, the configuration in Table 

2.1.1 for n = 7 must be isomorphic with the configuration in Table 2.2.2.  Find the map-

ping that transforms one into the other.  The same task for Table 2.1.1 for n = 8 and Table 

2.2.3. 

2. Verify the entries for (103)2, (103)4, and (103)9 in Table 2.2.8. 

3. Justify the numbers in Table 2.2.9. 

4. Explain and justify Schroeter's construction of the configurations (103)5 and 

(103)6. 

 

Figure 2.2.6. Two (103) configurations. 

5. For each of the two configurations in Figure 2.2.6 decide whether it is a "fake". If 

not, find the coordinates of its points, and determine with which of the configurations in 

Figure 2.2.5 it is isomorphic. 

6. Use the configurations tables of the (103) configurations to find the automorphism 

group of each. 

7. Is there a topological realization of the (103)4 configuration that has a nontrivial 

symmetry? 

8. In Section 1.7 we demonstrated that the configuration (103)9 has no geometric re-

alization with nontrivial symmetry. What about the configuration (103)5? 
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2.3 ENUMERATION OF 3-CONFIGURATIONS (Part 2) 

 Combinatorial configurations  (113)  were first enumerated by Martinetti [M2] in 

1887;  using the method we shall describe in the next section, he found that #c(11) = 31.  

The enumeration of these configurations was independently carried out by Daublebsky 

[D1] in 1894; he used a variant of the remainders method.  Diagrams supposed to show 

geometric realizations of all 31 combinatorial configurations (that is #g(n) = 31) were 

provided by Daublebsky in an appendix to [D2] in 1895 (shown in Figure 2.3.1 below; 

see also Figure 2.3.2).   

 Daublebsky states that all these combinatorial configurations can be realized as 

geometric configurations (that is, with points and straight lines) given by his diagrams, 

but does not give any justification beyond the intimation that he followed the method of 

Schroeter [S8].  An independent verification of the geometric realizability of all 31 con-

figurations  (113)  was provided only nearly a century later, by Sturmfels and White 

[S23], [S24] in 1988 and 1990, with a different method; we shall discuss this method a 

little later.  Sturmfels and White also proved that each of these configurations can be real-

ized in the rational plane, in other words, one can always draw the configurations so that 

the vertices are at points of the integer lattice. The value of #c(11) = 31 was inde-

pendently confirmed by Gropp (see [G8]) and by Betten et al. [B14], among others. 

* * * * * The first enumeration of the combinatorial configu-

rations (123) was carried out by Daublebsky [D2] in 1895, again using the method of re-

mainder figures.  He found that only 18 different remainder figures could possibly occur 

in such a configuration.  Through various arguments (described only in general terms) 

Daublebsky arrived to the conclusion that these remainder figures could be combined to 

yield something like 1600 configurations (123).  Then he “… drew a schematic diagram 

of each configuration on a separate piece of paper …” and determined for each the “re-

mainder system”, that is, a list of the different remainder figures occurring in the configu-

ration.  Finally, configurations with the same remainder system were investigated to see 

whether they are isomorphic.  This turned out to be the case in most—but not all—cases 
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(see Exercises 2.3.4 and 2.3.5).  Daublebsky presented the resulting 228 combinatorial 

configurations by their configurations tables (in the form he gave them, these take 23 

pages!!!).  He also gave some other data and provided drawings for geometric realiza-

tions of a few of the configurations.  In a later paper [D3], Daublebsky gave results of his 

investigations of the groups of automorphisms of each of the 228 combinatorial configu-

rations (123).  However, not all of these are correct.  The first independent enumeration 

of the combinatorial  (123)  configurations was carried out only in 1990, by Gropp (see 

[G8]).  It showed that Daublebsky missed one, so that there are in fact #c(12) = 229  such 

configurations.  Gropp published the configuration table of this additional configuration 

in [G13] and communicated it to me; the table can also be read off from the illustrations 

in the more readily available [D10] and [G25].  As with configurations (113), the 229 

combinatorial configurations (123) have been independently enumerated (by two differ-

ent methods) in [B14].  Even so, Dolgachev [D8] in 2004 still quotes #c(12) = 228. 

 The only published proof that all 228 combinatorial configurations (123) found by 

Daublebsky are geometrically realizable was given only recently, by Sturmfels and White 

[S23], [S24].  Sturmfels and White also proved that all these  (123)  configurations are 

realizable in the rational plane.  In a private communication, B. Sturmfels showed that the 

"new" combinatorial configuration found by Gropp is also geometrically realizable, even 

in the rational plane; a diagram is shown in Dorwart – Grünbaum [D10] in 1992. 

 The numbers  #c(n)  of combinatorial configurations for 13 ≤ n ≤ 19 were deter-

mined by various computer programs.  For 12 ≤ n ≤ 14 these values were first found by 

Gropp [G8], for n = 15 by Betten and Betten, [B11]; the values for 16 ≤ n ≤ 18 in Table 

2.2.1 are from Betten, Brinkmann and Pisanski [B14].  The value #c(19) = 7,640,941,062 

was determined by these authors and published in [B19] and [G46].  However, there is no 

information available about the possibilities of realization of the combinatorial configura-

tions (n3) for n ≥ 13 by topological or geometric configurations, beyond individual exam-
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ples –– these will be discussed in the following sections.  This is not very surprising in 
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Figure 2.3.1. (first half). 

 

Figure 2.3.1 (second half). The diagrams of the (113) configurations, from Daublebsky 

[D2]. 
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Figure 2.3.2. Diagrams of Daublebsky’s configurations (113)4 and (113)5 redrawn for 
better visibility. 
 

view of the number of combinatorial configurations. As shown in Table 2.2.1, this num-

ber is well above 2000 for n = 13, and increases by factors exceeding 10 for larger n.   

 This completes the discussion of the data in Table 2.2.1. The only additional in-

formation that is available is that #c(n) > #t(n) for all  n ≥ 14, and that #t(n) > #g(n) for all  

n ≥ 16.  The former happens due to the existence of disconnected configurations – that 

is, configurations that are disjoint unions of two or more configurations, between the 

elements of which there are no incidences.   

 As an example, consider the (143) which consists of two disjoint copies of the 

Fano configuration (73), or the (153) formed by disjoint copies of (73) and (83); the latter 

was implicitly recognized as disconnected by Betten and Betten [B11], the former is ex-

plicitly mentioned by Gropp [G7].  Since disconnected configurations arise as unions of 

smaller configurations, it is easy to determine the number of such configurations for all n 

≤ 19.  Since the (73) and (83) set-configurations are not geometrically realizable, the 

smallest geometrically realizable disconnected configurations are the six arising as unions 

of two configurations (93).  The same is true for topological configurations. 
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 On the other hand, the inequality between the numbers #t(n) and #g(n) of topo-

logical and geometric configurations for n ≥ 16 is a consequence of the existence of topo-

logical configurations of the kind illustrated by the scheme in Figure 2.3.3.  Due to the 

theorem of Pappus, if this configuration scheme is rendered with straight lines instead of 

line segments, the points A2, B2, C2, and F3 are seen to be collinear.  Hence this is a su-

perfiguration and not a geometric configuration; clearly, this is not a problem if pseu-

dolines are used.  This example can be understood as arising by a "melding" of the Pap-

pus configuration (93)1 and the Fano configuration (73).  (Note that the Fano part is miss-

ing one incidence, and this subfiguration is realizable by straight lines.)  This construc-

tion can be modified in various ways.  For example, instead of the Fano configuration 

one could use any (n3) configuration, and instead of the Pappus configuration one could 

use Desargues' configuration (103)1.  This completes the proof of #t(n) > #g(n) for all  n ≥ 

16.  It is not known whether #t(n) = #g(n) for n = 13, 14, 15.  

L

M

A1

A2

B1C1

A3B3
C3

B2
C2

F2

F1

F4
F3

F7

F6

N

F5

 

Figure 2.3.3.  Pappus’ theorem implies that the points A2, B2, C2, and F3 are collinear,  

hence this does not realize a configuration (163).  It is obvious that using pseudolines the 

unwanted incidence can be avoided. 
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 This ignorance is part of a larger open question.  The single example establishing 

#t(10) > #g(10) differs in one important respect from the examples just given with n ≥ 16: 

The latter are only 2-connected, while the combinatorial and topological (103)4 is 

3-connected.  The lack of any other 3-connected examples leads to 

Conjecture 2.3.1.  Every 3-connected topological configuration  (n3) with n ≥ 11 is geo-

metrically realizable. 

* * * * * 

 The Schroeter constructions explained and illustrated above would nowadays be 

said to be generic constructions, the terminology supposing to indicate that it applies in 

run-of-the-mill situations.  In fact, if understood literally –– that all the choices can be 

made arbitrarily, with only the stated restrictions –– the constructions may fail to lead to 

the configurations they are supposed to yield. Instead, superfigurations may result due to 

"accidental" incidences.  This is illustrated in Figure 2.3.4. 

 

6

5

4
8

7

p

1

0 q

2

9

3

 
Figure 2.3.4. Failure of the Schroeder construction of the configuration (103)3: The line 

890 contains the point 1. Notation is the same as in Figure 2.2.5. 

 It is hard to understand that no publication on configurations during the classical 

period even mentioned the possibility of superfigurations arising in the construction of 

geometric configurations.  This is astonishing since the study of accidental incidences in 
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the Desargues configuration was already old hat at that time.  In Figure 2.3.5 we show a 

Desargues superfigurations, with a line on four points and a point on four lines.  The ex-

ceptional point and line are shown in contrasting color.  In the paper [S22] Sternfeld et al. 

study possible superfigurations of (103) configurations (and more general incidence sys-

tems), both combinatorial and geometric.  We conjecture: 

Conjecture 2.3.2.  Every geometric configuration (n3) with n ≥ 10 admits superfigura-

tions with at least one pair of "accidental" incidences. 

 It is worth mentioning that the three (93) configurations do not have limiting posi-

tions that are superfigurations.  On the other hand, the Pappus configuration (93)1 has rep-

resentatives in which an additional point incident with three lines, or a line incident with 

three of the points, or both, can be found.  The last alternative is illustrated in Figure 

2.3.6.  It is not known whether many other configurations have this property. 

     

Figure 2.3.5.  A superfiguration arising from the Desargues configuration (103)1 through 

multiple incidences. The point and line of perspectivity are shown in teal. 

 

1. Find the remainder systems of Daublebsky’s configurations (113)4 and (113)5 

shown in Figure 2.3.2, and use them to show that these are distinct configurations. 
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3. Find a superfiguration of the Desargues configuration that has three points and 

three lines incident with four elements of the other kind –– or prove that such a configu-

ration cannot exist. 

4. Consider the two (123) configurations from Daublebski's paper [D2] shown in 

Figure 2.3.7, with their labels as given by Daublebski.  Although they are tantalizingly 

similar, show that they are not isomorphic. 

5. Determine whether the two (123) configurations in Figure 2.3.8 are isomorphic, 

and whether any is isomorphic with either of the configurations in Figure 2.3.7. 
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Figure 2.3.7.  Two configurations (123) from [D2]. 
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Figure 2.3.8.  Two (123) configurations. 
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2.4 GENERAL CONSTRUCTIONS FOR COMBINATORIAL  

 3-CONFIGURATIONS 

 

 From the start of investigations of configurations, the problem of constructing 

all configurations (n3) for each value of n attracted considerable attention. Many of 

the results on that topic have been presented in Sections 2.2 and 2.3 for specific small 

values of  n.  However, already in 1887 Martinetti [M2] described an inductive proce-

dure that can be used to generate the  (n3)  configurations if all configurations with 

fewer points are known.  He illustrated his method by determining all configurations  

(n3)  with  n ≤ 11, starting from the Fano configuration (73). As mentioned in Section 

2.3, his enumeration of the 31 configurations (113) was correct.  However, one of his 

claims was unfounded: He considered the enumeration of geometric configurations 

(n3) to be the same as the enumeration of the combinatorial (n3).  This claim was also 

stressed in the review [L54] of [M2] by E. K. Lampe. As we have seen, #c(n) = #g(n) 

for  n = 11 and 12, but not for n = 10 and certainly #c(n) ≠ #g(n) for all n ≥ 14.  In the re-

maining part of this section, we consider only combinatorial configurations, even though 

we speak of “points” and “lines”. 

 The central idea of Martinetti’s construction is the following:  Assume that in 

a combinatorial (n3) configuration we have two "parallel" lines (that is, lines of the 

configuration that have no point of the configuration in common). If  [A, A', A"]  and  

[B, B', B'']  are such lines and if  A  and  B  are on no line of the configuration, then 

we delete the two parallel lines and introduce a new point  C,  together with the three 

lines  [A, B, C],  [A', A", C],  [B', B", C].  This is illustrated in Figure 2.4.1.  Clearly, 

this leads to a combinatorial configuration ((n+1)3). A configuration is called reduci-

ble if it can be obtained from a smaller one by the process just described; otherwise it 

is irreducible.  Martinetti's main result is the claim that for each  n  there are very few 
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irreducible  (n3)  configurations, and he purports to give a complete description of all 

irreducible configurations.  More precisely: 

 Martinetti’s claim.  A connected  (n3)  combinatorial configuration is irre-

ducible if and only if it is one of the following: 

 (i) The cyclic configuration C3(n) with lines  [j, j+1, j+3]  (mod n), for  n ≥ 8; 

 (ii) n = 10m for some  m ≥ 1,  and the configuration is the one described below 

and denoted  M(m);  M(1) is the Desargues configuration  (103)1. 

 (iii) n = 9,  and the configuration is the Pappus configuration  (93)1. 

 (iv) n = 10,  and the configuration is  (103)2  or  (103)6. 

 Martinetti’s combinatorial configuration  M(m)  can best be explained as con-

sisting of  m  copies of the family of the ten points indicated by solid dots in Figure 

2.4.2, and the ten solid lines shown there.  The jth copy is joined to the (j+1)st by iden-

tifying  A’’’j , B’’’j , C’’’j with  Aj+1, Bj+1, Cj+1,  respectively; all subscripts taken  

(mod n). 

 

A

A’

A”

B

B’

B”

A’

A”

B’

B”

A

B

C

 
Figure 2.4.1. Martinetti’s addition of a point and a line to a combinatorial configura-

tion (n3). 

 Martinetti’s proof is, not surprisingly, involved and long. The result was quoted 

or mentioned many times over the next century; see, for example, Steinitz [S19, pp. 486-

487], Steinitz-Merlin [S21, pp. 153 – 154], Gropp [G7], [G8], [G25], [G30], Carstens et 

al. [C1].  In some of these it was noticed that Martinetti should have included con-
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nectedness among the requirements of his claim.  Moreover, in lecture notes for my 

configurations courses in 1999 and 2002 I wrote: 

I have not checked the details, and I do not know it as a fact that anybody has.  

The statement has been accepted as true for these 115 years, and it may well be 

true.  On the other hand, Daublebski's enumeration of the  (123)  configura-

tions was also considered true for a comparable length of time ... 

As it turned out, my suspicion has been vindicated by Boben [B16], [B17].  He 

showed that Martinetti’s list of irreducible configurations is incomplete.  The problem 

in Martinetti’s proof arises as follows.  When constructing  M(m), we attach to each 

other  m  copies of the “module” in Figure 2.4.2 as indicated above, but stop before 

attaching  M(m) to M(1).  Martinetti formed that attachment “straight”, by identifying 

A’’’n  with A1, and similarly for the B’s and C’s, thus obtaining M(m). However, as 

shown by Boben, that attachment can be done in “twisted” ways as well; two such 

attachments yield irreducible configurations which we may denote by  M*(m) and 

M**(m).  These are obtained by identifying A’’’n with C1,  B’’’n with B1, and C’’’n 

with A1  for the former, and A’’’n with C1,  B’’’n with A1, and C’’’n with B1  for the 

latter.  A separate argument shows that the three resulting configurations are non-  

Aj

Cj

Bj

Aj’
Cj’

Bj’ Aj”

Cj”

Bj”

Aj”’

Cj”’

Bj”’

Oj

 
Figure 2.4.2. The “module” used in the Martinetti construction.  Only the ten solid 
dots and the ten solid lines form one module. 
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isomorphic for every  m.  With this modification, we have the following corrected 

version of Martinetti’s result: 

Theorem 2.4.1. (Boben [B16], [B17]) A connected  (n3)  combinatorial configuration 

is irreducible if and only if it is one of the following: 

 (i) The cyclic configuration C3(n) with lines  [j, j+1, j+3]  (mod n), for  n ≥ 7; 

 (ii) n = 10m for some m ≥ 1, and the configuration is one of M(m), M*(m) or 

M**(m) described above. For m = 1 these are the configurations (103)1, (103)2 and 

(103)6  (in the notation used in Section 2.2). 

 (iii) n = 9,  and the configuration is the Pappus configuration  (93)1. 

A remarkable aspect of the situation is that all the irreducible configurations  

(n3)  with  n ≥ 9  are geometrically realizable by straight lines in the Euclidean plane.  

For the cyclic configurations we have seen this in the proof of Theorem 2.1.3. A dif-

ferent construction, involving cubic curves, was given by Schroeter [S6] in 1888.  For 

the configurations M(m) the realizability is almost obvious from Figure 2.4.2, and can 

be proved in general. 

Concerning configurations (n3) for particular values of  n ≥ 13,  there is very 

little specific information available in print.  Gropp [G13] applied Martinetti's theo-

rem to enumerate the combinatorial configurations with up to 14 points.  He reports 

that there are  2036  combinatorial configurations  (133),  and  21,399  combinatorial 

configurations  (143).  These numbers were confirmed by [B14]; this paper reports 

the numbers  #c(n) of combinatorial configurations (n3) for  n ≤ 18,  see Table 2.2.1. 

The number  #c(19) was reported in [B19] and [G46]. 

One of the combinatorial configurations  (143)  consists of two disjoint copies 

of the  (73)  configuration, and is therefore not geometrically  realizable.  It is not 

known whether the other  (133)  and  (143)  combinatorial configurations are geomet-
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rically realizable.  Clearly, analogous disconnected and non-realizable configurations 

exist for all n ≥ 14. However, even if considering only connected configurations, the 

statement in Steinitz [S19, p.490] and Steinitz-Merlin [S21, p.158] that for  n ≥ 11  all  

(n3)  combinatorial configurations are "probably realizable" is contradicted by the ex-

ample in Figure 2.2.8 (from [D10], see also Gropp [G25]), which shows that the 

statement is invalid even if restricted to configurations that are  "connected" and "re-

alizable by pseudolines".  (In the example in Figure 2.2.8, the left part of the figure 

has all but one of the incidences of the Pappus configuration, and therefore by Pappus' 

theorem the line  L  must be incident with the point  P.)  It is not known whether the  

(163)  in Figure 2.2.8 is the smallest configuration with these properties.  We shall 

discuss this and related question in Sections 2.5 and 2.6 dealing with a remarkable 

result of Steinitz. 

* * * * * 
Levi [L3, p. 93] mentions the possibility of obtaining a combinatorial configura-

tions ((n+1)3) from the configurations (n3).  He achieves this by manipulating Levi inci-

dence matrices in a way that is equivalent to the Martinetti method illustrated in Figure 

2.4.1.  However, Levi does not mention Martinetti, or irreducible configurations –– nor 

does he claim that all ((n+1)3) configurations are obtainable in this way. 

 

Exercises and problems 2.4. 

1. Prove that all the irreducible configurations with at least nine points specified in 
Theorem 2.4.1 are geometrically realizable by points and straight lines. 

2. Decide whether the (123) configurations in Figures 2.3.7 and 2.3.8 are reducible 
or irreducible. If any is reducible, to which irreducible one does it ultimately reduce?  Is it 
possible for one configuration to reduce to different irreducible configurations? 

3. Investigate the reducibility of the cyclic configurations C3(n,1,4). 

4. Give a formulation of Theorem 2.4.1 that is valid for all 3-configurations. 
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2.5 STEINITZ’S THEOREM – THE COMBINATORIAL PART 
 
 

As we have seen in previous sections, the question whether a given combinatorial 

(or topological) 3-configuration can be geometrically realized is very hard. This is the 

reason the 1894 PhD thesis of Ernst Steinitz [S17] is remarkable in its generality: Al-

though Steinitz fails in completely characterizing the realizability of combinatorial or 

topological 3-configurations, he come as close to doing so as anybody since then. 

Steinitz's claim (in our terminology).  Every connected combinatorial 

3-configuration (n3) has a geometric realization by points and lines as a #1-subfiguration 

in the Euclidean plane; moreover, the point and line of the ignored incidence can be arbi-

trarily chosen. 

Recall from Section 1.3 that a #1-subfiguration of a combinatorial configuration 

is a family of points and (straight) lines that satisfies all the incidence requirements ex-

cept possibly one that is ignored, and has no additional incidences. 

In the next section we shall see that this claim is not correct. However, even the 

weaker result that Steinitz’ arguments actually establish (see Theorem 2.6.1) is remark-

able in several ways.  Steinitz’ proof has two parts, a combinatorial and a geometric. The 

combinatorial part is correct, and was much ahead of its time. However, the geometric 

part is defective; we discuss this in the next section.  We start with the combinatorial part 

of Steinitz' theorem, and first recall from Section 1.3 a useful definition. 

 A configuration table for a combinatorial configuration is said to be orderly if 

every row of the table contains all the points (hence contains each precisely once).  For 

example, the configuration table in Table 2.1.1 is orderly, and the configuration tables in 

Sections 1.3 and 2.2 are not orderly. 

 The following is a basic result, due to Steinitz [S17].  

 Theorem 2.5.1. Every combinatorial k-configuration admits an orderly configura-
tion table. 
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A statement that Theorem 2.5.1 holds for  k = 3  appears in Martinetti [M2], with-

out any justification or hint of proof.  The majority of later writers do not mention the re-

sult – much less its proof – although many seem to accept it as selfevident.  On the other 

hand, the statement in Page and Dorwart [P1] regarding this result is incorrect, as are the 

consequences deduced by them from the erroneous statement.  It is interesting, as 

stressed by Gropp [G26], that Steinitz’s result is very well known in combinatorics, but 

under a different name and credited to other people.  It is considered a part of the branch 

of combinatorics called matching theory.  (For this discussion, a  matching in a graph is a 

collection of disjoint edges that contain all the nodes.) In this guise Steinitz's result from 

1894 was independently discovered by König [K13] in 1916; in modern terminology 

König's theorem can be formulated it as: Every bipartite graph having all nodes of the 

same valence has a matching.  This statement is completely equivalent with Theorem 

2.5.1, although neither König nor many later writers seem to have been aware of 

Steinitz’s theorem.  In still another guise, Steinitz’s theorem has been generalized by the 

theorem of P. Hall [H1] in 1935 concerning the existence of systems of distinct represen-

tatives.  For details and proofs see, for example, Roberts [R5, Chapter 12] or Brualdi 

[B29, Chapter 9].  None of these authors is aware of Steinitz either, although the idea of 

Steinitz’s proof is central to the topic. 

 We shall start by presenting a proof of this result, and then discuss some of its 

corollaries.  Our proof is modeled after Steinitz's presentation, but using what I hope is a 

better notation. For easier understanding of the proof, a worked-out example is given 

later in the section.  Except for the names of the points and lines, the steps in the example 

are precisely parallel to those of the proof.  In contrast to most of the proofs of the equi-

valent results mentioned in the preceding paragraph, Steinitz's proof is constructive; it 

can be used to find effectively an orderly configuration table, convenient for geometric 

constructions.  We shall see such an application in Section 5.2. 

 Given a fixed combinatorial configuration  (nk),  the first goal is to define a 1-to-1 

correspondence between points and lines such that each point is incident with (that is, is 

contained in) the corresponding line.  If we have such a correspondence the first step in 

the proof is complete.  We can certainly start constructing the correspondence by a 
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greedy algorithm: We pick an arbitrary point and pair it with one of the lines that are in-

cident with it; then we chose a point not on this line, and assign it to one of the lines con-

taining it, then a point on neither of these lines, etc.  Continuing with such a selection as 

long as possible, we find ourselves at the end in the following situation (adjusting the no-

tation as appropriate and convenient): 

 The points in a subset A  = {a1, a2, ... , ap}  of the set of configuration points have 

been assigned to the lines of the subset A  = {A1, A2, ... , Ap}  of the set of configuration 
lines, so that  aj ∈ Aj   for   j = 1, 2, ... , p.  We can assume that  p < n,  since otherwise 

we would be done with the first part of the proof.  Hence there is a set B  = {b1, b2, ... , 

bq}  of points of the configuration, and a set B  = {B1, B2, ... , Bq}  of lines of the configu-
ration, such that no point in  B   is incident with any line in B ;  clearly,  q = n – p.  Now 

we shall describe a procedure by which we shall change some of the assignments be-
tween points in A  and lines in A , so that it will be possible to modify and extend the as-

signment to include one point in B  and one line in B . 

 Let  B  be an arbitrarily chosen line in B ,  and let A0  be the subset of A  consist-

ing of the points of  B.  We denote by A0  the set of lines in A  that are associated with the 
points of A0.  Let A1 ⊆ A  \ A0  be the set of points of A  not in A0  that are on lines of 

A0,  and let  A1  be the set of lines associated with the points in A1.  Next, let A2 ⊆     

A \(A0 ∪ A1)  be the set of points of A  not in A0 ∪ A1  that are on lines of A1,  and let 

A2  be the set of lines associated with the points in A2.  We continue with assignments of 

this kind till we reach an  r  such that A r+1 is empty.  This clearly has to happen due to 

the finiteness of the configuration.  Let now A* = A0 ∪ A1 ∪  ... ∪ A r and A** = A \A*.  

Note that A* is the disjoint union of the sets A0, A1,  ... , A r.  Let  A*  and  A**  be the 

sets of lines associated with the points in A* and A**, respectively. 

 We now pick a line  L0 ∈ A0 ∪ A1 ∪  ... ∪ A r  such that  L0  is incident with at 
least one point  b  of B ,  so that  b ∈ L0.  (Such a line always exists, by a simple counting 

argument that will be given below.)  Let  p0  be the point of A*  that corresponds to  L0;  

then  p0  belongs to a well-determined set A s  for some  s ∈ {0, 1, ... , r}.  Then  p0 ∈ L1  

for some  L1 ∈ As-1, and let  p1  be the point of As-1 that corresponds to  L1.  Continuing 
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in this way we reach a line  Ls ∈ A0  and the corresponding point  ps ∈ A0.  Finally, 

there is a line  B ∈ B  such that  ps ∈ B.  Notice that we have the chain of incidences and 
correspondences 

b ∈ L0 ↔ p0 ∈ L1 ↔ p1 ∈ ... ∈ Ls ↔ ps ∈ B. 

Next, we change for the points of this chain the assignments with which we started by 

making  b  correspond to  L0,  p0  to  L1,  ps-1  to  Ls,  and  ps  to  B.  Thus we have now a 

new 1-to-1 correspondence which decreased the size of the sets  B   and B .   

 Repeating the procedure a finite number of times leads to an assignment of every 

point of the configuration to a line that is incident with it; this completes the first step of 

the proof, except for the demonstration of the assertion that we always can pick a line    

L0 ∈ A*  which contains a point of B .  If this were not the case then all points of B  

would  have to belong to A**, since they do not belong to lines in B  either.  But this is not 

possible, since the cardinalities of A**  and A**  are the same due to the correspondence 

established at the beginning, and all incidences of points in A** are with lines in A**  

and vice versa –– implying that no line in A**  can be incident with any point of B . 

 For the second step we rewrite the configuration table in such a way that for each 

line (that is, each column) the point assigned to it is in the first row.  Then the first row 

contains all the points, each once.  The other rows of the configuration table form now a 

configuration  (nk-1),  for which we repeat the steps we just did for the original configu-

ration.  Continuing in this way, we clearly reach an orderly configuration table in a finite 

number of steps. �  

 It may be mentioned that when we have only two rows to deal with, a simple in-

terchange of the order of the entries in some columns may be used instead of the more 

complicated procedure used in the general case. 

We next illustrate the algorithm used in the proof of Theorem 2.5.1 by an exam-

ple, the construction of an orderly configuration table for the combinatorial configuration  

(144)  given below. 
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 A B C D E F G H J K L M N  P . 

 a a a a b b b c c c d d d e 
 b f g h g h e h e f e f g f 
 c k n p k m p k m n k q m g 
 d m r q q n r r q p n r p h 
 
We select the starting assignments as follows: 
 
 A B C D E F G H J K L M N  A  

 a f g h b m e c q n d r p  A  

 

and rewrite the table as  
 
 A B C D E F G H J K L M N P 

 a f g h b m e c q n d r p e 
 b a a a g b b h c c e d d f 
 c k n p k h p k e f k f g g 
 d m r q q n r r m p n q m h 
 
so that the assigned points are in the first row for better visibility.  We are left with 
 
{k} = B     {P} = B . 
 
We put: 
 

A0 = {e, f, g, h} = set of points on  P, which happens to be the only line of B .  Then 

A0 = {G, B, C, D} = associated set of lines of A . 

A1 = {b, p, r, a, m, n, q} = points of A \ A0  on lines of A0. 

A1 = {E, N, M, A, F, K, J} = associated set of lines of A . 

A2 = {d, c} = points of A \ (A0 ∪ A1)  on lines of A1. 

A2 = {L, H} = associated set of lines of A .  Finally 

A3 = empty. 

Hence we have   
 

A* = A0 ∪ A1 ∪ A2 = {a, b, c, d, e, f, g, h, m, n, p, q, r} 
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A** = A  \ A*   in this case empty but need not be empty in general. 

 

Now we pick a line of A0 ∪ A1 ∪ A2  that contains an element of B .  In our case there is 

only one such element,  k,  and we have a choice of lines:  B,  E,  or  L.  In each case we 
can form a chain: 

k ∈ B ↔ f ∈ P     or 

k ∈ E ↔ b ∈ G ↔ e ∈ P      or 

k ∈ L ↔ d ∈ N ↔ p ∈ G ↔ e ∈ P and use it to change the assignments. 
 
We use the last, and it leads to a rewritten table: 
 
 A B C D E F G H J K L M N P 

 a f g h b m p c q n k r d e 
 b a a a g b e h c c d d p f 
 c k n p k h b k e f e f g g 
 d m r q q n r r m p n q m h 
 
Now we deal in the same way with the last three rows. 
 
 A B C D E F G H J K L M N  A  

 b a n p g h e k c f d q m  A  

 

Then we are left with 
 
{r} = B     {P} = B  

 

This time we put: 
 

A0 = {f, g, h} = set of points on a line (P)  of B . 

A0 = {K, E, F} = associated set of lines in A . 

A1 = {c, p, k, q, b, n} = points of A \A0  on lines of A  0. 

A1 = {J, D, H, M, A, C} = associated set of lines in A . 

A2 = {e, m, d, a} = points of A \ (A0∪A1)  on lines of A1. 
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A2 = {G, N, L, B} = corresponding set of lines in A . 

A3 = empty. 

Then we put: 

A* = A0 ∪ A1 ∪ A2 = {a, b, c, d, e, f, g, h, m, n, p, q, r} 

A** = A \A* = in this case empty (need not be empty in general) . 

Now we pick a line of A0 ∪ A1 ∪ A2  that contains an element of B . 

In our case there is only one such element,  r,  and we have a choice of the lines  C  and  
G.  In each case we can form a chain: 
r ∈ C ↔ n ∈ F ↔ h ∈ P  
r ∈ G ↔ e ∈ J ↔ c ∈ K ↔ f ∈ P. 

We shall use the former to change the assignments. 
 
 A B C D E F G H J K L M N P 

 a f g h b m p c q n k r d e 
 b a r p g n e k c f d q m h 
 c k a a k b b h e c e d p f 
 d m n q q h r r m p n f g g 
 
Making interchanges in columns   C, E, G, J, K, N  we finally reach the orderly table 
 
 
 A B C D E F G H J K L M N P 

 a f g h b m p c q n k r d e 
 b a r p g n e k c f d q m h 
 c k n a q b r h m p e d g f 
 d m a q k h b r e c n f p g 
 
in which each point appears in every row. 

* * * * * 

 Before proceeding with the next step in our study of Steinitz's theorem and its 

ramifications, we recall from Section 1.3 the concept of "multilaterals". A multilateral  
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(93)3  

Figure 2.5.1.  Some examples of multilaterals, in the three configurations (93) shown in 
Figure 2.2.1.  The first is a 6-lateral with sequence of points 1,4,2,5,3,6 (1) in the 
configuration (93)1.  The second is 9-lateral, with sequence of points 1,8,3,7,5,9,4,2,6 (1); 
since this multilateral involves all points (and hence also all lines) it is a Hamiltonian 
multilateral. The last diagram shows a trilateral 7,8,9 (7), and a 6-lateral 1,6,3,5,2,4 (1). 
Note that another 6-lateral is 1,5,2,6,3,4 (1).  The 3-lateral and either of the 6-laterals 
taken together form a multilateral decomposition of the configuration  (93)3. 

(often inconsistently called "polygon" in the literature) is any sequence of distinct points 

and distinct lines of a configuration that can be written as P0, L0, P1, L1, … , Pr-1, Lr-1, Pr 

(= P0), with each Li incident with Pi and Pi+1 (all subscripts understood  mod r).  Some 

examples of multilaterals are shown in Figure 2.5.1.  If the last point is not required to 

coincide with the first one, we are dealing with a multilateral path. A family of multilat-

erals in a configuration, that contains all points and all lines but each just once, is called a 

multilateral decomposition of the configuration. We shall return to the topic of multilat-

erals later (for example, in Chapter 5). 

 Our next aim is to modify an orderly configuration table in a way that will pre-

serve its orderly character but will be useful for the geometric steps. We assume that a 

line and one if its points are selected to be ignored in the geometric implementation, and 

that, as before, the configuration is connected.  We also assume that we are concerned 

with a 3-configuration. 

 First, the rows are permuted so that the selected point of the selected line is in the 

first row. Note that since the table is orderly, this yields a correspondence (possibly dif-
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ferent from the one we started with) in which each point is associated with a line that 

contains it.  As mentioned earlier, and as is easily seen, by possibly interchanging the or-

der of the columns (that is, lines) the orderly configuration table can be rearranged to 

show the multilateral decomposition in such a way that the lines of each constituent mul-

tilateral occur consecutively.  In each of the multilaterals we can assume that the point in 

the last position in one column is in the middle position in the following column (under-

stood modulo length of the multilateral). We rearrange the columns in such a way that the 

multilateral that contains the chosen line is placed last, and the selected line is chosen as 

the last line in the multilateral.  If the multilateral is Hamiltonian, this part of the proof is 

completed. Otherwise, since the configuration is connected, at least one of the points of 

the last multilateral must be associated to (that is, be in the first row of) a line which is 

not in the multilateral.  Choose the multilateral containing this line to be the next-to-last, 

and the line in question to be its last line.  Then some point of this multilateral must be 

associated with another multilateral not used so far, and we continue in the same way.  At 

the end we reach what we may call an arranged configuration table.  This proves 

 Theorem 2.5.2.  Every connected 3-configuration has an arranged configuration 

table. 

 As an illustration, we show in Table 2.5.2 an orderly configuration table of a con-

figuration (143).  Rearranging the columns so as to make the multilateral decomposition 

visible, we obtain the arranged configuration table, Table 2.5.3. 

 

 A B C D E F G H J K L M N P 
 c k n a q b r h m p e d g f 
 d m a q k h b r e c n f p g 
 b a r p g n e k c f d q m h 

Table 2.5.2. An orderly configuration table of a connected combinatorial configuration 

(143). 
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 A M P N K B J L C D E F H G 
 b q h m f a c d r p g n k e 
 c d f g p k m e n a q b h r 
 d f g p c m e n a q k h r b 

Table 2.5.3.  A rearranged configuration table of the (143) configuration of Table 2.5.2, 
in which the lines of each multilateral appear as consecutive columns.  The point e of line 
G was chosen as the exceptional point, so its row is the first one.  The line G is the last 
line of its multilateral, which is the last multilateral.  Each multilateral is specified by 
rows 2 and 3 of the table.  The table is arranged, in the sense described earlier. 

We shall see in the next section how such an arranged multilateral decomposi-

tion can be used geometrically.  Here we shall conclude the section by discussing cer-

tain ramifications of the results we have seen so far. 

Corollary 2.5.3.  Every connected k-configuration  C, with k ≥ 2, admits mul-

tilateral decompositions. 

Indeed, any two rows of an orderly configuration table determine, by the 

above, a multilateral decomposition of  C. 

Corollary 2.5.3.  Every connected k-configuration C, with k ≥ 2, is 

2-connected. 

Proof.  Assume that  C  is a connected k-configuration such that, without loss 

of generality, there is a line  L  for which for suitable elements  R' and R" there is no 

R'-to-R" multilateral path that misses  L.  By the connectedness of  C, there is a multi-

lateral path  M  that uses  L,  that is, there are two points  Q' and Q" of L that are part 

of this path  M.  In an orderly configuration table of  C, permuting the rows if neces-

sary, we may put  Q' and Q"  in the last rows of the block  L.  Let  S  be a multilateral 

decomposition of  C  determined by the last two rows of this orderly configuration 

table.  Then one of the multilaterals of this decompositions uses the points Q' and Q".  

But since the multilateral is a circuit, there is a multilateral path (formed by the lines 

other than L) that connects Q' and Q".  Substituting this path for the one that origi-
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nally connected  R' and R" eliminates the use of  L.  Hence the assumption that each 

path between  R' and R" uses L is incorrect, and so  C is 2-connected. 

We shall discuss additional connectedness results in Section 5.1. 

 

 

Exercises and problems 2.5. 

1. Use the procedure applied in the proof of Theorem 2.5.1 to replace the configura-
tion table in Table 2.5.4 by an orderly configuration table. 

  a b c d e f g h i j k l m n 
  1 1 1 1 2 2 2 3 3 3 4 4 6 7 
  2 5 6 10 3 5 8 4 5 11 5 9 7 8 
  4 8 9 13 9 6 12 6 7 12 10 11 10 9 
  7 11 12 14 10 14 13 8 13 14 12 13 11 14 
Table 2.5.4.  A (144) configuration table. 

2. Find orderly configuration tables for the two (123) configurations in Figure 
2.5.2. 
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Figure 2.5.2.  Two (123) configurations. 
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3. Justify the statement:  Any selection of two rows of an orderly configuration 

table defines a multilateral decomposition of the configuration.  List all multilateral 

decompositions resulting from possible choices of the rows in the orderly configura-

tion tables found in Exercise 2.5.2  for the configurations (123) shown in Figure 2.5.2. 

4. Justify the statement:  For every k-configuration C and every multilateral decom-
position of C, there is an orderly configuration table in which the multilateral decomposi-
tion can be obtained from the first two rows of the table. 

5. Modify the proof of Theorem 2.5.1 to establish the following strengthening: 
Every combinatorial k-configuration admits an orderly configuration table in which 
an arbitrarily chosen line is the last line of the table. 
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2.6 STEINITZ’S THEOREM – THE GEOMETRIC PART 
We turn now to a consideration of the geometric part of Steinitz’s claim.  We re-

call from Section 2.5 the claim from Steinitz' PhD thesis [S17]: 

Steinitz's claim.  Every connected combinatorial 3-configuration has a geometric 

realization by points and lines as a #1-subfiguration in the Euclidean plane; moreover, the 

point and line of the ignored incidence can be arbitrarily chosen. 

Recall from Section 1.3 that a #1-subfiguration of a combinatorial configuration 

is a family of points and (straight) lines that satisfies all the incidence requirements ex-

cept possibly one that is ignored, and has no additional incidences. 

By our definition, which coincides with the definition generally used, a geo-

metric configuration (nk)  is a family of  n  points and  n  (straight) lines such that 

each point is incident with  k  lines, and each line is incident with  k  points.  The in-

tention of this definition is that each of the points and lines is incident with precisely  

k  objects of the other kind.  Even though this requirement often was not explicitly 

stated, in many instances it was stated and it has been taken as self-understood by all 

nineteenth century writers on configurations. 

However, the following situation does arise:  We start with a combinatorial con-

figuration and find a set of points and a set of straight lines which fulfill the incidence 

requirements of the combinatorial configuration.  In other words, every combinatorial 

incidence corresponds to a geometric incidence.  However, it is possible that the points 

and lines we found have additional geometric incidences, not specified in the combinato-

rial configuration.  As mentioned in Section 1.3, in such a case we shall say that the 

points and lines form a representation (or superfiguration, or weak realization are 

terms also used) of the combinatorial configuration.  It may happen that a different choice 

of points and lines will result in a geometric configuration without additional incidences; 

if it is necessary to stress this fact, we shall say that we have a realization (or, if there is 

need for a more specific expression, a strong realization). But, as is easy to see, some 

combinatorial configuration admits only superfigurations. 
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For example, consider the combinatorial configuration given by Table 2.6.1.  A 

superfiguration is shown in Figure 2.6.1, in which the line H passes through the point  m  

although they are not combinatorially incident according to Table 2.6.1.  (This configura-

tion is isomorphic to the one in Figure 2.2.6.) The reason that every geometric presenta-

tion of this configuration by points and lines is a representation (and not a realization) 

lies in the fact that the hexagon  abcdef  has vertices that alternate on the two lines  A  

and  B,  and therefore the three points  g, h, m  are collinear by the Pappus theorem.  

More complicated examples can have several unintended geometric incidences –– in fact, 

there is no upper bound on the possible number of such incidences. In Figure 2.6.2 we 

show a topological configuration (183) such that each of its representations in a #2-

superfiguration.  This possibility is also ignored in the Wikipedia article [W5] on Ernst 

Steinitz (as of February 4, 2008). 

A more detailed analysis of this topic will be presented in [B18]. 

A B C D E F G H I J K L M N O P 

a b c d e f g h i j k l m n o p 

e d h m f a c g j k l p b i n o 

c f d e g h b i o n m j a p l k 

Table 2.6.1. A combinatorial configuration (163). 
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Figure 2.6.1.  A representation of the combinatorial configuration (163) given by Table 

2.6.1. 
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Figure 2.6.2.  A topological configuration which can be realized by straight lines only as 
a #2-superfiguration. 
 
 

The above preamble to the geometric part of Steinitz’s theorem about geometric 

“realizations” of combinatorial 3-configurations was needed to set the stage for dealing 

with this rather remarkable result and its history. The following result is what Steinitz 

actually proved: 

Theorem 2.6.1.  For every connected combinatorial 3-configuration and every choice of 

one incident point-line pair, there is a selection of distinct points and (straight) lines 

which realize all the incidences except possibly the incidence of the chosen line with the 

chosen point. 

 In other words, every connected 2-configuration has a near-representation in the 

Euclidean plane, in which the point and line of the ignored incidence can be arbitrarily 

chosen.  As shown by the example in Table 2.6.1 (and illustrated in Figure 2.6.1) there 

are combinatorial configurations for which no near-representation is a near-realization. 

(The "near" part of these terms is meant to convey that one incidence is disregarded.) 
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Figure 2.6.3.  Frequently shown illustrations of Steinitz's theorem, by 1-subfigurations of 

the Fano (73) and Möbius-Kantor (83) configurations. 

 Note that, since the chosen line is incident with only three points (one of which is 

the chosen point), it is in every case possible to find a curve of degree at most two (even a 

circle, unless there is a straight line), incident with these three points. 

 There is no indication in any of the writings of Steinitz or other mathematicians 

during the 20th century that they were aware of the fact that Steinitz’s claim as formulated 

by him is not valid, since it pretends to prove strong “near-realizability”.  The first indica-

tion (known to me) of the awareness that the theorem actually established by Steinitz has 

to be formulated in terms of weak “near-realizations” –– that is, near-representations, as 

we did above –– was in a talk by T. Pisanski [P3], at a meeting in Ein Gev (Israel) in 

April 2000.  The fact that some combinatorial 3-configurations have only geometric rep-

resentations and no geometric realization was also noticed by W. Kocay and R. Szy-

powski [K12] in 1999 and by Glynn [G3] in 2000; neither work mentions Steinitz.  

 Proof of Theorem 2.6.1.  Starting from a connected combinatorial configuration 

(n3) given by a configuration table, the first step is to convert the table into an orderly 

table.  This is possible by Theorem 2.5.1.  Next, the rows are permuted so that the excep-

tional point of the exceptional line is in the first row. Note that since the table was or-

derly, this yields a correspondence (possibly different from the one we started with) in 

which each point is associated with a line that contains it.  As mentioned earlier, and as is 

easily seen, by possibly interchanging the order of the columns (that is, lines) the orderly 

configuration table can be rearranged to show the multilateral decomposition in such a 

way that the lines of each constituent multilateral occur consecutively.  We rearrange the 
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columns in such a way that the multilateral that contains the chosen line is placed last, 

and the selected line is chosen as the last line in the multilateral.  If the multilateral is 

Hamiltonian, this part of the proof is completed. Otherwise, since the configuration is 

connected, at least one of the points of this multilateral must be associated to (that is, be 

in the first row of) a line which is not in the multilateral.  Choose the multilateral contain-

ing this line to be the next-to-last, and the line in question to be its last line.  Then some 

point of this multilateral must be associated with another multilateral not used so far, and 

we continue in the same way.  At the end we reach what we called an arranged 

configuration table.   

 As an illustration, we show in Table 2.6.2 an orderly configuration table of a con-

figuration (143).  Choosing as the exceptional elements the point  e  and the line G, and 

rearranging the columns so as to make the multilateral decomposition visible, we obtain 

Table 2.6.3. 

 
 A B C D E F G H J K L M N P 
 c k n a q b r h m p e d g f 
 d m a q k h b r e c n f p g 
 b a r p g n e k c f d q m h 

Table 2.6.2. An orderly configuration table of a connected combinatorial configuration 
(143). 

 
 

 A M P N K B J L C D E F H G 
 b q h m f a c d r p g n k e 
 c d f g p k m e n a q b h r 
 d f g p c m e n a q k h r b 

Table 2.6.3.  A rearranged configuration table of the (143) configuration of Table 2.6.2, 

in which the lines of each multilateral appear as consecutive columns.  The point e of line 

G was chosen as the exceptional point, so its row is the first one.  The line G is the last 

line of its multilateral, which is the last multilateral.  Each multilateral is specified by 

rows 2 and 3 of the table. 
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 In an abbreviated form, using just the names of the vertices (second entries in the 

list of points in each column) and the lines to which they belong, this multilateral decom-

position can be written as: 

c  A  d  M  f  P  g  N  p  K  |  k  B  m  J  e  L  n  C  a  D  q  E  |  b  F  h  H  r  G              (1) 

 With line G and point e chosen as the exceptional elements, we make the final 

rearrangement of the columns. The multilateral containing G is placed last, and G is 

placed as the last line of it.  The entry  b  of the first column in this multilateral is the 

first point which is associated with a line not in the multilateral. Since  b  is associated 

with the line A of the first multilateral, this multilateral is placed next-to-last, and  A  

is placed at its last column; then M is the first line, and the corresponding first point is  

d.  Therefore the multilateral preceding it has  L  as its last line (column).  The rear-

ranged multilateral decomposition (1) has now the following representation: 

n  C  a  D  q  E  k  B  m  J  e  L  |  d  M  f  P  g  N  p  K  c  A  |  b  F  h  H  r  G        (2) 

From this decomposition (2) it is obvious that each element (point or line) is 

incident with at most two elements that come before it, except that the last line (G  in 

the present case) is incident with three of the preceding points.  (For the other ele-

ments, the situation is indicated by the single or double underline of the symbols.)  

This means that elements incident with no previous element can be chosen completely 

arbitrarily in the plane, those incident with one previous element can be chosen freely 

as a point on a line or as a line through a point, while those incident with two earlier 

ones are determined without any freedom of choice.  The last triplet may be collinear 

but need not be –– in which case a second degree curve can be passed through it.  ¨ 

For clarity, the final rearranged configuration table is shown in Table 2.6.4.   

 C D E B J L M P N K A F H G 
 r p g a c d q h m f b n k e 

 n a q k m e d f g p c b h r 

 a q k m e n f g p c d h r b 

Table 2.6.4. The multilateral decomposition (2) in configuration table form. 
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The geometric subfiguration that resulted from a set of particular choices is 

shown in Figure 2.6.4.  Figure 2.6.5 illustrates the possibility of making choices 

which happen to satisfy the last incidence as well, hence yield a proper geometric re-

alization of this configuration (143). 
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Figure 2.6.4. A “near-realization” following Table 2.4.4 of the configuration (143) of Ta-
ble 2.6.1, in which all the incidences except the one of point e and line G are satisfied. 
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Figure 2.6.5. A realization of the configuration (143) of Table 2.6.4, in which all the in-
cidences are satisfied. 
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 As is clear from the above proof, at no point has there been made any claim that 

the lines and/or points we introduce have no additional incidences.  It has been tacitly as-

sumed that the construction is not undermined by (mis)using the freedom of choice to 

intentionally place points on already present points or lines they are not supposed to be 

incident with, and analogously for the selection of lines.  However, as shown at the be-

ginning of this section, there are circumstances in which unintended incidences cannot be 

avoided.  The remarkable fact that this possibility has been ignored for a century is nearly 

incomprehensible. 

 One still remaining mystery in this context is the fact that all known instances in 

which unwanted incidences in geometric realizations of combinatorial 3-configurations  

are unavoidable deal with configurations that are connected (hence 2-connected) but not 

3-connected.  It is possible that the following holds: 

Conjecture 2.6.1.  Every 3-connected combinatorial 3-configuration admits geometric 

realizations by points and straight lines with no incidences except the required ones. 

 Steinitz’s theorem 2.6.1 was proved in [S17] in 1894.  In 1999 it was independ-

ently discovered by Kocay and Szypowski [K12] in a different setting, and in 2000 by 

Glynn [G3]. A presentation of the above material and other aspects of Steinitz’s theo-

rem appears in [G46]. 

* * * * * 

 The realization in Figure 2.6.5 was obtained by utilizing continuity: In the 

near-realization shown in Figure 2.6.4 the point e is above the line G, while by choos-

ing some other appropriate positions for the points used in the construction a near-

realization can be obtained in which the point e is below the line G. This is a situation 

that seems to be quite general. Steinitz made the same observation in [S17]. Steinitz 

devoted more than half the dissertation [S17] (24 pages) to a consideration of ways in 

which one could guarantee that the final step in the above proof can be made using a 

straight line instead of a curve of degree 2.  While this might be another interesting result, 

I have not been able to follow the exposition in [S17].  (In fact, I know of nobody who 
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claims to have understood and verified this part of Steinitz's thesis.)  The opaqueness of 

the exposition can best be seen from the last two sentences of Steinitz's introduction to 

this part of the work (see [S17, p. 22]): 

... Without any particular assumptions about the configurations, a method 

will be presented below following which one can reach a linear presentation. 

However, for each configuration to which we want to apply this method, an addi-

tional investigation is necessary since the method becomes illusory in certain 

cases. [My translation and italics] 

In mentioning [S17] in the survey [S19, p. 490], Steinitz is equally uninformative. 

Stating that his method is an extension of Schroeter's approach in [S6], [S8], he ends the 

explanation by stating: 

Schroeter's method can be generalized so that it is applicable to most con-

figurations n3. [My translation and italics] 

It seems that the "method of Schroeter" is rooted in arguments due to Möbius in 

the early part of the nineteenth century, in particular in [M20]. 

 However, even if the proof in [S17] is valid, and if somebody were to make the 
exposition understandable –– this would prove only that every connected configuration 
has representations. It would not be a proof of Conjecture 2.6.1 for realizations, as 
claimed by Steinitz. Indeed, we know from examples such as the one in Figure 2.6.1 that 
some representable configurations are not realizable, hence Conjecture 2.6.1 cannot be 
generally valid for realizations. 
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Exercises. 

1. Find a geometric construction analogous to the one given above, for the com-
binatorial configuration of Table 2.5.1, but with the choice of point  q  and line  D  as 
the exceptional elements.  

2. Find the analogous construction for the combinatorial configuration which has 
as its table the first three rows of the orderly table obtained in the worked example in 
Section 2.5, and with  point  a  and line  A  as exceptional elements.  Using suitable 
software, see whether this configuration has a proper realization. 

3. Apply the methods of construction we used here to the configurations (103)3 
and (103)4 of Table 2.2.7. 

4. Find a connected combinatorial configuration for which every representation 
is a #3-subfiguration, that is, contains at least three unwanted incidences. 

5. Show that there are connected combinatorial configurations (n3) for which in 
every representation the number of unwanted incidences is at least c·n, for some constant 
c > 0.  Open problem: What is the best possible c? 
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2.7 ASTRAL 3-CONFIGURATIONS WITH CYCLIC SYMMETRY GROUP 

 

 We have seen in Section 1.5 that a 2-astral 3-configuration must have two orbits 

of points and two orbits of lines.  By the convention introduced there we simplify the ex-

pressions and call such configurations astral, for short. 

 Lemma 2.7.1.  If an astral 3-configuration has one orbit of points at infinity, it 

must have reflective symmetries. 

 Proof.  If such a configuration has no reflective symmetries, then the orbit of 

points in the finite plane has to coincide with the vertices of a regular polygon; the only 

alternative would be that they are the vertices of an isogonal polygon – but their equiva-

lence requires reflection.  Each of the points at infinity is on three lines, two of which are 

in the same orbit.  Even if these two are related by a rotational (halfturn) symmetry, they 

must be parallel and of the same length, and by the rotational symmetry the third line 

parallel to them must pass through the center of the polygon.  Thus all lines come in trip-

lets of parallel lines, the middle one serving as mirror for the other two; these mirror lines 

are spaced at equal angles, hence they are mirrors of the configuration.  Hence we again 

are led to reflective symmetries. � 

 As a consequence of Lemma 2.7.1 we see that astral configurations (n3) that have 

a cyclic group of symmetries are necessarily configurations in the Euclidean plane.  As-

tral 3-configurations with a cyclic group of symmetries and no mirrors will be called 

chiral. (Note that this does not mean that all astral configurations contained in the 

Euclidean plane have a cyclic group of symmetries. We shall consider those with dihedral 

symmetry in Section 2.8.)  The points of a chiral astral configuration are at the vertices of 

two concentric regular polygons with m = n/2 vertices each; the polygons clearly have 

different sizes.  As we shall show next, such 3-configurations depend (up to similarity) on 

three additional integer parameters.  The notation we shall use for these configurations is  

m#(b,c;d); a detailed explanation follows, and an illustration is given in Figure 2.7.1. 
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 The lines of one geometric transitivity class are the diagonals of one of the poly-

gons, those of the other class are diagonals of the other polygon; each line of the configu-

ration contains two points of one polygon and one of the other.  The numbers of edges of 

the polygons bridged (spanned) by the diagonals are the integers  b  and  c  of the symbol; 

usually we shall follow the convention that  m/2 > b ≥ c > 0, but the relative size of b and 

c is not of intrinsic importance and it is sometimes convenient to disregard the conven-

tion.  The corresponding points (vertices) are accordingly called the  b-points resp.  c-

points, and the lines are  b-lines and  c-lines.  Starting from an arbitrary  b-point  denoted  

B0,  and proceeding in an arbitrary orientation we label the other  b-points consecutively  

B1, … , Bm-1.  Each  b-line is then of the form Li = aff(Bi, Bi+b), and it contains a c-point 

which we label Ci.  The  c-line that passes through  C0  determines the labeling of the  

c-lines.  In the orientation of the  c-points which is induced by the orientation chosen for 

the  b-points, the earlier point of that  c-line is C0,  and the later accordingly is  Cc.  The 

remaining  c-points are then labeled in the obvious way; the c-lines are labeled by Mi = 

aff(Ci, Ci+c), .  Here and throughout, all subscripts are to be understood  mod m.  From a 

given  (n3)  configuration of the kind considered, the values of  m,  b  and  c  can be read 

off instantly.  Now we can find a tentative determinations of the symbol  d  in the nota-

tion  m#(b,c;d) for the configuration.  We consider the b-point that is incident with the c-

line M0 = aff(C0, Cc); like all b-points, it already carries a label.  This label we take as the 

value of  d  in the preliminary symbol of the configuration. 

 The value of  d  in the final symbol requires a comparison of two possibilities.  

One is what we have just described, and the other is obtained in the same way but going 

in the opposite orientation around the b-polygon.  As the final symbol  m#(b,c;d)  for the 

configuration we shall generally choose that one of the alternatives which has the smaller 

value of  d.  As is easily verified, the two values of  d  add up to  b+c;  hence we may as-

sume that  d ≤ (a+b)/2, which means that in fact only one of the determinations has to be 

carried out.  If it yields such a value of  d  we take it, otherwise we subtract it from  b+c  

to get the correct value of  d.  This is illustrated by the examples in Figure 2.7.2. 
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Figure 2.7.1. An example of the labeling and designation of a chiral astral configuration. 
Following the explanations in the text, this is configuration 8#(3,2;1). 
 
 While our conventions assign a unique symbol to each astral (n3) configuration, 

the converse is not valid. In general, two configurations are represented by the same sym-

bol  m#(b c; d).  They differ by the ratio of the radius of the circle of  c-points to that of 

the  b-points;  the one with smaller ratio is denoted by a single tag  ', the other one by 

double tags ''. This is illustrated in Figure 2.7.3. Another way of distinguishing the two 

configurations is by specifying the ratio in which the point C0 divides the segment B0Bb; 

this information is very useful for drawing the configuration, as well as for determining 

which symbols are possible. 

 



  Page 2.7.4 

B5

B6
B0

B1

B2

B3
B4

C3

C4

C5

C6

C0

C1

C2

B1

B2

B4

B0

B3

B5

B6

C6

C0

C1

C2

C3

C4

C5

B0

B1

B2

B3

B4

B5
B6

B7

B8

B9

B10

C1

C2

C0

C3

C4

C5
C6

C7

C8

C9

C10

B0

B1

B2

B3

B4

B5

C5

C4

C6C7

C8

C9

C10

C0

B6

B7

B8

B9

B10

C1

C2

C3

           
Figure 2.7.2. Additional examples of labeling astral (n3) configurations. The one in the 

upper row has symbols 7#(3, 2; 4) and 7#(3, 2; 1), so the latter is the one conventionally 

accepted.  The configuration in the bottom row has symbols 11#(5, 1; 10) = 11#(5, 1; –1) 

since all subscripts can be taken (mod n) and 11#(5, 1; 7). Hence the conventional sym-

bol is 11#(5, 1; –1). 

 However, in cases in which either  b = c  or  2d = b + c the symbol  m#(b, c; d)  

represents only a single configuration.  Examples of these situations are shown in Figure 

2.7.4, for the symbols  6#(2, 2; 1)  and  11#(5, 1; 3).   

 If the highest common factor of  m, b, c, d  is  f > 1, then the configuration 

m#(b,c;d)  is not connected, but consists of  f  copies of the configuration  m/f#(b/f, c/f; 

d/f) .  However, exceptions to all the above happen when there are additional “accidental”  
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Figure 2.7.3.  The two astral configurations with common symbol 7#(3, 2; 1). The one on 

the left is specified by 7#(3, 2; 1)', the other one by 7#(3, 2; 1)''. 

incidences.  For example, an attempt to draw the configuration  12#(5, 1; 3)  leads to the 

superfiguration shown in Figure 2.7.5a; it has additional incidences and is, in fact, a con-

figuration (244).  In Figure 2.7.5b we show how sensitive the situation is with respect to 

correctly drawing the configurations – a seemingly legitimate configuration does not 

really exist.  On the other hand, Figure 2.7.5a can be interpreted as a representation of the 

configuration 12#(5,1;3), as well as a representation of configurations 12#(5,1,-1),  

12#(4,4;1)  and  12#(4,4;2).  Figure 2.7.5b serves to illustrate a topological realization of 

the configuration 12#(5,1;-1). 

 A different type of unintended incidences is illustrated by the example in Figure 

2.7.6.  Here the result is a collection of points and lines which is not a configuration un-

der the definitions we adopted at the beginning, since some lines (but not all) are incident 

with four points, and some points with four lines. 

 Disregarding the possible presence of unintended incidences, how does one get 

from the symbol to a drawing, and how does one decide whether a symbol corresponds to 

any configuration?  For the answer to both parts of the question, we can proceed either 

algebraically or geometrically. 
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Figure 2.7.4.  Astral configurations which are examples of the case in which only a single 
configuration corresponds to its symbol, here  6#(2, 2; 1) and 11#(5, 1; 3). 

 In the algebraic approach, given a symbol  m#(b, c; d)  we start with the vertices 

of a regular m-gon, and draw all diagonals of span  b  (or their extensions, if needed).  

Points of the other orbit will be the vertices of another regular m-gon, situated on the di-

agonals of the first one.  Their location is determined by the ratio which, in the notation 

of Figure 2.7.1, is given by the still undetermined ratio of lengths  λ = B0C0/B0Bb.  The 

position of  Cc  is determined by the same ratio, since  λ = BcCc/BcBb+c.  Now, the line  

C0Cc contains the point  Bd  of the first orbit.  Hence, writing the collinearity condition in 

terms of a determinant, involving the variable λ and the known coordinates of the B 

points, yields a quadratic equation for λ.  Depending on whether there are two, one, or no 

solution in real numbers we obtain the pair of isomorphic configurations, a single con-

figuration, or no configuration at all.  Thus the complete characterization of possible 

symbols is, in principle, determinable by the non-negativity of the discriminant of that 

quadratic equation.  In any particular case, the software used (various versions of 

Mathematica® on different Macintosh computers) had no problem finding the value(s) of 

λ, and then drawing the configuration(s).  However, no amount of effort, on the computer 

or manually, was successful in explicitly describing the necessary and sufficient condi-

tions on the integer parameters  m, b, c, d  for the existence of the configurations.  The  
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(a)      (b) 

Figure 2.7.5.  The diagram in (a) is supposed to show the configuration 12#(5,1;3); how-

ever, additional incidences turn it into an astral (244) configuration which, by the conven-

tions we shall specify in Section 3.5, has the symbol 12#(5,4;1,4).  Note that the same 

(244) configuration results when drawing any of 12#(5,1,-1),  12#(4,4;1)  and  12#(4,4;2). 

The first of these is illustrated by the pseudoline configuration in (b).  Note that these are 

actually straight lines, but that their incidences are faked (ever so slightly).  For a differ-

ent presentation of these cases see Figure 5.8.1 and the explanations given there. 

 

best I could do is to deduce several necessary conditions from many specific cases, and 

from an argument to be described below.  In any case, the known conditions for a symbol 

m#(b, c; d) are as follows (this includes the notational conventions introduced earlier): 

0 < c ≤ b < m/2 

2[(b + c – m)/2] ≤ c – b +1 ≤ 2d ≤ b + c 

0 ≠ d ≠ c 

2 cos(bπ/m) cos(cπ/m) ≤ 1 + cos((b + c – 2d)π/m) 
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 While the use of calculational and graphic capabilities of appropriate software 

(Mathematica, Mathlab, Maple, and others) enables one to find out whether a symbol 

leads to a configuration, it is of same interest to note that geometric means can yield the 

same result.  In fact, if the vertices of a regular  m-gon are given, the configurations  

m#(b, c; d)  can be drawn with just the classical Euclidean tools.  (Naturally, the con-

struction of the regular  m-gon may or may not be possible with Euclidean tools, depend-

ing on the value of  m.)  Here is how the construction proceeds, illustrated for  m#(b,c;d) 

= 11#(5,1;2)  by the steps in Figure 2.7.7. 

• (a) Draw the lines determined by the diagonals of span  b = 5; this yields a 

regular polygon  P  of type {m/b}. 

• (b) Construct the isosceles triangle T determined by two vertices V1 and V2 of 

P, that are separated by span  c = 1,  and the center O of  P. 

• (c) Construct the circumcircle C of the triangle T described in (b). 

• (d) Label the sides of the polygon  P.  We label "0" the two lines of P that 

touch  T at V1 and V2,  but do not go through the interior of  T.  The other lines of   

 
Figure 2.7.6.  A drawing of the astral configuration 12#(3, 3; 1) shows unintended 

incidences.  The resulting family of points and lines is not a configuration according to 

our definitions; it is a superfiguration.  In fact, by ignoring some incidences, it could be 

interpreted as a representation of the astral configuration 12#(3, 3; 1). 
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P  are numbered by their sequence at the central convex m-gon determined by 

these lines.  The sides closer to the center of C are labeled "1", "2", ... in order, the 

ones farther from the center of C are labeled "-1", "-2", ... . 

• (e) Find the intersection points of the lines of P with the circle C. 

 
(a)     (b) 

1

-1 -1
0

1
23

2

0

 

(c)     (d) 

Figure 2.7.7 (first part). The geometric construction of the configuration 11#(5,1;2). 
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• (f) Label these intersection points by the labels of the lines. 

• (g) Select one of the points labeled d = 2, and draw the line connecting it with 

one of the points V1, V2. 

• (h) Rotate through all the multiples of  2π/m = 2π/11 the point chosen in (g) 

and the line constructed there.  A configuration  m#(b,c;d) = 11#(5,1;2) is ob-

tained. 

1

-1 -1
0

1
23

2

0

-1

3

2

2
-1

-1

3

2

2

-1
1

-1 -1
0

1
23

2

0

 
(e)     (f) 

-1

3

2

2
-1 1

-1 -1
0

1
23

2

0

-1

3

2

2
-1 1

-1 -1
0

1
23

2

0

 
(g)     (h) 

Figure 2.7.7. (second part) 
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• (i) The same construction as in (g) and (h), but with the other point labeled    

d = 2, yields the other configuration 11#(5,1;2).  The remaining possibilities of 

pairing a point labeled "2" with the other Vj yield configurations congruent to the 

ones in (h) and (i). 

• (j) An analogous construction but with a point labeled "3" yields the configu-

ration 11#(5,1;3).  As we shall see in Section XY this configuration is selfpolar. 

 Naturally, these constructions need justification, which we shall provide below.  

However, it is appropriate to recall that establishing results by using graphical means can 

be rigorously justified; see, for example, [M19]. 

 The reasoning follows the above method of construction, and is illustrated in Fig-

ure 2.7.8 by the example of the configuration 11#(4,3;2).   

-1

3

2

2
-1 1

-1 -1
0

1
2

3
2

0

-1

3

2

-1
1

-1 -1
0

1
2

3
2

0

2

 
(i)     (j) 

Figure 2.7.7. (third part). 

 

 The triangle  O V2 V1 is isosceles. The angle O V(2) V1 equals the angle O V2 

V1 since both are peripheral angles over the same arc O V1.  Let  X be the point on the 

ray V(2) V1 such that the angle V(2) O X equals the angle V2 O V1.  Then the triangle O 

X V(2) has correspondingly equal angles with the triangle O V1 V2, hence is similar to it.  



  Page 2.7.12 

Therefore it is also isosceles, so OX has the same length as OV(2) and is thus on the cir-

cle centered at O and with radius OV(2).  As the angle  V(2) O X  is the same as the an-

gle V2 O V1, which spans a diagonal of span  c = 3  of the m-gon (m = 11), it follows 

that follows that  V(2) X spans the same diagonal on the m-gon determined by the rotates 

of V(2).  The existence of the configuration  m#(b,c;d) = 11#(4,3;2) is established. � 

1

2

0

X

V(2)

V2
V1

O

 

Figure 2.7.8.  Starting with the {11/4} polygon (black points and lines), the configura-

tions 11#(4,3;2) is constructed by the method described above. 

 

 Using the description of the determination of the symbol m#(b,c;d) of an astral 

configuration (n3) it is immediate that the reduced Levi graph is as shown in Figure 2.7.9.  

The simplicity of the reduced Levi graph of such a configuration can be interpreted as the 

source of the usefulness of such graphs, but it also serves to indicate that the encoding of 

such an astral configuration by our symbol is natural and not arbitrary. 
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L

M

B C

0,b 0

0,c
d

Group cm
 

Figure 2.7.9.  The reduced Levi graph of an astral configuration m#(b,c;d); the notation is 

analogous to the one used in Figure 2.7.1. 

 

 Astral 3-configurations of were first defined in [G39], but isolated examples occur 

in earlier publications.  The first seem to be by Zacharias [Z4]; he shows examples of as-

tral (103), (123) and (143) configurations and comments on their star-like appearance, but 

reaches no general conclusions or constructions.  Similarly, van de Craats [V1] shows the 

astral (103) and notes various interesting properties associated with it; he also shows an 

astral (143), and mentions that analogous astral (n3) can be found for all n = 2m+2, where 

m ≥ 2.  Several other examples can be found in [B19], as well as in [G46]. 

Exercises and problems 2.7. 

1. Derive explicitly the quadratic equation for λ mentioned in the text in the case of 

9#(4,2;3), and use this to draw this configuration using suitable software. 

2. Derive explicitly the quadratic equation for λ in the general case m#(b,c;d), and 

try to find criteria on these parameters that will imply that the solutions of the equation 

are real. 

3. Use the geometric construction to draw the configuration 9#(4,2;3). 
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4. Show that the configurations 12#(5,1;2) and 12#(5,1;4) are congruent.  Explain 

this, and generalize.  

5. The configuration 5#(2,2;1) has a cyclic automorphism group that acts transitively 

on its points and lines.  Describe this group, and determine whether it acts transitively on 

the flags of the configuration. 

6. The automorphisms group of the astral chiral configurations  5#(2,2;1) is transi-

tive on its points.  Find other astral chiral configurations with this property. Can you 

characterize all such configurations? 
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2.8 ASTRAL 3-CONFIGURATIONS WITH DIHEDRAL SYMMETRY 
 GROUP 
 
 In contrast to the chiral astral configurations that –– in a certain sense –– are all 

formed alike, the dihedral ones come in several very different varieties. 

 The first variety consists of configurations that are astral in the extended Euclid-

ean plane but are not contained in the Euclidean plane itself; we shall refer to them as EE 

configurations.  It is clear that such configurations must have one orbit of points at infin-

ity, hence the other orbit of points needs to consist of the vertices of an isogonal polygon. 

In fact, the polygon must be regular.  Indeed, consider any point at infinity and the three 

lines incident with it, hence mutually parallel. Since there are only two transitivity classes 

of lines, two of these lines must be in the same orbit; this implies that the third line is 

situated between these two, and is in fact a mirror interchanging the two lines. Therefore 

the sides of the polygon contained in these lines are congruent, that is, the pairs of points 

are at equal distance apart.  But since each vertex must be on a third line (besides the two 

determined by the sides of the isogonal polygon), that line must be a mirror as well and 

therefore the adjacent sides of the polygon are of equal length. Hence the polygon is 

regular, and the configuration can be described as follows: 

 Theorem 2.8.1.  If  C  is an (n3) configuration of type EE, hence with dihedral 

symmetry group, that is astral in the extended Euclidean plane but is not contained in the 

Euclidean plane itself, then  n = 3m  for some m ≥ 3. The points of  C  are of the vertices 

of a regular (2m)-gon M and the  m  points at infinity in the directions of the  m  longest 

diagonals of  M.  The lines of C are the ones determined by the  m  longest diagonals of 

M, together with the 2m lines determined by pairs of points of  M  at span  m – j  for 

some 0 < j < m/2 with j ≡ m (mod 2).  The symmetry group of  C  is  d2m. 

 The EE configurations can therefore be characterized by a pair of integers  m  and  

j, and denoted by  EE(3m;m,j),  with  0 < 2j < m ≥ 3 and with j ≡ m (mod 2).  Several ex-

amples of EE configurations are shown in Figure 2.8.1. 
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EE(9;3,1)   EE(12;4,2) 

 
EE(15;5,1)   EE(15;5,3) 

Figure 2.8.1.  Examples of configurations of type EE.  In each case, points at infinity in 

the directions of the longest diagonals are indicated by the detached dots. 
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L0
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c1c2
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L1L2
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M2 M3

M4

M5

c0

b0

L0

M0
+ M0

–

c1c2

b*2

b1

b*0

b2

b*1

L1L2

M1
+

M2
+

M2
–

M1
–

M3
–

Symmetry group c6 Symmetry group d6  
Figure 2.8.2.  The configuration EE(9;3,1) labeled with the symmetry group c6 (at left) 

and d6 (at right).  In both cases, the c points and the L lines are mapped onto themselves 

by halfturns. 
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Symmetry group c2m
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0,m 0
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Figure 2.8.3.  The reduced Levi graphs of configurations EE(3m;m,j). All labels are un-

derstood mod 2m. 

 
 The second variety of dihedral astral 3-configurations may be thought of as dihe-

drally doubled-up chiral astral configurations, and we shall call them DD configurations. 

The typical notation is m#(b,c;d;µ); it will be explained soon. The DD configurations re-

semble chiral astral configurations in many respects, but there is one large difference.  

 First, the difference.  The construction of chiral astral configurations starts with a 

set of points at the vertices of a regular polygon.  In the dihedral case, the  2m  vertices 

of any isogonal polygon can serve as starting points of a DD configuration ((4m)3).  Such 

vertices fall into two subsets of equal size, the  m  points in each subset being related by 

rotational symmetries of the whole set.  The two subsets of points are images of each 

other under reflective symmetries of the whole set.  The last entry  µ  in the symbol  

m#(b, c; d; µ)  of a dihedral astral (n3) configuration of type DD refers to the ratio (not 

exceeding 1) of the angles subtended by the sides of the isogonal (2m)-gon used in the 

construction. 

 Next, the similarities.  There are again –– naturally, in view of the definition of 

astrality –– two orbits of points and two orbits of lines.  Due to the presence of reflec-

tions, each orbit of elements has two suborbits, each suborbit consisting of  m  elements 

that are equivalent under rotations, without the need for reflections.  In the example 

shown in Figure 2.8.4, and in general, the points in the two suborbits of the first class are 
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denoted by Bj
+ and Bj

–, those in the second class by  Cj
+

  and Cj
–.  If b ≠ c, we shall usu-

ally assume  b > c.  The points Bj
+ and Bj

– are on endpoints of diagonals of span  b  of 

each of the two  m-gons determined by points of the suborbit, while Cj
+

 and Cj
– are on 

diagonals of span  c  of the other two m-gons.  One of the mirrors is the bisector of 

B0
+B0

–; it is indicated in Figure 2.8.4 by the dashed vertical line.  The Bj
+ and Bj

– points 

are obtained by rotation in counterclockwise orientation.  The construction of the con-

figuration  m#(b, c; d; µ)  proceeds as follows; it is illustrated in Figure 2.8.4, where  m = 

5, b = 2, c = 1, d = 1, and µ = 0.6.  

 B0
+ and Bb

+ determine the line L0
+ and the point C0

+, which divides the segment  

B0
+Bb

+  in a ratio λ; this ratio is fixed throughout the construction, but still undeter-

mined.  More generally, Bj
+ and Bj+b

+ determine Cj, clearly with the same ratio  λ.  Then 

the line M0
+ in determined by C0

+ and Cc
+; it passes through Bd

–, and more generally, 

Cj
+ and Cj+c

+ determine the line Mj
+ that is incident with Bj+d

–. This requirement de-

termines the value of λ through a quadratic equation.  In turn, the line Ld
– through  Bd

– 

and Bd-b
– passes through Cd, and finally Cd

– and Cd–c
– are collinear with B0 on the line 

Md
–.  As always, the subscripts are understood to be modulo m.  These requirements can 

all be met simultaneously, due to the symmetry of the sets of points involved. 
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Figure 2.8.4.  A dihedral astral configuration (203), with symmetry group d5.  The label-
ing illustrates the description given in the text.  The configuration has symbol 5#(2,1; 1; 
0.6). 
 
 As in the case of chiral astral configurations, the construction leads to a quadratic 

equation for λ.  Again, the various possibilities and properties encountered with the chiral 

astral configurations (n3) are largely present.  In particular, depending on the values of the 

parameters m, b, c, d, µ  of the configuration m#(b, c; d; µ), there can be two, one, or no 

real solutions.  Moreover, for suitable values of these parameters the resulting construc-

tion leads to superfigurations.  However, there has been very little done on a systematic 

investigation of the DD configurations.  Several additional examples of such configura-

tions and a case of superfiguration are shown in Figures 2.8.5 and 2.8.6. 

 There is no information available concerning the range of values of  d  for given  

m, b, c  and  µ,  or concerning the possible values of  λ  for given  m, b, c, d, µ.  Equally 

missing is any knowledge concerning duality, polarity, selfduality and selfpolarity of DD 

configurations. 



  Page 2.8.6 

 As with chiral astral configurations, the reduced Levi diagrams for dihedral astral 

3-configurations are very simple and straightforward. This is illustrated in Figure 2.8.7, 

which demonstrates the mutual reinforcing of the notation introduced above, and the 

graphs. 
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+
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(a)      (b) 

Figure 2.8.5.  Two dihedral astral configurations (283).  To reduce clutter, only the labels 

needed for the determination of the symbol are shown. (a) 7#(3,2;1;1.0) (b) 7#(3,2;4;1.0). 

 
Figure 2.8.6.  For a value of µ close to 0.5, the construction of the configuration 

7#(4,3;1;µ) leads to a superfiguration: there are unintended incidences, yielding points on 

four lines and lines through four points. 
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L±

b± c±

M±

p: 0, b p: 0

n: d p: 0, c

Symmetry group  d2m  
Figure 2.8.7.  The reduced Levi graph of the dihedral astral configuration  m#(b,c;d;µ).  

The construction of the graph follows the method given in Section 1.6, based on the la-

beling of these configurations described above and illustrated in Figures 2.8.4 and 2.8.5.  

If the inclusion of the parameter in the graph is desirable, it can be attached to the 0 on 

the edge going from L± to c±. 

 First examples of the third variety of dihedral astral 3-configurations were discov-

ered only last year, and appear in the paper [B11] by L. W. Berman and J. Bokowski.1  

We shall designate all configurations of this variety by BB with appropriate parameters 

attached.  Any BB configuration  (n3)  has  n = 3m  for an integer  m ≥ 5.  The configura-

tion depends on two other parameters which we call  s  and  t.  The meaning of these pa-

rameters will be explained as we describe the construction of the configuration  BB(m; s, 

t).  We shall illustrate the construction in the case of BB(5; 2, 2), see Figure 2.8.8, but use 

general terms in the explanation of the steps. 

 The first step (Figure 2.8.8a) is the construction of a regular m-gon  P, and select-

ing the midpoints of its sides; these midpoints are  m  of the points of the configuration, 

and the lines  Lj  determined by the sides of the  m-gon are  m  of the lines.  (The vertices 

of the m-gon play no added role in the construction, and are not marked in Figure 2.8.8.) 

 The second step (Figure 2.8.8b) is the selection of a chord of  P  of span  s,  and 

constructing the circumcircle  C  of the triangle determined by the endpoints of the chord 

and the center of  P.  The  parameter  s  needs to be in the range  2 ≤ s < m/2. 

                                                
1  I had the privilege of receiving a preprint of this paper from the authors. 
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(a)       (b) 

              
(c)       (d) 

 
(e) 

Figure 2.8.8.  The steps in the construction of the configuration BB(5;2,2). 
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(a)       (b) 

Figure 2.8.9.  Illustration of the possibilities in the third step of constructing configura-

tions BB(10; s, t).  In part (a)  s = 3 and  t  is either 2 or 3.  In part (b)  s = 4  and  2 ≤ t ≤ 

6. 

 
 The third step (Figure 2.8.8c) consists in determining the intersections of the cir-

cle  C  with the lines  Lj  constructed in the first step.  These intersection points always 

came in symmetric pairs.  In case  m = 5 (hence s = 2) there is only one such pair; the ex-

amples in Figure 2.8.9 show other possibilities.  There are always at least  s–1  pairs,  and 

no more than  2s – 3.  The precise number depends on  m  and  s  in a manner that has not 

been explicitly determined. 

 In the fourth step (Figure 2.8.8d) a selected pair of these intersection points is 

connected by lines with the endpoints of the chord of span  s  with which we started in 

the second step. (To avoid clutter, in Figure 2.8.8d each point of the pair is connected 

with only one endpoint of the chord.)  The parameter  t  is the label that can be given to 

the pairs, counting from the endpoints of the chord. 

 The fifth and final step (Figure 2.8.8e) consists in creating the images of the cho-

sen pair of points and the lines generated in the previous step, by rotations about the cen-

ter of the polygon P through all the multiples of 2π/m. 

 Some remarks about the BB configurations.   First, just as in the case of the DD 

configurations (and the chiral astral ones), in some instances the construction does not 

yield the expected configuration; instead a superfiguration is obtained.  This is illustrated 
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in Figure 2.8.10.  Also, the precise relations between the parameters of a BB configura-

tion have not been determined so far.  This is illustrated in Table 2.8.1, which shows the 

(experimentally determined) maximal value of  t  for given  m  and  s. 

 
        s 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
m_____________________________________________________________________ 
 5 2 
 6 2 
 7 2 3 
 8 2 3 
 9 2 3 6 
 10 2 3 6 
 11 2 3 6 7 
 12 2 3 4* 7 
 13 2 3 4 7 10 
 14 2 3 4 7 8 
 15 2 3 4 7 8 11 
 16 2 3 4 7 8 11 
 17 2 3 4 7 8 11 12 
 18 2 3 4 7 8 9 12 
 19 2 3 4 7 8 9 12 15 
 20 2 3 4 7 8 9 12 13 
 21 2 3 4 7 8 9 12 13 16 
 22 2 3 4 7 8 9 12 13 16 
 23 2 3 4 7 8 9 12 13 16 19 
 24 2 3 4 7 8 9 10* 13 14 17 
 25 2 3 4 7 8 9 10 13 14 17 20 
 26 2 3 4 7 8 9 10 13 14 17 20 
 27 2 3 4 7 8 9 10 13 14 17 18 21 
 28 2 3 4 7 8 9 10 13 14 17 18 21 
 29 2 3 4 7 8 9 10 13 14 15 18 21 22 
 30 2 3 4 7 8 9 10 13 14 15 18 19 22 
 31 2 3 4 7 8 9 10 13 14 15 18 19 22 25 
 32 2 3 4 7 8 9 10 13 14 15 18 19 22 25 
 33 2 3 4 7 8 9 10 13 14 15 18 19 22 23 28 
 34 2 3 4 7 8 9 10 13 14 15 18 19 22 23 26 
 35 2 3 4 7 8 9 10 13 14 15 18 19 22 23 26 29 
 36 2 3 4 7 8 9 10 13 14 15 16* 19 20 23 26 29 
 37 2 3 4 7 8 9 10 13 14 15 16 19 20 23 24 27 32 
(*) One of the lines is tangent to the circle at its intersection with another line. 
Table 2.8.1.  The maximal values of  t  for given  m  and  s  in configurations  BB(m; s,t). 
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 The BB configurations considered in [B11] are presented in a way tyat is some-

what different from the one followed here. The Berman-Bokowski construction corre-

sponds to the cases of even  s  only, and uses only that pair of intersection points which 

arises by the intersection of the circumcircle with the line parallel to the chord used to 

construct the circle.  This pair is in general the "middle" pair in the third step of our con-

struction. 

 Another phenomenon –– again shared by other classes of configurations –– is the 

possibility of the configuration being disconnected.  This happens, for example with the 

configuration BB(16; 6,6) shown in Figure 2.8.11. 

 
Figure 2.8.10.  An example of a superfiguration arising in the construction of a BB type 

configuration with  m = 12 and s = 4. 
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Figure 2.8.11.  In the case of BB(16; 6, 6) the construction leads to a disconnected con-

figuration. The two connected components are shown in different colors; each is BB(8; 3, 

3).  

 

 While the construction procedure seems to be working in the examples given 

above, there is an obvious need for justification in the general case.  It is, in fact, quite 

simple; we explain it for the configuration BB(m; s, t) by using the notation in the illus-

trative example shown in Figure 2.8.12, where  m = 9, s = 3, and t = 3.   

 The chord of span  s  (used to generate the circumcircle  K)  spans an angle of 

2πs/m at the center  O  of  K.  The line CB*, the legs of the isosceles triangle generated 

by the chord and O, and the segment OC are all well determined. Rotating this complex 

and the circle K about O through an angle of  2πs/m  brings K to K*, CB* to C*B, and 

OC to OC*.  The five angles denoted  γ  are all equal to each other because they are either 

basis angles of isosceles triangle, or spanned by congruent arcs of  K.  Hence the basis 

CC* of the isosceles triangle COC* encloses with the segment OC* the same angle  γ  as 

the line through C*B; hence that line passes through C, which justifies the construction. 
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Figure 2.8.12.  The validation of the construction of the BB configurations. 

 

 It should be noted that the procedure used to justify the construction dealt exclu-

sively with the green lines.  This leaves open the possibility to use a different value of  t  

for the red lines.  Naturally, the resulting configuration will not be astral. 

 Another point that needs to be made is the following.  For each  s,  the set of val-

ues of  t  possible is a (non-strictly) decreasing function of  m.  The experimental results 

in Table 2.8.1 are a consequence of reasonably complicated trigonometric relations.  The 

main problem in this context is to determine the maximal value of  t  possible in a 

BB(m; s,t) configuration.  From numerical evidence (see Table 2.8.2) it seems that this  

tmax  grows approximately as  7s/5  for sufficiently large  m,  although this appears a 

strange dependence. 
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Figure 2.8.13.  The labeling of BB configurations, and the resulting reduced Levi graphs. 

The graph at right corresponds to the general configuration BB(m; s, t); the asterisk indi-

cates that no definite relation to the parameters has been found so far. 
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 s tmax For  m ≥  s tmax For  m ≥  
––––––––––––––––––––––– ––––––––––––––––––––––– 
 2 2 5 21 29 72 
 3 3 7 22 30 90 
 4 4 12 23 31 127 
 5 7 11 24 32 372 
 6 8 14 25 35 84 
 7 9 18 26 36 99 
 8 10 24 27 37 125 
 9 11 42 28 38 183 
10 14 24 29 41 95 
11 15 29 30 42 110 
12 16 36 31 43 131 
13 17 50 32 44 167 
14 18 92 33 45 256 
15 21 41 34 48 121 
16 22 48 35 49 139 
17 23 61 36 50 167 
18 24 84 37 51 217 
19 25 78 38 52 335 
20 28 60 39 55 149 
    40 56 172 
 
Table 2.8.2.  The largest value  tmax  of  t  possible in configurations BB(m; s, t)  for a 
given  s  and for all sufficiently large  m. 
 

Exercises and problems 2.8. 

1. Determine what symbol could result for the configuration in Figure 2.8.4 if the 

role of B0
+ and B0

–  were reversed, while still assuming conterclockwise orientation.  

2. Determine what symbol could result for the configuration in Figure 2.8.4 if the 

role of the B-points and the C-points were reversed, while still assuming conterclockwise 

orientation.  

3. Verify the assignment of symbols to the configurations in Figure 2.8.5. 

4. Formulate a general criterion for the configuration BB(m; s,t) to be disconnected. 

5. Draw all the different configurations BB(11; 5,t). 

6. How many different configurations 4#(b, c; d; 0.3) are there? 
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7. Find some restrictions on the parameters of the DD and BB kinds of astral con-

figurations. 

8. Find disconnected configurations m#(b, c; d; µ). 

9. Find a geometric construction for configurations m#(b, c; d; µ). 

 
Figure 2.8.14. Two dihedral astral 3-configurations. 

 

10. Find the symbols for the configurations in Figure 2.8.14. 
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 2.9 MULTIASTRAL 3-CONFIGURATIONS 

 A geometric configuration is said to be of symmetry type [h1, h2] provided its 

points form h1 orbits, and its lines h2 orbits under the group of its isometric symmetries.  

We shall also say that such a configuration is [h1, h2]-astral, or, if the precise values of h1 

and h2 are not important in the discussion, that it is multiastral.  Clearly, if a configura-

tion of type [q, k] is [h1, h2]-astral then h1 ≥ (k+1)/2 and h2 ≥ (q+1)/2.  If  h1 and h2 have 

these minimal values we shall simplify the language and say that the configuration is as-

tral.  In cases where  h1 = h2 = h, we shall say that the configuration is  h-astral.  

 The study of these configurations is much less advanced, and promises to be more 

challenging than the investigation of the 2-astral 3-configurations.  There are two sources 

of the variety possible for h-astral 3-configurations.  On the one hand, similarly to the 

situation with dihedral astral configurations, in many cases there is at least one parameter 

that can assume a continuum of different real values.  On the other hand, if h ≥ 3, a line 

of the configuration can contain points from either two or three different orbits.  The case  

h = 2 is radically different from those with  h ≥ 3. 

The h-astral 3-configurations come in three varieties: 

 projectively h-astral, that is, configurations that are h-astral in the extended 

Euclidean (that is, projective) plane E2+, but not in the Euclidean plane E2 itself. 

 h-chiral that is, configurations in the Euclidean plane E2, with a cyclic symmetry 

group. 

 h-dihedral, that is configurations in the Euclidean plane E2, with a dihedral 

symmetry group. 

 Throughout, the use of a numerical prefix h-  means that there are at most h orbits 

of points and at most h orbits of lines, with equality in at least one case. 

 Examples of projectively astral configurations are shown in Figure 2.9.1 and 

2.9.2.  The configuration in Figure 2.9.1 is a realization of the Pappus configuration.  

Two 3-astral realization of the Desargues configuration (103) in E2+ are shown in Figure 
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2.9.2; they are among the illustrations given by Coxeter [C8].  Two examples of projec-

tively 3-astral configurations (153) are shown in Figure 2.9.3.  It is clear that similar ex-

amples of projectively h-astral  configurations could be found for all  h ≥ 4.  At least for 

small  h, the complete characterization of projectively astral configurations may be feasi-

ble but has not been worked out. 

 

Figure 1.  A 3-astral version of the Pappus configuration (93) in the extended Euclidean 

plane. 

 

(a)       (b) 

Figure 2.9.2. Two projectively 3-astral realizations of the Desargues configuration (103)  

(after [C8]). In (b) the line at infinity is included. 
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Figure 2.9.3.   Two examples of projectively 3-astral configurations (153). Notice that the 

one at left is [3, 2]-astral, and the one at right is [2, 3]-astral. 

 

 h-chiral astral configurations (n3) are much more interesting. We have discussed 

the 2-astral chiral configurations in Section 2.7.  For h ≥ 3 there is more than one possi-

bility. We begin by explaining the notation for h-chiral configurations in which each line 

is incident with points of two orbits only; the remaining case –– some lines incident with 

three orbits of points –– will be described later. The notation used in Section 2.7 will be 

expanded here; the general form for h-chiral configurations (n3) of this kind is  m#(b1, b2, 

… , bh; b0; λ1, λ2, … , λh-2)  –– or in a shorter symbol m#(b1, b2, … , bh; b0).  Here  n = 

hm and we have h–2 real parameters λj besides h+1 discrete ones bj.  Together these pa-

rameters lead to a quadratic equation for an additional parameter  λ.  This equation can 

have 2, 1 or 0 real solutions –– in the last case there are no corresponding real configura-

tions.  Our explanation is illustrated in Figure 2.9.4, using a 3-chiral configuration (273) 

as an example. 

 The detailed study of h-chiral configurations was initiated by Boben and Pisanski 

[B20] under the name "polycyclic configurations", and with slightly different notation.  

As pointed out in [B20], the dual of a configuration m#(b1, b2, … , bh; b0)  is the con-

figuration m#(bh, bh-1, … , b1; b1+b2+ … +bh–b0).  For h = 2 this reduces to the facts we 

shall discuss at length in Section 2.10. 
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Figure 2.9.4. The characteristic path in a 3-chiral configuration (273). 

 

As mentioned earlier, the symbol for an h-chiral configuration (n3), where  n = 

hm,  is of the form  m#(b1, b2, … , bh; b0; λ1, λ2, … , λh-2); the parameters are again de-

termined along a characteristic path.  The entries  b1, … , bh  are the spans of the di-

agonals in the different regular m-gons that are determined by the path; all the diagonals 

are oriented in the same way –– all clockwise or all counterclockwise –– and the real 

numbers  λ1, λ2, … , λh-2  denote the ratios in which each diagonal determined by a seg-

ment of the path is divided by the endpoint of the segment.  The path returns to the start-

ing polygon, but not necessarily to the starting point of the path.  The parameter b0 indi-

cates the vertex of the starting polygon at which the characteristic path ends.  These data 

lead to a quadratic equation for the ratio λ on the next-to-last segment; the ratio applica-

ble to the last segment is then completely determined.  Thus there are either two, or one, 
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or no real geometric configurations corresponding to a given symbol.  There are also pos-

sibilities of unintended incidences similar to the ones we encountered earlier, hence we 

are in general talking about representations of the symbols, rather than realizations.  In 

case the parameters  λ1, λ2, … , λh-2  in a symbol m#(b1, b2, … , bh; b0; λ1, λ2, … , λh-2) 

are not relevant or not known, we abbreviate the symbol to m#(b1, b2, … , bh; b0).  

The example in Figure 2.9.4 presents a 3-chiral configuration with symbol           

9#(2,3,2;6;0.5).  The points of the three orbits are denoted by Bj, Cj, Dj.  The determina-

tion of the symbol is highlighted by the three-step characteristic path.  Note that the ratio  

λ1  can be chosen freely, and in the illustration it was taken as  λ1 = 0.5 = C0B0/B2B0.  

Once the first  h-2  ratios  λj  are chosen, the last ratio  λh-1  (determining the position of 

the point of last orbit on the penultimate diagonal) is determined by a quadratic equation.  

(For details see [B20].)  In the illustration we have  h = 3, hence  λh-1 = λ2  (which is 

about  2/3).  Naturally, the symbol is not unique since it depends, besides the λj's for  h ≥ 

3,  on the orbit of the starting point, and on the orientation chosen.  The influence of the 

parameter λh-2 is illustrated in Figure 2.9.5. 

 Using symbols like u, v, w, ... for elements of the different orbits of points, we 

can say that the h-chiral configurations considered so far have lines of type {u,u,v}, 

{v,v,w}, ... . But other possibilities exist in which the incidences of lines with orbits of 

the points are different.  For example, in case h = 3, it is possible to have three orbits of 

lines, all three of the type {u,v,w}, or else, one of the type {u,v,w} and the other two of 

types {u,v,v} and {u,w,w}.  Three example of the former variety are shown in Figure 

2.9.6, while examples of the second kind are illustrated in Figure 2.9.7; the diagrams in 

Figure 2.2.1 show the (93)2 and (93)3 configurations, which is of these two kinds.  A nota-

tion for the configurations in Figure 2.9.6 is explained in the caption.  An apparently con-

venient notation is proposed for the kind of configurations shown in Figure 2.9.7.  It as-

signs the first symbol to the line and the point that are incident with three orbits of the 

other kind, and the other symbols in the obvious manner. For the notation one conven-
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iently chooses the one that involves the smallest maximal parameter. No additional de-

tails about either of these kinds of configurations are available as of this writing. 

 Naturally, for  h ≥ 4  it is possible to imagine an increasingly large number of 

types of h-chiral configurations. However, so far nothing has been done in this direction. 

7#(1, 2, 3; 5; 0.6) 7#(1, 2, 3; 5; 0.8)

7#(1, 2, 3; 5; 0.2) 7#(1, 2, 3; 5; 0.4)

 

Figure 2.9.5. An illustration of the dependence of a 3-chiral configuration (213) on the 

parameter  λ1. 
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         (a)     3#[1,1,1;0]        (b)       7#[1,4,2;0] 
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             (c)      18#[2,-1,3;0] 

Figure 2.9.6.  Two examples of 3-chiral configurations in which every line meets all three 
orbits of points, and every point meets lines of the three orbits.  The characteristic path 
(which does not have to be closed) leads to a symbol for the configuration.  The configu-
ration in (a) is another realization of the Pappus configuration. With each we show a re-
duced Levi diagram. 
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Figure 2.9.7.  Examples of 3-chiral configurations in which each line of one orbit is inci-

dent with points of each of three orbits, while the other lines are incident with two points 

from one orbit and one point from another orbit. Each is accompanied by a reduced Levi 

diagram.  As symbols for these configurations we can use 4#[1,2;1,2], 5#[1,2;1,2] and 

7#[1,4;3,5].  The configuration 5#[1,2;1,2] appears in van de Craats [V1]. 

 h-dihedral configurations are unexplored as well. In Figures 2.9.8, 2.9.9 and 

2.9.10 are shown a few examples. The examples in Figure 2.9.8 are obviously typical of 

an infinite class of analogous constructions.  In Figure 2.9.9 only two orbits of points are 

shown, the points of the third orbit can be chosen at several distinct locations.  This kind 
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of configurations can obviously be generalized in a variety of ways.  Figure 2.9.10 illus-

trates the degree of complication possible with h-astral configurations for larger h. 

 
Figure 2.9.8. Two examples of 3-dihedral 3-configurations.  The one at left is another re-

alization of the Pappus configuration. 

 
Figure 2.9.9.  Adding an orbit of points at suitable intersections leads to several different 

3–dihedral configurations.  Notice that such configurations are, in fact, [3, 2]-dihedral. 
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Figure 2.9.10.  A [4,5]-dihedral configuration (403) found by L. Berman. 

 

 

Exercises and problems 2.9 

1. Decide whether the two configurations in Figure 2.9.3 are dual –– or even polar –

– to each other. Is either of them isomorphic to the (153) configuration in Figure 1.1.1? 

2. Determine the number of distinct ways in which it is possible to replace the points 

in Figure 2.9.9 in such a way that the result is a [3, 2]-dihedral configuration. 

3. By moving the outer vertices in Figure 2.9.8 along the mirror, a continuum of 

(projectively) distinct configurations can be obtained; all these are isomorphic.  Are there 

any analogous configurations (153) that are not isomorphic to the one in Figure 2.9.8 ? 

4. For h1 = 2 and h1 = 3, determine the possible values of h2 for which there exist 

[h1, h2]-astral configurations of the various kinds.  Provide examples for all existing 

types. 

5. Construct examples of 4-chiral configurations (n3) with the smallest  n.  Justify 

your answer.  Generalize. 
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Figure 2.9.11. Two (183)  3-chiral configurations. 

 

6. Determine the symbols of the two configurations is Figure 2.9.11. 

7. Verify that the Cremona-Richmond configuration (153) shown in Figure 1.1.1 is 

of the type represented by the examples in Figure 2.9.7.  Find its symbol. 

8. Find the criteria for the property of the first two configurations of Figure 2.9.7 

(but not the third) that there are only two orbits of points (and two orbits of lines) under 

automorphisms. 
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2.10 DUALITY OF ASTRAL 3-CONFIGURATIONS 

 In this section we shall investigate the duality and polarity properties of the chiral 

astral configurations (n3).  It should be kept in mind that the presentation is based on the 

assumption that we know all such configurations although, in fact, we are certain only to 

the extent that the topic has been explored by numerical calculations. As we have seen in 

Section 2.7, to a symbol m#(b,c;d) correspond either two, or one, or no chiral astral con-

figurations (n3), where n = 2m. In the case of two configurations, by their very construc-

tion they are isomorphic. But more is true: 

 Theorem 2.10.1.  Every chiral astral configuration m#(b,c;d) is selfdual. 

 Proof.  From the definition given above of the labels of points and lines of such 

configurations, illustrated in Figure 2.10.1  (which is a copy of Figure 2.7.1), we see that 

the line Lj contains the points  Bj, Cj, Bj+b, and the line  Mj contains the points 

Bj+d,Cj,Cj+c.  The resulting incidences can then be described by the following criteria: 

Bj ∈ Lk  ⇔  j – k ≡ 0 or b  (mod m) 

 Bj ∈ Mk  ⇔  j – k ≡ d  (mod m) 

 Cj ∈ Lk  ⇔  j – k ≡ 0  (mod m) 

 Cj ∈ Mk  ⇔  j – k ≡ 0 or c  (mod m). 

 From these relations there follows at once that for every configuration  m#(b, c; d)  

the mapping  δ  determined by  δ(Bj) = L-j,  δ(Cj) = M-j-d,  δ(Lj) = B-j  and  δ(Mj) = C-j-d  

is a selfduality.  � 

 Another consequence is: 

 If two distinct configurations have the same symbol m#(b, c; d) then they are dual 

to each other. 

 This follows from the fact that they are isomorphic.  But even more is true: 

 Theorem 2.10.2.  If two distinct configurations have the same symbol m#(b, c; d) 

then they are polars of each other. 
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Figure 2.10.1.  The labeling of the configuration  8#(3, 2; 1)  explained in the text. 

 

 Proof.   Indeed, polars are combinatorially dual to each other, and the only 

combinatorially dual astral configuration of an astral configuration m#(b, c; d) is either 

the configuration itself, or the other one with the same symbol.  Since there are two con-

figurations m#(b, c; d), neither is polar to itself, but each is polar to the other.  � 

 This fact is illustrated in Figure 2.10.2. 

 It is almost selfevident that in general there are other duality maps from a configu-

ration to its dual. For example, Figure 2.10.3 presents the same pair of configuration as 

Figure 2.10.2(a), with a labeling that shows that the map ε from the red configuration to 

the black one is a duality different from the duality δ described above.  
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(a)      (b) 

Figure 2.10.2. (a)  The configuration 7#(3,2;1)' (red points and green lines) and its polar 
7#(3,2,1)" (blue points and black lines). Polarity is with respect to the purple circle.  (b)  
The same for 10#(4,3;2)' and 10#(4,3;2)". 
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Figure 2.10.3. The dual configurations of Figure 2.10.2(a) illustrate a duality map ε. 



  Page 2.10.4 

 In case that only a single configuration m#(b,c;d) exists (that is, if b + c = 2d, or if 

b = c), the configuration is not only selfdual, but selfpolar.  The map  δ  is applicable to 

all selfdual configurations, and is concordant with selfpolarity.  The polars (in an appro-

priate circle) are congruent to each other, but only after a reflection in a suitable mirror.  

 For configurations of this type, the map  δ  and its rotates are the only maps com-

patible with the polarity.  We say that these configurations are oppositely selfpolar.  This 

happens for the selfpolar configurations with symbol  m#(b,b;d).  Examples are shown in 

Figure 2.10.4. 

 Other configurations, called directly selfpolar configurations, have symbols of 

type  m#(b,c;d)  with  2d = b+c.  Here the polar pairs are congruent without reflection. 

There are two subtypes: In the first, both b and c are even, in the second they are both 

odd.  In the former case the polars actually coincide with each other, while in the latter 

they are related by reflection in the common center (that is rotation through 180°).  The 

two subtypes are illustrated in Figures 2.10.5 and 2.10.6. 

 

(a)  #(2,2;1)     (b)  8#(3,3;2) 

Figure 2.10.3. Two examples of oppositely selfpolar configurations, characterized by 
symbols of the type  m#(b,b;d). 
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(a)   10#(4,2;3)    (b)   13#(6,4;5) 

Figure 2.10.4.  Two examples of directly selfpolar configurations m#(b,c;d) with b and c 
even. In this subtype the polars may coincide (for an appropriate circle). In the illustration 
the circle was chosen to yield different sizes, in order to improve intelligibility. 

 

(a)   9#(3,1;2)     11#(5,1;3) 

Figure 2.10.5.  Two examples of directly selfpolar configurations m#(b,c;d) with b and c 
odd. In this subtype the polars are congruent but coincide only after reflection in the 
common center (that is, a rotation of 180°). We also say that these configurations are 
selfpolar*. 
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Exercises 2.10. 

1. Verify that the correspondence  δ  is a duality.  Determine whether this corre-
spondence establishes a selfduality. 

2. Describe the duality introduced by the polarity, for the polar configuration in Fig-
ure 2.10.2(b); use the labels on the two configurations that are given by their isomor-
phism. 

3. Label the selfpolar configurations in Figures 2.10.4 and 2.10.5 to show that they 
are selfdual. 

4. Verify that the Cremona-Richmond configuration (153), shown in Figure 1.1.1 
and mentioned in Exercise 2.9.7, is selfdual.  Is it selfpolar, and if it is, what is its type?  

5.  Find criteria for dual pairs of configurations of the various kinds discussed in 
Sections 2.8 and 2.9. 

6. R. Artzy [A1] considers selfdual configurations and for a given selfduality δ de-
scribes a RLG ("reduced Levi graph" –– this is not the same concept we are using 
throughout the book!) by identifying each element B with its image δ(B).  This clearly 
depends on the selfduality chosen, but in each case the original Levi graph can be re-
trieved in a unique way.  As observed by Artzy, the RLG may contain loops, this occurs 
in case B and δ(B) are incident.  Artzy illustrates the use of RLGs by investigating spe-
cial cases of the Desargues configuration. (On this topic see also Killgrove et al. [K10].) 
Assign labels to the RLG in Figure 2.10.6b to show that it corresponds to the Pappus con-
figuration in Figure 1.10.6a, with the selfduality δ indicated by the upper and lower case 
letters. 

7. Find a selfduality δ of the Desargues configuration in Figure 2.10.7a that leads to 
the RLG in Figure 2.10.7b. 

8. Is there a meaningful extension to all polar pairs of astral 3-configurations of the 
distinction between directly and oppositely selfpolar ones? 

9. Describe the polars of the configurations BB(m; s, t), and determine whether there 
are any selfpolar ones among them. 
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(a)     (b) 

Figure 2.10.6.  (a) A version of the Pappus configuration (93), with a selfduality indicated 

by upper- and lower-case letters.  (b) An RLG corresponding to the selfduality in (a). 

 
(a)     (b) 

Figure 2.10.7.  (a) A version of the Desargues configuration (103).  (b) An RLG of (a).  

 

10. (Refresh your memories of elementary geometry.) Given a pair of astral configu-

ration for which it is claimed that they are polar to each other with respect to a circle – 

how do you find the circle that justifies the assertion?  Practice your solution on the 

selfpolar configurations in Figures 2.10.3,  2.10.4  and  2.10.5. 
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2.11 OPEN PROBLEMS (AND A FEW EXERCISES) 
 
 Many unsolved problems and open question have been mentioned in the 

preceding sections.  While some of these may be challenging and others may hold 

interest for some people, there are a few problems concerning 3-configurations that seem 

to be of a fundamental nature; these problems exhibit the paucity of our understanding of 

what makes geometric configurations work.  Some of the problems are related to 

Steinitz's geometric theorem of Section 2.6. 

1. The first problem concerns geometric realizations of connected combinatorial 

configurations. By Theorem 2.6.1 we know that a (geometric) prefiguration 

representation is always possible if one incidence is disregarded. As shown by the 

examples of the (73) and (83) configurations, even allowing pseudolines it is not possible 

to achieve the last incidence.  However, it is well possible that all connected (n3) 

configurations with n ≥ 9 admit realizations as topological configurations, or even (for n 

≥ 11) realizations as geometric prefigurations.  On the other hand, it may well be that 

already for n = 13 some counterexamples can be found for either version of the question.  

A subsidiary question is to determine the maximal number t(n) of "lines" in a topological 

configuration (n3) that may need to be non-straight pseudolines in each realization of the 

configuration in question.  It seems that t(n) ≥ c n for some c > 0. 

2. The second problem deals with obstructions to geometric realization of 

2-connected 3-configurations with n ≥ 11 lines.  All known examples that include 

unwanted incidences (superfigurations) contain either a Pappus or a Desargues 

subfiguration (one incidence of the configuration is missed), or several such 

subfigurations.  Are there any other obstructions to the geometric realizability, or is the 

presence of at least one of these two a characterization of 3-configurations with unwanted 

incidences? 

3. The third problem, simply stated, is this: Is the combinatorial configuration (103)4 

using the notation in Section 2.2, the only 3-connected configuration (n3) with n ≥ 9 that 

does not have a geometric realization?  A negative answer may appear at any time –– if 

somebody hits upon an appropriate example –– possibly even with n = 13.  On the other 
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hand, a positive solution would seem to require several breakthroughs in directions for 

which we are not even dimly aware of how to start.  These would have to include the 

elimination of superfigurations (unwanted incidences) as well as subfigurations (missing 

incidences, as in Steinitz's theorem).  As a possible example of a negative solution 

consider the abstract configuration (143) derived from the geometric configuration in 

Figure 2.11.1 on replacing the existing incidences of points A and B with the lines a and 

b, and insisting instead that A be incident with a, and B with b. 

C

B

c
b

 

Figure 2.11.1.  Is there a geometric realization of the combinatorial configuration (143) 

obtained from the above by keeping all indicated incidences except that C is to be 

incident with c (and not with b) and B be incident with b? 

4. Is it true that if a 3-configuration admits a geometric realization in the Euclidean 

plane then it admits a realization in the rational plane? Or is it (at least) true that every 

geometrically realizable 3-configuration can also be realized in a plane over a quadratic 

extension of the rational field?  In contrast, it is easy to verify that the #2-superfiguration 

shown in Figure 1.3.4 is realizable in the Euclidean plane but not in the rational plane. 

5. For the various classes of very symmetric 3-configurations (such as astral, 3-

chiral, k-dihedral, BB, ... ) determine the precise range of the parameters for such 

configurations. 
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6. For connected astral configurations m#(b,c;d), is m = 12 the only case in which 

various superfigurations occur? 

7. Is there any relation between the automorphism group of a configuration and the 

symmetries of its possible realizations?  In particular, if the automorphisms act 

transitively on the points (or lines, or flags), does there have to exist a realization with 

non-trivial symmetry? 

8. The object in Figure 2.11.2 is not a configuration, but the labeling clearly 

indicates that it is selfdual; the same can be said for the superfiguration in Figure 1.3.4.  

These seem to be interesting objects, analogous to configurations in the sense used in this 

book –– but without any systematic framework to support their investigation.  A formal 

proposal to consider such "generalized configurations" was made in [Z9] by K. Zindler as 

long ago as 1889. An example described by Zindler (as well as in the review [S11] of 

[Z9] by H. Schubert) is shown in Figure 2.11.3. However, it seems that Zindler's general 

challenge has never been met. 
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Figure 2.11.2. An intriguing selfdual collection of 15 points and 15 lines. 
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9. Decide whether the selfduality of the superfiguration in Figure 2.11.2 is a 

selfpolarity. 

10. Prove that the incidences claimed in Figure 2.11.3 are valid. 

 

 

Figure 2.11.3.  A "generalized configuration" of 13 points and 13 lines from Zindler [Z9]. 

It consists of four concyclic points (red) that determine a complete quadrangle (six blue 

lines) and its three "diagonal points" (green). The four tangents (red) to the circle at the 

four concyclic points are a complete quadrilateral that determines the six blue points  and 

the three "diagonal lines (green). The selfpolar "configuration" has six points incident 

with three lines each, and seven points incident with four lines each, and dually for lines. 
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