
5.6 THE DIMENSION OF A CONFIGURATION 

 In Section 1.3 we introduced the concept of "dimension of a configuration".  For 

convenience, we repeat it here.  If C is a configuration we say that  C  has dimension  d  if 

this is the largest integer for which  G  admits a geometric representation (by points and 

straight lines) in some Euclidean space, such that the affine hull of the imbedding has di-

mension  d. 

 Among meaningful questions that one can ask is the determination of the dimen-

sion of a given configuration, the possible dimensions of k-configurations for a given k, 

what criteria can we find to determine whether a given configuration (or class of configu-

rations) has this or that dimension, and so on.  The material presented in this section has 

not been published before; it was developed in an ongoing collaboration with Tomaz 

Pisanski. 

 Here are some examples to help develop an understanding of the issues. 

 First, we consider the three smallest 3-configurations, the (93) configurations 

shown in Figure 5.6.1 (which we have seen earlier, as Figure 2.2.1).  Each is (obviously) 

drawn in the plane –– but could we somehow imbed it in 3-space so that it not be con-

tained in a plane?  The negative answer is easily established: Regardless of the dimension 

of the space, the plane determined by points 1, 5, 7  of  (93)1 necessarily contains also the 

points 3, 4, 8 and hence also 2, 6, 9, and thus the whole configuration. Similarly, the 

plane containing the points 1, 5, 7 of  (93)2  contains 2, 3, 8, hence 4, 6, 9; the plane con-

taining 1, 5, 8 of (93)3 contains also 2, 6, 9, and then 3, 4, 7  –– in both cases the whole 

configuration. 

 A different situation prevails with respect to the Desargues configuration which 

we have denoted (103)1; see Figure 5.6.2.  Consider the four points 0, 1, 2, 3 imbedded in 

any Euclidean space of dimension at least 3, in such a way that no plane contains all four; 

this we occasionally call "general position".  Then the points 4, 5, 6 determine another 

plane; we choose them so that the plane is not parallel to the plane of 1, 2, 3, and does not 

contain any of the four earlier points.  These two planes determine (as their intersection) a 



line, which contains the points 7, 8, 9 determined, respectively, on that line by the planes 

of  1,3,6,4,  1, 2, 4, 5,  and  2, 3, 6, 5.  Hence all points (and all lines) of the configuration 

are in the 3-dimensional space affinely spanned by 0, 1, 2, 3.  It follows that the dimen-

sion of the configuration (103)1  is  3. 

 However, it would be wrong to conclude that an increase in the number of points 

implies an increase in the dimension.  For example, the configuration (103)2 shown in 

Figure 5.6.3 is 2-dimensional.  Indeed, the plane containing points 1, 3, 5  contains also 2, 

4, 9, hence 6, 7, 8, and 0, and thus the whole configuration. 
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Figure 5.6.1.  The three configurations (93). 
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Figure 5.6.2.  The configuration (103)1 – the Desargues configuration –– has dimension 

d = 3. 



 Theorem 5.6.1.  There exist 3-configurations with arbitrarily large dimensions. 

 Proof.  Start with any 3-configuration in the plane. Take three copies vertically 

above each other in 3-space, delete copies of the same line from each, and insert three 

vertical lines through the points on these lines. This raised the dimension by 1 (at least). 

Repeating the same procedure with three copies of this configuration, placed in suitable 

positions in parallel 3-spaces within a 4-dimensional space, deleting copies on one line 

from each and adding three transversals, raises the dimension of the resulting configura-

tion to 4 (at least). Obviously we can continue indefinitely by the same method.  ◊ 

 The configurations constructed in the proof of Theorem 5.6.1 are quite large. It 

may be of interest to find smaller examples, at least for small dimensions  d.  We have 

already seen such configurations for d = 2 and 3.  For d = 4 we can use the Cremona-

Richmond configuration shown in Figure 5.6.4; we encountered this configuration ear-

lier, in Sections 1.1 and 5.4.  Indeed, consider the 15 points in the 4-dimensional Euclid-

ean space  E4, listed in Table 5.6.1 by their labels in Figure 5.6.4. Then it is easily 

checked that all 15 triplets that are supposed to be collinear indeed are, while it is obvious 

that the affine hull of the set is 4-dimensional. 
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Figure 5.6.3.  The configuration (103)2  has dimension d = 2. 



 As reported in Section 2.3, there is no information available on the family of 

geometric configurations (n3) for n = 13 or 14 (beyond some examples). Hence it is not 

possible to definitely assert that the Cremona-Richmond configuration is the smallest 3-

configuration of dimension d = 4.  We venture: 

Conjecture 5.6.1.  All configurations (n3) with  n ≤ 14 have dimensions 2 or 3. 

 A question that arises quite naturally is whether dual configurations have the same 

dimension.  A negative answer is obvious from the example in Figure 5.6.5: The configu-

ration (62, 43) is clearly contained in the plane determined by any two of its lines, while 

the dual configuration (43, 62) spans the 3-dimensional space if the four points are chosen 

in affinely independent positions.  While it is possible to generalize this example, the 

situation concerning connected but not 2-connected configurations discussed in Section 

5.1 makes it plausible that balanced configurations may behave differently from unbal-

anced ones.  

Conjecture 5.6.2.  If C is a balanced configuration then the dimensions of C and its dual 

C* are the same. 
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Figure 5.6.4.  The Cremona-Richmond configuration (153) is 4-dimensional. 



1 = (0,0,0,0),    2 = (1,0,0,0),    3 = (-1,0,0,0),    4 = (0,1,0,0),    5 = (0,-1,0,0), 

6 = (0,0,1,0),    7 = (0,0,-1,0),    8 = (0,0,0,1),     9 = (2,0,0,2),    10 = (1,1,1,1), 

11 = (0,2,2,2),   12 = (0,2,0,2),   13 = (2,2,0,2),    14 = (2,0,2,2),    15 = (0,0,2,2). 

Table 5.6.1.  Coordinates for the points of a realization of the Cremona-Richmond con-

figuration (153) in the 4-dimensional Euclidean space. The names of the points refer to 

the labels in Figure 5.6.4. 

 

    (a)      (b) 

Figure 5.6.5.  (a)  The configuration (62, 43) known as the complete quadrilateral is 

2-dimensional.  (b) Its dual (43, 62), the complete quadrangle, is 3-dimensional.  

 It is easy to show that the cyclic configuration C3(n) is 2-dimensional in all cases 

in which it is realizable by a geometric configuration, namely n ≥ 9.  Indeed, consider the 

typical Levi diagram of C3(n), shown in Figure 5.6.6.  The plane that contains the points 

P0, P1, P2 contains the lines L0, L1, and hence the points P3, P4; then the lines L2 and L3 

are in this plane, therefore the points P5 and P6 as well. Since this pattern continues in-

definitely, the whole configuration is in one plane. 

P3 L3 P4 L4 P5 L5 P6 L6 P7 L7 P8P2 L2P1 L1P0 L0Pn LnLn-1

 

Figure 5.6.6.  A stretch of the Levi graph of the cyclic configuration C3(n) used to show 

that that the configuration is 2-dimensional for all n ≥ 9. 



 So far we have dealt mainly with the dimension of 3-configurations.  What is 

known about 4-configurations?  Very little seems to be known at present.  It is easy to 

verify that the astral configuration (244) shown in Figure 3.6.5 is 2-dimensional, as is the 

3-astral configuration (214) shown in Figure 3.7.1.  In case of the six astral configurations 

(364) shown in Figure 3.6.6 the proof that all are 2-dimensional is only slightly more in-

volved.  Experimental evidence on k-astral configurations has not turned up any that are 

demonstrably d-dimensional with d ≥ 3. However, it is well possible that for reasonably 

large n some k-astral (n4) configurations are not 2-dimensional; it would be interesting to 

decide this question at least for astral 4-configurations, or for 3-astral ones. 

 On the other hand, the (414) configuration in Figure 3.3.16 is easily seen to be 

3-dimensional. The two parts that are joined at the four collinear points by the four con-

current lines show how to "bend" the configuration into 3-dimensional space. 

 A challenging task –– that may be impossible to fulfill –– is finding combinatorial 

criteria for the dimension of a configuration. 

 

Exercises and problems 5.6 

1. Determine the dimensions of the remaining seven configurations (103), shown in 

Figures 2.2.3 and 2.2.5. 

2. Does the analogy with the results of Section 5.1 for unbalanced configurations 

extend to the dimensions?  Specifically, do there exist [q,k]-configurations (with 3 ≤ q ≠ 

k ≥ 3) such that the dimensions of C and its dual C* are different? 

3. How large can be the difference between the dimensions of a dual pair of configu-

rations is Exercise 2 ? 

4. Recall from Section 2.1 that a general cyclic configuration C3(n,a,b) consists of 

triples {j, a+j, b+j}, for given a, b with 0 < a < b < n and for 1 ≤ j ≤ n, all entries taken  

mod n.  Determine the dimension of the various configurations  C3(n,1,b), and possibly 

of the general C3(n,a,b). 


