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5.4 MULTILATERAL-FREE CONFIGURATIONS 

 We turn now to one of questions concerning trilaterals (and multilaterals) in con-

figurations, that go back to the classical period of configurations in the last quarter of the 

19th century.  It has seen new life in the recent decades, mostly without any acknowl-

edged relation to the earlier results.   

 The first question that will occupy us asks for configurations that contain no tri-

laterals.  Here is what is known. 

 Theorem 5.4.1.  For every  k ≥ 2 there exist geometric k-configurations that are 

trilateral-free. 

 The proof is immediate on recalling the configurations  LC(k)  described in Sec-

tion 1.1 as well as in [P5], and utilized in Section 5.1.  The only drawback of this an-

swer is the rather large size of these configurations.  The resulting trilateral-free geo-

metric configurations are (nk) with  n = kk. ♦ 

 We shall see below how smaller trilateral-free geometric configurations can be 

found in some cases. For some general estimates see Lazebnik et al. [L2]. 

 Another general result gives a lower bound on the size of trilateral-free con-

figurations. 

 Theorem 5.4.2.  If an (nk) configuration with  k ≥ 2 is trilateral-free then               

n ≥ k(k-1)2 + k. 

 The proof is straightforward on considering the situation schematically presented 

in Figure 5.4.1, assuming k = 4.  Any one line (represented by the horizontal one) carries  

k  points; through each of the points go k–1 other lines of the configuration, each carrying  

k–1 additional points.  The only remark that needs to be made is that these points must all 

be distinct, since otherwise there would be a trilateral present in the configuration.  This 

argumentation (or something similar) was shown to me by J. Bokowski. Notice that the 

argument does not use any geometry, and hence the result holds for combinatorial con-

figurations as well.  ♦ 



  Page 5.4.2 

 

Figure 5.4.1.  Schematic representation of the proof of Theorem 5.4.2. 

 For k = 3 the result was known to Martinetti [M1] in 1886. 

 The cubic bound in Theorem 5.4.2 is in contrast to the exponentially large exam-

ples in Theorem 5.4.1.  We shall next show that we can do much better than the exponen-

tial example for  k = 3, and slightly better for k = 4. 

 As a consequence of Theorem 5.4.2 we see that for k = 3 any trilateral-free 

k-configuration must have at least  n ≥ 15 points.  Martinetti [M1] seems to be the first to 

have raised in 1886 the question of trilateral-free 3-configurations.  He proved that such 

configurations have at least 15 points, and provided a combinatorial description of the 

unique (153) that is trilateral free.  It needs to be stressed that, from all that we can read in 

his publications, Martinetti thought at that time (as well as later) that combinatorial 

3-configurations are all geometrically realizable.  In fact, Martinetti's trilateral-free (153) 

configuration is, indeed, geometrically realizable, see Figure 5.4.2.  Moreover, in the pre-

history of configurations, traces of this (153) geometric configuration can be found in 

considerations of families of straight lines on cubic surfaces, by Schläfli in 1858 and 

Cremona in 1868.  The configuration itself is frequently called the Cremona-Richmond 

configuration; see [C6], [W2].  More detailed historical explanations and references can 

be found in [B19].  

 The Cremona-Richmond configuration is shown in Figure 5.4.2, and a Levi graph 

(see [W7])  based on a Hamiltonian multilateral, is shown in Figure 5.4.3.  Since the con-

figuration is trilateral-free, its Levi graph has no circuits of size smaller than 8; in other 

words, its girth is 8. In fact, it is the smallest 3-valent graph of girth 8, and it is famous as  
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Figure 5.4.2.  The Cremona-Richmond trilateral-free configuration (153).  Point labels are 
in plain font, line labels are in bold italics.  Same digits establish a duality correspon-
dence between points and lines. 

 

Figure 5.4.3.  A Levi graph of the Cremona-Richmond configuration. It is the "Tutte 
8-cage", the smallest 3-valent graph with girth 8.  Similar presentations appear in [C6] 
and many other places. 

Tutte's (3,8)-cage, or more simply, Tutte's 8-cage.  Coxeter [C6] provides an ingenious 

labeling of its vertices, and calls it "the most regular of all graphs".  Figure 5.4.3 also 

shows that this graph has a color-reversing symmetry, hence the Cremona-Richmond 

configuration is selfdual; this result can also be deduced from the fact that there is only 
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one type of trilateral-free (153) configuration.  On the other hand, it should be noted that 

there are infinitely many projectively inequivalent geometric realizations of this configu-

ration. This is most easily seen by manipulations in some software such as Geometer's 

Sketchpad™. 

 Before continuing our description of the other results about trilateral-free 

configurations, we need to present some of the more recent definitions and results that 

deal with the same topic in a different language. 

 A (k,g)-cage  is a graph with all vertices of valence  k  and of girth  g, having the 

smallest possible number of vertices.  For this definition, and most of the known results 

concerning cages, see [G19], [W7] and the references given there.  For attractive illustra-

tions of some of the cages see [P7].   

 The Levi graph of a (combinatorial or geometric) (nk) configuration has, as we 

mentioned in Section 1.5, girth g ≥ 6; since, as we have seen in Section 2.1, the Fano con-

figuration (73) has the smallest number of vertices, its Levi graph with 14 vertices is a 

(3,6)-cage –– in fact, the only (3,6)-cage.   

 Trilateral-free 3-configurations have girth at least 8; hence the Levi graph of the 

smallest such configuration –– the Cremona-Richmond (153) –– is the (3,8)-cage, with 30 

vertices.  Since the Cremona-Richmond (153) is the unique trilateral-free (153) configura-

tion, this cage is also unique: it is the Tutte (3,8)-cage, mentioned earlier. 

 Another related concept is that of "generalized quadrangles". A generalized 

quadrangle is an incidence structure in which each pair of distinct points determines at 

most one line, and for each non-incident pair consisting of a point P and a line L, there is 

precisely one line L* that is incident with P and with a point P* of L.  A (finite) general-

ized quadrangle is of order (s, t) if every line contains precisely s+1 points and every 

point is incident with precisely t+1 lines.  The terminology is often justified by the fact 

that an ordinary quadrangle can be interpreted as a generalized quadrangle of order (1,1).  

Obviously, each generalized quadrangle of order (2,2) is a combinatorial 3-configuration.  
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The smallest generalized quadrangle of order (2,2) has 15 points; hence it is a (153) con-

figuration, for which the definition of generalized quadrangles implies that it is trilateral-

free.  It follows that it is isomorphic with the Cremona-Richmond configuration.  Polster 

[P7] shows several diagrams of this generalized quadrangle; two are particularly interest-

ing.  The first, which he attributes to Stanley Paine, is shown in Figure 5.4.4; the labels 

establish its isomorphism with the configuration in Figure 5.4.2. 
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Figure 5.4.4.  The "doily" of S. Payne: a geometric model of the 15-point generalized 

quadrangle of order (2,2) –– also known as the Cremona-Richmond configuration.  

 The second interesting model shown by Polster [P7] is by lines (actually, line 

segments) in 3-dimensional space; see Figure 5.4.5. The model is best understood as be-

ing spanned by a regular tetrahedron; the tetrahedron's edges are indicated by the dashed 

lines and are not part of the configuration.  Naturally, any appropriate projection of this 

model into the plane provides a planar realization of the Cremona-Richmond configura-

tion.  A figure resembling such a projection illustrates the Cremona-Richmond configura-

tion in Wells' "Dictionary" [W2, p. 40]. 

 Returning now to the configuration language, here are some of the additional re-

sults on trilateral-free 3-configurations, all established by Martinetti [M1]: 
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Figure 5.4.5.  A realization of the 15-points generalized quadrangle of order (2,2), alias 
Cremona-Richmond configuration, supported in 3-space by a regular tetrahedron. 
(Adapted from [P7].) 

• There are no trilateral-free configurations (163).  This is not hard to show, starting 

with the arrangement shown in Figure 5.4.1, and noting that for a sixteenth point there are 

only relatively few possibilities of collinearities with the other points –– none leading to a 

configuration, even in the combinatorial sense. 

• There is a single trilateral-free configuration (173); again, the uniqueness implies 

that it is selfdual.  It is interesting because of its very low symmetry. Under its group of 

automorphisms it has four point orbits: two of size 6 each, one of size 3, and one of size 

2.  It is geometrically realizable, but with no symmetry.  Details (such as configuration 

table, geometric realization, Levi graph, automorphism group, orbits) can be found in 

[B19]. 

• There are precisely four trilateral-free configurations (183). Two are dual to each 

other, and each of the other two is self-dual.  Data on all four, with geometric realiza-

tions, are given in [B19].  One of the selfdual configurations (denoted 18-D in [M1] and 

[B19]) is interesting because of its symmetry; it admits a selfpolar realization as an astral 

configuration 9#(4,2;3) in the notation of Section 2.7, and is shown in Figure 5.4.6. 
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Figure 5.4.6.  A realization of the trilateral-free selfpolar configuration (183) denoted 

18-D in [B19]; it is astral with symbol 9#(4,2;3), and is the first of an infinite series of 

trilateral-free selfpolar configurations. 

 
 In considering these results of Martinetti [M1], one should bear in mind that al-

though he uses geometrical language there is no diagram presenting these configurations, 

nor is there any hint how the corresponding geometric configurations should be con-

structed.  The first geometric realizations seem to be the ones in [B19]. 

 According to the data in [B14] (reproduced in [B19]) there are 19 combinatorial 

trilateral free configurations (193), 162 such configurations (203), and 4713 (213).  It is 

not known how many are geometrically realizable. 

 On the other hand, we have the following: 

 Theorem 5.4.3.  For every  n ≥ 15  except n = 16 and possibly n = 23 and 27, 

there are trilateral-free geometric configurations (n3). 

 Proof.  For n = 15, 17, 18, 19, 20, 21 trilateral-free geometric configurations are 

shown in [B19].  It is easy to verify that all astral configurations  m#(4,2;3)  for m ≥ 9 

and m ≠ 12 are trilateral free; this shows that for all even n ≥ 18, n ≠ 24, there are trilat-

eral-free configurations (n3).  The (183) and (203) configurations mentioned above are of  
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Figure 5.4.7. A trilateral-free configuration (243); it is astral with symbol 12#(5,3;4). 
 

this type. For the exceptional value n = 24 a trilateral-free geometric configuration is 

shown in Figure 5.4.7. 

 The construction of the appropriate configurations for odd n is slightly more com-

plicated.  In almost all cases, the following construction works.  Starting with trilateral-

free geometric configurations (p3) and (q3), we delete one line in each and connect the 

three pairs of orphan points with an additional, new point.  (The required alignment can 

always be obtained through suitable projective transformations.) This yields a trilateral-

free geometric configuration (n3) with n = p + q + 1.  Starting from the trilateral-free con-

figurations we already constructed, this yields the required geometric configurations for 

all odd n ≥ 31 = 15 + 15 + 1.  An alternative construction works for all  n ≥ 29: In anal-

ogy to the "deleted union" construction (DU-1) described in Section 3.3, we delete a line 

from a trilateral-free geometric configuration  (p3)  and delete a point from a trilateral-

free geometric configuration  (q3); by placing appropriate copies of the two configura-

tions so that the lines of the latter (which are missing a point) pass through the points of 

the former (that are missing a line), we obtain a trilateral-free geometric configuration of  

n = p + q – 1 points.  For p = q = 15 this yields  n = 29. 
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 The case (253) is particularly interesting.  Visconti [V4] gives configuration tables 

for two distinct trilateral-free combinatorial configurations (253), each consisting of a 

family of five mutually inscribed/circumscribed pentalaterals.  These are reproduced, in 

Visconti's notation, in Tables 5.4.1 an 5.4.2.  In the somewhat analogous case of trilat-

eral-free configuration (203) consisting of four mutually inscribed/circumscribed penta-

laterals, Visconti provides a graphical representation, that seems to be the first symmetric 

rendition of any multiastral configuration.  However, contrasting this is the fact that there 

is no indication in [V4] whether the (253) configurations described are geometrically real-

izable.  We have verified that at least one of these can be drawn, but not in a polycyclic 

manner; see Figure 5.4.8.  Just as in the case of the (173) and (193) configurations investi-

gated in [B19], the configuration is asymmetric, and was constructed by successive ap-

proximations.  It is very likely that the same situation exists for Visconti's other (253).  ♦ 

 Visconti [V4] and Martinetti [M3] provide additional examples of trilateral-free 

combinatorial 3-configurations consisting of mutually inscribed/circumscribed pentalat-

erals, and some other multilaterals as well.  It may be conjectured that these are geomet-

rically realizable as well. 

 It is worth noting that most astral configurations m#(b,c;d) are trilateral-free for 

sufficiently large m. Exceptions (such as the n = 24 case mentioned above) are usually 

easy to spot, but there seem to be some subtler issues that have not been tackled so far. 

An example of such a situation is given in Figure 5.4.9. 

 We are turning now to quadrilateral-free configurations; this term is somewhat of 

a misnomer –– at least in the sense we shall use it.  By quadrilateral-free we shall refer 

to configurations that have neither a trilateral nor a quadrilateral.  We have no example of 

a configuration that has no quadrilateral but does have trilaterals; it appears to be an open 

question whether such configurations exist.  This leads to our terminology that simplifies 

the locutions. 

 In discussing quadrilateral-free configurations, we consider only 3-configurations, 

since nothing on the topic of quadrilateral-free k-configurations seems to be known for k 

≥ 4.   
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Figure 5.4.8.  A geometric realization of one of the trilateral-free configurations (253) 
given by configuration tables in [V4] and Table 5.4.2 below. 
 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
 2 3 4 5 1 8 9 10 6 7 13 14 15 11 12 18 19 20 16 17 23 24 25 21 22 
 6 7 8 9 10 11 14 12 15 13 16 19 17 20 18 21 24 22 25 23 1 2 3 4 5 

Table 5.4.1.  The configuration table of one of the trilateral-free configurations (253) 
found by Visconti [V4]. 
 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
 2 3 4 5 1 8 9 10 6 7 13 14 15 11 12 18 19 20 16 17 23 24 25 21 22 
 6 7 8 9 10 11 14 12 15 13 16 19 17 20 18 21 24 22 25 23 1 5 4 3 2 

Table 5.4.2.  The configuration table of the other trilateral-free configuration (253) found 
by Visconti [V4].  A geometric realization of this configuration is given in Figure 5.4.8. 
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Figure 5.4.9. The astral configuration 11#(5,4;2) is not trilateral-free; one trilateral is 

shown by green lines.  For m such that  13 ≤ m ≠ 15, the configuration m#(5,4;2) is trilat-

eral-free. 

 

 The only published work I am aware of that deals with quadrilateral-free geomet-

ric 3-configurations is [P6]; the configurations are studied using their Levi graphs.  

 Through the Levi graphs, the question of quadrilateral-free configurations is re-

lated to 3-valent bipartite graphs of girth at least 10.  Such graphs have been extensively 

investigated; a large quantity of relevant literature can be found in [W6] and [W7]. 

 The result of these graph-theoretic studies that is most relevant to our topic is that 

there exist exactly three 10-cages (also called (3,10)-cages), that is, 3-valent graphs of 

girth 10 with the smallest number of vertices, namely 70; all three are bipartite.  The first 

one was found by Balaban [B1], the other two by O'Keefe and Wong [O2]; Wong [W6] 

proved that these three are the only ones.  Balaban's 10-cage has a color-interchange 

automorphism, the other two do not have any such automorphism. 

 In [P6], Pisanski et al. describe in detail these three 10-cages, and the resulting 

five quadrilateral-free configurations (353). Since Balaban's 10-cage has a color-reversing 
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symmetry, the corresponding configuration is selfdual.  The other two 10-cages yield a 

pair of dual configurations each.  It is clear that the three 10-cages can be interpreted as 

Levi graphs of quadrilateral-free combinatorial 3-configuration (353); however, Pisanski 

et al. prove that they admit geometric realizations, and provide in [P6] diagrams for three 

of the five. These three admit polycyclic representations which the last two do not have; 

for them there is in [P6] a description of the method of proof (following [B25]), and a 

reference to the full set of coordinates listed at a website.  In [P6] there is also described a 

construction of quadrilateral-free geometric configurations (n3) for an infinite sequence of 

values of  n. 

 An improvement of this last result is the following: 

 Theorem 5.4.4. For every  n = 4m ≥ 40, there exists a quadrilateral-free geomet-

ric configuration (n3).  There exists an  n0  such that for every  n ≥ n0  there is a quadrilat-

eral-free geometric configuration (n3).  The available estimate is  n0 ≤ 320. 

 Proof.  It is easily verified that for m ≥ 10 the astral configuration (2m)#(m-1,1;4) 

is quadrilateral-free.  I am indebted to T. Pisanski for showing me one of the two smallest 

of these configurations, 20#(9,1;4), see Figure 5.4.10(a).  The next members of the se-

quence, the pair of dual 22#(10,1;4) are shown in Figure 5.4.11.  The proof of the fact 

that the (2m)#(m-1,1;4) configurations are quadrilateral-free is easy by generalizing the 

argument indicated by the coloring of the points in Figures 5.4.10 and 5.4.11.  Since the 

configuration is astral, and any quadrilateral would have to contain a point of the outer 

ring, it is enough to show that the point marked by the large black dot is not part of any 

quadrilateral. The only six points at (graph-)distance 1 are the six red points, and those at 

distance 2 are the 24 green ones.  The presence of any quadrilateral would imply that two 

of the green points coincide –– which does not happen since this would imply that there 

are at most 23 green points. 

 In order to prove the existence of n0 we may use the same construction as in the 

proof of theorem 5.4.3 for odd n.  We take two quadrilateral-free configurations (p3) and 

(q3), and using convenient representatives delete one line from each; an additional point 

and three lines through it and the points on the two deleted lines form a quadrilateral-free 
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configuration (n3) with n = p + q + 1.  Repeating the construction  r  times leads to con-

figurations with  r  points more than the sum of the numbers of points of the configura-

tions used.  This yields the bound n0 ≤ 320.  ♦ 

    
(a)      (b) 

Figure 5.4.10.  The two dual astral configurations 20#(9,1;4). Both (403) configurations 

are quadrilateral-free. 

     

Figure 5.4.11.  A dual pair of astral, quadrilateral-free (443) configurations 22#(10,1;4). 
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 In analogy to our convention concerning quadrilaterals, we say that a configura-

tion is pentalateral-free if it contains no t-laterals for t = 3, 4, 5.  The information avail-

able is exceedingly meager.  A (3,12)-cage has 126 points and happens to be bipartite; 

hence it can be interpreted as the Levi graph of a pair of dual (633) combinatorial con-

figurations.  Schroth [S9] found graphic representations of these two configurations, 

which we reproduce in Figures 5.4.12 and 5.4.13. (The title of Schroth's paper refers to 

the "generalized hexagons" of order (2,2); the uniqueness of the dual pair was established 

in [C3].) 

 

Figure 5.4.12.  One of the "generalized hexagons of order (2,2)" shown by Schroth [S9]. 
Its points and arcs are a graphic rendition of a (633) configuration. 
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Figure 5.4.13.  The other (633) configuration from Schroth [S9]. 

 

 The diagrams in these two figures naturally lead to the question whether the two 

pentalateral-free configurations are geometrically realizable.  The affirmative answer was 

provided by M. Boben and T. Pisanski, soon after the publication of [S9], but never pub-

lished.  With their permission, one of the two geometric pentalateral-free configurations 

(634) is reproduced in Figure 5.4.14, by a diagram they supplied.  In Figure 5.4.15 we 

show the reduced Levi diagram of this configuration, as kindly provided by Boben and 

Pisanski. 
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Figure 5.4.14. A geometric realization of a pentalateral-free configuration (633). (Cour-

tesy of M. Boben and T. Pisanski, from unpublished work.) 
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Figure 5.4.15.  The reduced Levi graph (in their notation) of the pentalateral-free configu-

ration in Figure 5.4.14. (Courtesy of M. Boben and T. Pisanski, from unpublished work.) 

 

The Boben and Pisanski construction of the pentalateral-free (633) configuration is a 

piece of supporting evidence for Conjecture 2.6.1, according to which all 3-connected 

combinatorial 3-configurations can be realized by points and (straight) lines. (The 3-

connectedness of the 12-cage can be directly established, but it also follows from the 

more general result of Fu et al. [F3] that all (3,g)-cages are 3-connected, or the more gen-

eral result of Daven and Rodger [D4] that for k ≥ 3 all (k,g)-cages are 3-connected; there 

is a conjecture in [F3] that all (k,g)-cages are k-connected.)   

* * * * * * 

 Turning next to the case of trilateral-free 4-configurations, there is much less in-

formation available.  A trilateral-free combinatorial configuration (404) was found re-
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cently by Hendrik van Maldeghem. Van Maldeghem's example attains the bound of 

Theorem 5.4.2 for k = 4; hence it corresponds to a (4,6)-cage.  The construction of this 

example is described by Bokowski in [B21, pp. 263–265], where an incidence matrix is 

also shown (in two forms).  However, no information seems available concerning the 

possibility of realizing this configuration geometrically, or even just topologically. 

 As already mentioned, the configuration  LC(4)  provides an example of a trilat-

eral-free geometric configuration (n4) with  n = 44 = 256.  Smaller trilateral-free configu-

rations (1204) are the astral configurations  60#(22,21,2,9)  and  60#(27,26,3,14) shown 

in Figures 5.4.16 and 5.4.17, and their duals.  By using the  (3m+)  and (DU-1)  construc-

tions described in Section 3.3, from the (1204) configurations we can construct infinite 

families of geometric trilateral-free configurations.   

 However, much a better example of a trilateral-free 4-configuration is a (604) 

found very recently by M. Boben.  It and its polar are shown in Figure 5.4.18. 

 The procedures analogous to the one describe earlier, applied to the configura-

tions  LC(k)  for k ≥ 5, show that in all these cases there are infinite families of trilateral-

free geometric configurations.  Unfortunately, they are all far too large for intelligible 

graphics ... 

 It is not known whether for k ≥ 5 there exist trilateral-free combinatorial configu-

rations (nk) with n = k(k-1)2 + k.  

 



  Page 5.4.19 

 

Figure 5.4.16.  A trilateral-free geometric configuration (1204). It is a sporadic astral con-

figuration, with symbol 60#(22,21,2,9). 

 

Figure 5.4.17. 60#(27,26,3,14) 
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Figure 5.4.18. The trilateral-free (604) 4-astral configuration 15#(1,3;7,6;4,3;2,6) found 

by M. Boben, and its polar. (Courtesy of M. Boben.) 

 

Exercises and problems 5.4 

 

1. Find other astral families of quadrilateral-free 3-configurations. 

2. Is there a quadrilateral-free configuration (n3) for every n ≥ 35? Or for all but a 

very small number of values of n? 

3. Decide whether it is possible for a 3-configuration to have no quadrilaterals but 

contain some trilaterals. 


