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  5.2 HAMILTONIAN MULTILATERALS 

 As another example of the utility of Levi graphs, we consider in this section 

and the next some of the known results on multilaterals in configurations.  We start by 

expanding the appropriate definitions from Section 1.3.  

 We call multilateral (or, if appropriate, r-lateral) any sequence of points Pi and 

lines Li of a configuration that can be written as  P0, L0, P1, L1, … , Pr-1, Lr-1, Pr = P0, with 

each Li incident with Pi and Pi+1 (all subscripts understood  mod r).  Thus, an r-lateral in a 

configuration C corresponds to a (2r)-circuit in the Levi graph L(C).  A  multilateral 

path satisfies the same conditions except the coincidence of the first and last elements.  

Instead of 3-lateral we shall say trilateral, and analogously pentalateral, etc.1  A  cir-

cuit decomposition of a graph is any family of disjoint simple circuits that together 

include all vertices of the graph.  Clearly, not every graph has a circuit decomposi-

tion, but as we have seen in Section 2.5, the Levi graph of every connected 

k-configuration, k ≥ 2, has such a decomposition. The corresponding multilaterals of 

the configuration are said to be a multilateral decomposition of the configuration.  A 

multilateral decomposition consisting of a single multilateral is a Hamiltonian multi-

lateral of the configuration.  In other words, a Hamiltonian multilateral of a configura-

tion passes through all its points and uses all its lines, each precisely once. 

 The Hamiltonian circuit of the Levi graph in Figure 5.1.1 corresponds to a 

Hamiltonian multilateral of the configuration.  On the other hand, from the Levi graph 

of the same configuration shown in Figure 5.1.2 we easily see the possibility of a cir-

cuit decomposition of the Levi graph into four 6-circuits, hence yielding a decomposi-

tion of the configuration (123) in Figure 5.1.1 into four trilaterals (that form a cycle of 

mutually inscribed / circumscribed trilaterals).  It is also easy to observe a decomposi-

tion of this configuration into three quadrilaterals, such as la8g6b71, 3d10i2c9h, 

5f12k4e11j. 

                                                
1  The terms "trilateral", "pentalateral" and others were used by Martinetti [M1] in 
1886, but in a slightly different meaning. 
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 As another example, in Figure 5.2.1 we show a Hamiltonian multilateral of a 

configuration (103), as well as a decomposition of the same configuration into two 

pentalaterals.   
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Figure 5.2.1.  A configuration (103) with one Hamiltonian multilateral, and one de-
composition into two pentalaterals that are mutually inscribed/circumscribed. 

 The remaining part of this section is devoted to a survey of results known 

about Hamiltonian multilaterals.  The great majority of these results deal with 3-con-

figurations. 

 To begin with, here are some historical notes; in all of these papers the circuit 

terminology has been used, but we present them in our terms.  Kantor in 1881 [K4] states 

as a theorem that every (n3) configuration has a Hamiltonian multilateral.  Martinetti 

[M2] in 1887, Schoenflies [S2] in 1888 and Brunel [B30] in 1895 consider Hamiltonian 

multilaterals as self-inscribed/circumscribed polygons.  Schröter in 1889 [S8] states that 

he confirmed the existence of Hamiltonian multilaterals in all (103) configurations, and 

Steinitz in 1897 [S18] does the same for all (113).  Steinitz also observed that connected-

ness is a necessary condition, a fact not mentioned by earlier writers.  He also provided a 

first example of a connected configuration that does not admit a Hamiltonian multilateral. 

The smallest configuration that would fit his description is (283).  In 1990, Gropp [G9] 

announced that all connected configurations (n3) with n ≤ 14 have Hamiltonian multilat-
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erals.  The statement (a1) in the paper [K9, p. 128] by Kelmans, to the effect that every 3-

valent, 3-connected bipartite graph with at most 30 vertices has a Hamiltonian circuit, 

implies that all connected (n3) configurations with n ≤ 15 have Hamiltonian multilaterals. 

 The example of Steinitz mentioned above was improved in [D10] by the construc-

tion of the configuration (223) shown in Figure 5.2.2. It is not known whether every con-

nected configuration (n3) with 16 ≤ n ≤ 21 admits a Hamiltonian multilateral. 

 

Figure 5.2.2.  A (223) configuration that does not admit any Hamiltonian multilateral.  It 

is obvious that such configurations (n3) can be constructed for every n ≥ 22. 

 The fact that all connected configuration (n3) without a Hamiltonian multilateral 

known at the time were only 2-connected led the author to conjecture in 2002: 

 Conjecture 5.2.1.  All 3-connected (n3) configurations admit Hamiltonian multi-

laterals. 

 However, this conjecture was disproved in [G45]: 

 Theorem 5.2.1.  There exists a 3-connected geometric configuration (253) that 

does not admit a Hamiltonian multilateral. 

 We shall prove this by a construction, fashioned after the arguments presented in 

[G45]. 
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 Our construction starts with the smaller graph shown in Figure 5.2.3, devised by 

M. N. Ellingham and J. D. Horton in [E1].  This graph has no Hamiltonian circuit that 

uses both heavily drawn edges. The proof of this assertion is simply a follow-up of a few 

alternatives –– the non-trivial, clever part is the discovery of the graph.  For the next step 

we insert two additional vertices in each of the heavily drawn edges of Figure 5.2.3, re-

sulting in the graph shown in Figure 5.2.4.  From this the graph of Figure 5.2.5 was con-

structed by Georges [G1].  It is a non-Hamiltonian, 3-connected, bipartite graph.  Again, 

the proof of non-Hamiltonicity consists of the examination of several possibilities, and 

showing that neither leads to a Hamiltonian circuit.  After the graph is constructed, this is 

a matter of routine checking, as are the other relevant properties.  At this step, as in the 

earlier, it is the construction of the graph that is ingenious.  The main result of the con-

struction that is relevant to the present aim is the fact that the Georges graph has girth 6.  

Since it is bipartite, it follows that it is the Levi graph of a combinatorial configuration 

(253).  This is its relevance for the present goal. 

 

Figure 5.2.3.  This bipartite graph found by Ellingham and Horton [E1] does not admit a 

Hamiltonian circuit that uses both heavily drawn edges. 
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Figure 5.2.4.  A modification of the graph in Figure 5.2.3. 

 

Figure 5.2.5.  The Georges graph, resulting from a combination of two copies of the 

graph in Figure 5.2.4.  The graph is bipartite, 3-connected, non-Hamiltonian, and has 

girth 6. 

 We shall now apply the method of Steinitz described in Section 2.6 

 to obtain first a realization of this combinatorial configuration (253) as a prefiguration, 

and then apply a continuity argument to establish the possibility of its realization by a 
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geometric configuration.  To begin with we label the Georges graph in a more-or-less 

random way, as in Figure 5.2.6.  This labeling leads to the configuration table, shown in 

Table 5.2.1.  This is turned into an orderly configuration table, shown in Table 5.2.2, as 

required for the application of Steinitz's construction.  (This table was not constructed by 

following the rather cumbersome Steinitz algorithm, but by a straightforward "greedy" 

algorithm: Taking the first available choice at each step.  It worked very well in the pre-

sent case.) 

 Table 5.2.3 shows the Georges configuration with columns (that is, lines) per-

muted so that a decomposition of the configuration into "multilaterals" becomes obvious.  

This is accomplished by making the second entry in a column equal to the third entry in 

the preceding column, the first column being chosen arbitrarily.  The exception is the last 

column of a multilateral, in which the last entry is the same as the second entry of the  
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Figure 5.2.6.  A labeling of the Georges graph that allows us to interpret it as the Levi 
graph of a combinatorial configuration. The task is simplified by the fact that there are 
sufficiently many characters to label all lines. 
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a b c d e f g h i j k l m 
1 1 4 5 2 3 5 7 6 3 2 12 7 

2 10 9 8 3 4 6 8 8 9 10 13 14 
4 12 10 9 5 6 7 13 11 11 11 14 22 

 
n o p q r s t u v w x y 

1 15 15 16 13 16 19 21 12 15 20 18 
14 21 16 17 17 18 20 23 22 23 24 19 
17 22 20 19 18 24 21 24 23 25 25 25 

Table 5.2.1.  A configuration table of the Georges configuration, as read off Figure 5.2.6. 

 
a b c d e f g h i j k l m 
1 10 4 5 2 3 6 7 8 9 11 12 14 
2 12 9 8 3 4 5 13 6 11  0 14  7 
4 1 10 9 5 6 7 8 11 3 2 13 22 

 
n o p q r s t u v w x y 

17 15 16 19 13 18 20 21 22 23 24 25 
1 22 15 17 18 16 21 24 23 25 20 19 
14 21 20 16 17 24 19 23 12 15 25 18 

Table 5.2.2.  An orderly configuration table for the Georges configuration. 

first column.  In cases like the present one, where the first multilateral does not exhaust 

the columns, the first remaining column is used to start a new polygon.  In the case of the 

George configuration, the first is a 22-gon, the second a triangle.  Figure 5.2.7 provides 

an illustration of the two circuits in the Levi graph, that correspond to two multilaterals. 

a f i j e g m o t y r q s 
1 3 8 9 2 6 14 15 20 25 13 19 18 
2 4 6 11 3 5 7 22 21 19 18 17 16 
4 6 11 3 5 7 22 21 19 18 17 16 24  

u v b n l h d c k p x w 
21 22 10 17 12 7 5 4 11 16 24 23 
24 23 12 1 14 13 8 9 10 15 20 25 
23 12 1 14 13 8 9 10 2 20 25 15  

Table 5.2.3.  A rearrangement of the columns of the Georges configuration used to show 
a decomposition into multilaterals.  The boxed labels are explained in the text. 
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Figure 5.2.7.  The two multilaterals from Table 5.2.3 that lead to a multilateral decompo-

sition of the Georges graph. 

 As a last step in the Steinitz algorithm before the geometric construction, we per-

mute the columns (lines) once more.  Some vertex of a column of the last multilateral 

(the second in this case) must be a vertex that appeared in a previous multilateral, since 

otherwise the configuration would not be connected. (In the present case, we chose the 

vertex labeled 15.) We place that column as the first of the last multilateral, and place as 

the last column of the previous multilateral its column that contains the same vertex. The 

other columns in both multilaterals are permuted accordingly, so as to preserve the multi-

laterals present.  The configuration table obtained in this step (resulting from the choice 

of 15 as the special vertex) in shown in Table 5.2.4. 

 The geometric realization now proceeds very simply.  It can be followed in Figure 

5.2.8 which was obtained using “Geometer’s Sketchpad”™ and modified by 

ClarisDraw™. The idea follows the explanations given in Section 2.6: Choose the verti-

ces as arbitrary points, except when constrained to lie on one or two previously  
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t y r q s u v b n l h d c 
20 25 13 19 18 21 22 10 17 12 7 5 4 
21 19 18 17 16 24 23 12 1 14 13 8 9 

19 18 17 16 24 23 12 1 14 13 8 9 10  
k a f i j e g m o p x w 
11 1 3 8 9 2 6 14 15 16 24 23 
10 2 4 6 11 3 5 7 22 15 20 25 
2 4 6 11 3 5 7 22 21 20 25 15  

Table 5.2.4.  A rearrangement of the columns of Table 5.2.3, needed for the application 

of Steinitz’s geometric construction. 

constructed lines.  In this example we start with arbitrary points 21 and 19.  Points 18 and 

17 are also chosen freely, but the choice of 16 has to be on the line  q  through the previ-

ously determined points 19 and 17, and then 24 must be on the line  s  through 16 and 18; 

similarly, the point 23 must be on the line  u = [21, 24].  The points 12 and 1 can be cho-

sen freely, but 14 must be on the line  n = [1, 17], and 13 on the intersection point of the 

lines  r = [17, 18] and  l = [12, 14].  Next, points 8, 9, 10, 2 are free, but 4 must be on the 

line  a = [1, 2].  The point 6 is free, while 11 is the intersection point of lines  i = [6, 8] 

and  k = [10, 2], and point 3 is the intersection point of the lines  f = [4, 6] and  j = [9, 11].  

Similarly, 5 is the intersection point of  d = [8, 9] and  e = [2, 3], and 7 is the intersection 

point of  h = [8, 13] and  g = [5, 6], while 22 is the intersection point of lines  v = [23, 12] 

and  m = [7, 14]. This completes the construction of the first multilateral.  To start with 

the next (the trilateral), we select 15 on the line  o = [22, 21], then 20 as the intersection 

point of  t = [21, 19] and  p = [16,15].  The only remaining problem is the selection of 

point 25, which should be at the intersection of three lines, namely  y = [18, 19],   x = 

[24, 20], and  w = [23, 15].  It is to be expected that three lines do not have a common 

point.  This is quite general, and it is the final solution given by Steinitz, with the selec-

tions made: the last line may need to be taken as a circle (or a parabola).  
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Figure 5.2.8. The construction of a 3-connected geometric configuration that does not 

admit a Hamiltonian multilateral.  In the actual construction shown (using "Geometer's 

Sketchpad"™) the final incidence was missed by about 0.5 mm due to the discreteness of 

the underlying software. The curves at left and right are meant to indicate that the triplets 

of lines do meet at the points they are supposed to – but too far for inclusion in an intelli-

gible version of the diagram. 

 In fact in this case –– just as for many other configurations –– by judicious 

choices of the free parameters one may find selections in which the point  25  is on a cer-

tain side of the line  w,  as well as selections where it is on the other side.  By continuity, 

this implies that there is a position of incidence.  The final conclusion, therefore, is that 

the Georges configuration can be realized geometrically, by points and straight lines.  

Hence it is a 3-connected non-Hamiltonian geometric configuration (253). ¨ 

 The result of Theorem 5.2.1 can be extended to geometric configurations of al-

most all sizes: 
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 Theorem 5.2.2.  For each  n ≥ 33  there exist 3-connected geometric configura-

tions (n3) that do not admit Hamiltonian multilaterals. 

 Proof.  Selecting any of the vertices of the (253) configuration of Theorem 5.2.1, 

(see Figure 5.2.9(a), where the gray oval stands for the rest of the Georges configuration  

(253), denoted here by G.  We delete that vertex and replace it by the three intersection 

points of the lines incident with the deleted vertex and a new line  L  (see Figure 

5.2.9(b)).  We denote this truncated version of G by G'.  Taking now the similarly trun-

cated version H' of any configuration (p3), we make its three lines incident with the three 

points on L (Figure 5.2.9(c)).  Since both (73) and (83) have truncated versions realizable 

by straight lines, the above results in a configuration with  n ≥ 24 + 3 + 6 = 25 + 1 + 7 

points and lines.  This configuration is clearly 3-connected but it cannot be Hamiltonian.   

 

Figure 5.2.9. The construction establishing Theorem 5.2.2. 

Indeed, any Hamiltonian multilateral would have to use  L and two of its points, one of 

which must be on a line toward G', the other towards H'.  The third point on L must be on 

one line from G' and another from H'.  But then there would be a multilateral in G' using 

L, and therefore – by identifying the three points of G' that are on L – we would get a 

Hamiltonian multilateral of G. ¨ 

 A few remarks on the background of Theorem 5.2.1.  I learned of Georges’ paper 

[G1] and his non-Hamiltonian graph from Gropp [G9].  But Gropp but makes no connec-

tion between the Georges graph and configurations, and in particular, does not observe 

the fact that the Georges graph has girth 6 and is therefore the Levi graph of a configura-
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tion (combinatorial at least).  It should also be noted that in [G1], the rendition of the El-

lingham-Horton graph, shown above in Figure 5.2.3, is missing one of the special edges.  

 Gropp [G9], [G19] also mentions that a result similar to Georges’ has been found 

earlier by Kelmans [K8].  This may well be the case; however, I find the presentation in 

[K8] (both in the Russian original, and in the translation) too confusing to be able to de-

cide whether the graph he constructs has girth 6.  Like Georges, Kelmans does not men-

tion girth, or configurations.  The claim in [G9] that Kelmans’ 50-vertex graph is the 

same as Georges seems quite unjustified.  The expanded version of Kelman's paper (see 

[K9]) remains inscrutable to the present author. Moreover, there is no mention in [K9] of 

girth 6, of Levi graphs, or of any type of configurations 

* * * * * 

 A natural question that can be asked in view of Theorems 5.2.1 and 5.2.2 is: 

Does every geometric 4-configuration admit a Hamiltonian multilateral? 

 As we shall now show, there is a negative partial answer: 

 Theorem 5.2.3.  There exist 2-connected geometric 4-configurations that do not 

admit any Hamiltonian multilaterals. 

 Proof.  We provide a conceptually simple construction that, unfortunately, leads 

to such configurations but of relatively large sizes.  We use configurations (or, more pre-

cisely, fragments of configurations) such as the halves of the configurations in Figure 

5.1.5.  With the same conventions, we can assume that we start with an arbitrary (n4), for 

example, the C(4) used in Section 5.1. (We note that the configuration (184) in Figure 

3.3.4 could be used, but at the cost of some detailed arguments about cross-ratios.)   As 

indicated in Figure 5.2.10, we start with eight copies, delete from each a line and take 

suitable projective transforms so that the points that are on three lines each are aligned as 

shown in Figure 5.2.10, using an additional line L and an additional point P.  Since each 

of L and P can be used only once in any multilateral, there is no possibility for involve-

ment of more that two of the groups of four starting configurations.  Hence this non-

Hamiltonian configuration is a (40874); if we start with (184) the result is a still formida-

ble (2894).  A somewhat smaller example can be found by replacing, in each set of four, 
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one configuration by a single point; this would lead to a non-Hamiltonian (30774) if using 

C(4), or (2214) if using (184). 

 It is easy to see that a similar construction can be applied to k-configurations for 

all k ≥ 5, starting with any single geometric configuration of that kind; for example, C(k) 

can be used.  Obviously, the configurations obtained will be monstrously large. 

 An unsolved problem is the question whether there are non-Hamiltonian geomet-

ric 4-configurations that are 3- or 4-connected. 

L

P

 
Figure 5.2.10.  The scheme of the construction of a 2-connected geometric configuration 
(2894) that does not admit any Hamiltonian multilaterals.  Each gray rectangle represents 
an (184) configuration from which one line has been omitted. 
 
 
 A different direction in the study of Hamiltonian multilaterals in configurations is 

opened by the following generalization: 

 Definition. A [q,k]-configuration has a Hamiltonian multilateral if and only if it 

has a multilateral  M  such that: 

 (i) Every element of one of the two kinds (points or lines) is contained in the 

multilateral M; 
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 (ii) Every element (of both kinds) is incident at most once with the multilat-

eral M. 

 Obviously, this definition reduces to the standard one in case of balanced configu-

rations (q = k). 

 Except for a few examples of type [3, 4] with Hamiltonian multilaterals, there 

seems to be no information available on this topic. 

 It also seems that the concept has not been studied in the context of bipartite 

graphs –– to which it obviously applies. 

* * * * * * 

 A different type of questions and results arises if we inquire about Hamiltonicity 

of some restricted families of configurations.  For example, if we consider astral 

3-configurations, one may inquire about Hamiltonian multilaterals that have the same 

symmetries as the configuration; we shall call them symmetric Hamiltonian multilater-

als.  In Figure 5.2.11 we show an example of a symmetric Hamiltonian multilateral in the 

astral (103) configuration.  Note that both parts show the same symmetric multilateral –– 

multilaterals are concerned with lines, not segments. 
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Figure 5.2.11. A symmetric Hamiltonian multilateral in the astral configurations (103).  

Both parts represent the same multilateral. 
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 In Figure 5.2.12 we show four different symmetric Hamiltonian multilaterals on 

the astral (103) configuration.  Using the notation for astral 3-configurations we intro-

duced in Section 2.7, and which is illustrated in Figure 5.2.13, we can assert: 

Theorem 5.2.4.   Cyclic astral configuration  m#(b, c; d) may have four types of symmet-

ric Hamiltonian circuits: 

     B0 → C0 → Bd → ...  

     B0 → C0 → Bd–c → ...  

     B0 → C–b → Bd–b → ... 

     B0 → C–b → Bd–b–c → ... 

A symmetric Hamiltonian circuit of one of these types exists if and only if  m  is  rela-

tively prime to  d,  d–c,  d–b,  or  d–b–c, respectively. 

 
Figure 5.2.12.  Four different symmetric Hamiltonian multilaterals in the astral configura-

tion (103). 
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Figure 5.2.13. A reminder of the notation for astral 3-configurations, illustrated for 

m#(b,c;d) = 7#(3,2;4) 

 

 A related result of Hladnik et al. [H5], based in part on work of Alspach and Zhang 

[A1], should be mentioned here:  Every connected cyclic 3-configuration (combinatorial 

or geometric) is Hamiltonian. Unfortunately, it is not clear to me exactly what is here 

meant by "cyclic 3-configuration". 

 

Exercises and problems 5.2. 

 1. Decide the validity of the following open conjecture: Every astral 

3-configurations admits a Hamiltonian multilateral. 

2. Find four symmetric Hamiltonian multilaterals in the (143) astral configuration 

7#(3,2;1). 

3. Prove Theorem 5.2.4.  Apply it to the configuration 8#(3,2;1). 

4. The two configurations in Figure 5.2.14 do not have any symmetric Hamiltonian 

multilateral.  If the result of [H5] mentioned above relates to them, they have Hamilto-

nian multilaterals.  In any case, either find a Hamiltonian multilateral, or else show that 

there is none such. 
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5. Determine whether the three 3-astral configurations (93) in Figure 1.1.6 admit 

symmetric (or any) Hamiltonian multilaterals. 

6. In configurations with dihedral symmetry group one can not expect any Hamilto-

nian multilateral to have the same symmetry group.  At most, one may look for cyclically 

symmetric Hamiltonian multilaterals.  In Figure 5.2.15 we show three examples of this 

situation. Determine whether the six astral 4-configurations (364) shown in Figure 3.6.3 

admit cyclically symmetric Hamiltonian multilaterals. 

 

Figure 5.2.14.  Selfpolar astral configurations  12#(5, 5; 2)  and  18#(5, 1; 3)  have no 

symmetric Hamiltonians.  Do they have any Hamiltonian circuits at all? 
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Figure 5.2.15.  Examples of cyclically symmetric Hamiltonian multilaterals in three con-

figurations with dihedral symmetry. 

7. Following [D7] we say that set of points of a configuration C is a blocking set it 

if contains a point of every line of C but not all points of any of the lines.  Show that the 

(223) configurations shown in Figure 5.2.2 contains no blocking set. (This example dis-

proves two conjectures in [D7].) For more information about blocking sets and blocking 

set-free configurations see [G11], [G24]. 


