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5.7 MOVABLE CONFIGURATIONS  
 

 In this section we shall investigate to possibilities of changes of shape among con-

figurations of a fixed isomorphism type.  Applying any affine or projective transforma-

tion is most likely to produce a different configuration – but we shall consider such dif-

ferences trivial and endeavor to find and describe more substantial modifications.  In 

other words, we are considering equivalence classes of configuration, where members of 

each class are projectively equivalent to each other. 

 For example, all geometric realizations of (32) configurations are in one equiva-

lence class, as are those of (42).  On the other hand, configurations (52) have infinitely 

many projectively distinct forms; in fact, since any four points in general position can be 

projectively mapped on any other such quadruple of points, the projective equivalence 

class is determined by any fifth point.  It follows that the (52) configurations form a vari-

ety of dimension 2. 

 We shall say that a configuration is rigid if its geometric realizations form a sin-

gle class under projective transformations. Both the theorem of Steinitz (as presented in 

Section 2.6) and practical experience suggest: 

 Conjecture 5.7.1.  There are no rigid 3-configurations. 

 In view of the more stringent constraints that k-configurations with k ≥ 4 have to 

satisfy, it may be tempting to believe that at least some of them are rigid.  This may well 

be the case –– however, none has been found that is demonstrably rigid.  Hence we ven-

ture: 

 Conjecture 5.7.2.  There are no rigid k-configurations for any k ≥ 3. 

 A configuration that is not rigid shall be called movable.  The motion itself can 

happen in a variety of ways.  For example, with 3-configurations, in all cases that have 

been investigated, after having fixed a sufficient number of points and lines to eliminate 

projective maps it is at least possible to move either a point arbitrarily on a line, or pivot a 

line about a point (or both).  This is illustrated by four of the (103) configurations illus-

trated in Figure 2.2.5; after arbitrarily choosing four points, the only remaining choice is 
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that of a point on one of the already determined lines.  In many 3-configurations (such as 

the ones illustrated in Figure 5.7.1) it is easy to see that they are movable even if keeping 

considerable parts of the configuration unchanged. However, there are analogous 3-

configurations, such as the one in Figure 5.7.2, in which some of the parts have to be 

modified ; similar examples can easily be multiplied.  There are other examples in which 

the connecting lines between parts are neither parallel nor concurrent, and others in which 

the connection between parts are through points rather than lines.  

        

   (a)        (b) 

Figure 5.7.1.  Two 3-configurations in which solid parts may be simply pulled apart. (a) 

A 2-connected (143).  (b) A 3-connected (213). 

 

Figure 5.7.2.  A 3-connected configuration (143) with a half-turn symmetry, in which 

solid parts may be separated by a greater or smaller distance. 

 In all the movable situations described so far there is essentially no symmetry ex-

cept possibly by reflection in a mirror or by a halfturn, and in some special positions.  

Much more interesting are movable configurations in which the configuration retains 

some non-trivial cyclic or dihedral symmetry throughout the motion.  We have encoun-

tered such configurations in Section 2.9, when discussing dihedral astral 3-

configurations.  
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 However, it seemed rather unlikely that analogous movable k-configurations, with 

considerable symmetry, can exist for k ≥ 4. But exactly this type of configurations was 

discovered by L. Berman in the summer of 2006, and was first published in [B7].  We 

mention in passing that another kind of movable 4-configurations are the "floral configu-

ration", the first of which was found by J. Bokowski somewhat later in 2006. We pre-

sented the relevant results in Section 4.7, and shall not dwell upon them here. 

 The simplest of Berman's methods of generating such configurations can be de-

scribed as follows. 

 Starting with two 4-configurations, in one of them we omit one half of the lines of 

one orbit, and in the other one half of the points in one orbit.  If the configurations and 

the orbits have been chosen appropriately, it is possible to locate the deficient configura-

tions in such a way that the points that were incident with the deleted lines slide on the 

lines from which a point was deleted, thus supplying the correct numbers of incidences.  

The new configuration has four fewer points and lines than the original ones had jointly.  

Naturally, the choices of the points and lines to be omitted have to be made carefully, 

subject to some very stringent conditions. These restrictions are made explicit in [B7], 

and the complete characterization and proofs are given there. They are far too detailed 

and delicate to be included here, and the interested reader is advised to consult the origi-

nal paper (which is easily accessible).  A glimpse of the result of Berman's construction 

can be seen in Figure 5.7.3, which shows the smallest movable configuration obtainable 

by this method.  Berman's paper [B7] contains some additional constructions and devel-

opments as well. 

 A new paper by Berman [B10] (private communication) presents additional con-

structions of movable configurations that retain cyclic symmetry during motion.  It is 

more parsimonious, but the construction steps depend on the parity of the starting regular 

polygon. All configurations in this class have five point orbits of equal size.  The smallest 

movable configuration that can be obtained is a (304). Several positions of this configura-

tion are shown in Figure 5.7.4, adapted from [B10]. 
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Figure 5.7.3. A movable (444) configuration, adapted from [B7], Figure 7.  It is con-

structed from two copies of the 3-cyclic configuration (244) with symbol 8#(2,1;3,2;1,3]; 

one is shown in heavy lines and large red dots, the other with thin lines and smaller yel-

low dots.  From the former the grey dot and the three analogous points (not shown) have 

been omitted, while from the latter the dotted line and its three analogs are deleted.  The 

missing incidences are replaced by placing the black dot on the black line, and the corre-

sponding points of its orbit on the corresponding lines; because of the choice of the pa-

rameters and orbits, the black point is freely movable on the black line, provided the sizes 

of the configurations are adjusted appropriately. 



  Page 5.7.5 

       

 

Figure 5.7.4.  The smallest movable configuration from Berman's [B10]. It is a 5-orbits 

configuration (304).  The black point can move freely on the black line as illustrated in 

the three parts. 

 

 Berman's construction in [B10] is considerably simpler than the ones in [B7], 

since it does not require deletion and pasting.  However, it seems that the construction we 
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shall consider next has certain advantages; it is presented here for the first time.  It has 

been discovered a very short time before this book was going to print, and I have not had 

the time to figure out all conditions for the applicability of the method. 

 Consider the following example, which is the smallest to which the construction 

is applicable but is typical in all other respects.  We start with the tricyclic configuration 

10#(2,1;4,2;1,4); it has symmetry group d10.  However, we wish to consider it with only 

one of its d5 subgroups.  The situation is illustrated in Figure 5.7.5.  Without the con-

straints imposed by the deleted mirrors and the accompanying rotations, the configuration 

is movable!  In Figure 5.7.6 are shown several stages of the motion. The images were 

created with the Geometer's Sketchpad® software, the top green point being freely mov-

able on the blue line with positive slope incident with it.  An interesting and useful obser-

vation is that the points on the disregarded mirrors remain collinear throughout the mo-

tion. 

     
(a)      (b) 

Figure 5.7.5.  (a) The tricyclic configuration (304) with symbol 10#(2,1;4,2;1,4), shown 
with its ten mirrors; its symmetry group is d10.  (b) The same configuration, but equipped 
with only five of the mirrors. The three orbits of lines and the five orbits of points under 
the symmetry group d5 are distinguished by their colors. 
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(a)      (b) 

     

(c)      (d) 

Figure 5.7.6.  Four snapshots of different stages in the motion of the (304) configuration 

from Figure 5.7.5(b).  The purple segment indicates one of the mirrors. 
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 This circumstance can be used to construct another family of movable configura-

tions, using the (5/6m) construction from Section 3.3.  Applied to the (304) configuration 

in Figure 5.7.5(b) it yields the smallest known movable 4-configuration, a (254), illus-

trated with several snapshots of its motion in Figure 5.7.7.   

     

(a)      (b) 

     

(c)      (d) 
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(e)      (f) 

Figure 5.7.7.  (a) The (304) configuration with symmetry group d5, from Figure 5.7.5(b).  

(b) A (254) configuration obtained from the configuration in (a) by omitting the points in 

the orbit of the lowest red point, and the lines incident with these points, and by adding 

the orange diametral lines (that go along the mirrors of the starting (304) configuration).  

This is the construction we introduced in Section 3.3 under the designation (5/6m); this 

particular instance is the same as the first part of Figure 3.3.13.  (c) to (f)  Four snapshots 

of different stages in the motion of the (254) configuration from part (b).   

 

Exercises and problems 5.7 

 
1.   Investigate the possible motions of the astral configurations such as (103), allow-

ing for departure from astrality. 

2. Describe movable examples of 4-configurations that can be obtained by using 

copies of [3,4]-configurations.  What are the smallest configurations of this kind?  Apply 

the same construction to the superfiguration (93) shown in Figure 1.3.4. 

3. Investigate to which configurations are the methods we used in Figures 4.7.6 and 

5.7.7 applicable.  


