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5.1 CONNECTIVITY OF CONFIGURATIONS 

 We start by recalling from Section 1.4 the concept of Levi graph L(C) of a con-

figuration C.  This is a bipartite graph (that is, there are two sets of nodes –– black and 

white) with no edge connecting vertices of the same color.  Usually the black nodes of 

L(C) correspond to the vertices of C, while the white ones correspond to the lines of 

C.  A black node is connected to a white node by an edge of L(C) if and only if the 

corresponding vertex of C is incident with the corresponding line.  The advantage of 

L(C) is that the graph L(C) represents the configuration faithfully –– that is, knowing 

the Levi graph of a configuration enables one to determine the (combinatorial) con-

figuration uniquely.  An example of the Levi graph of a (123) configuration is pre-

sented in Figure 5.1.1. 
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Figure 5.1.1.  A configuration (123) and its Levi graph.  Since the graph admits an 

incidence-preserving color reversal, which yields a graph isomorphic to the original 

(by reflection in the line bisecting the segments 7 h and 12 k, for example), the con-

figuration is self-dual. 
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 For a given configuration C, the Levi graph L(C) is uniquely determined.  

However, L(C) may admit various presentations, with different properties. For ex 

ample, in Figure 5.1.2 is shown another rendition of the Levi graph of the configura-

tion (123) in Figure 5.1.1; it can be understood as an imbedding of the Levi graph in 

the torus.  This presentation shows that all vertices of this configuration form one or-

bit under automorphisms of the configuration, and that all lines form one orbit as 

well.  This is not easily visible from either the drawing of the configuration or its Levi 

graph in Figure 5.1.1.  

 
Figure 5.1.2. Another rendition of the Levi graph of the configuration (123) in Figure 

5.1.1.  It is easy to visualize this graph embedded in a torus in such a way that the 

combinatorial equivalence of all vertices of the configuration is obvious.  

 

 The main utility of Levi graphs comes from the fact that the graph-theoretic 

properties of L(C) may be used to define or determine properties of the configurations 

involved.  We shall return to this topic in the next section, in the context of multilater-

als. 
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Levi graphs are particularly useful in connection with questions about the con-

nectivity of configurations.  Concepts such as “connected”, “k-connected”, etc. for a 

configuration are defined by asking whether its Levi graph has the property in ques-

tion.  It is clear that these concepts can be defined directly in the configurations, but 

the formulations, distinctions, relevance, and familiarity are in many cases more eas-

ily perceived on the Levi graphs. 

 Theorem 5.1.1.  Every connected combinatorial or geometric k-configuration 

C is 2-connected. 

 Proof.  Note that a configuration is connected but not 2-connected (that is, the 

deletion of a single point from the Levi graph of C disconnects the graph) if and only 

if the dual configuration has the same property.  Hence for a proof of the theorem by 

contradiction we may assume that there is a line L whose removal disconnects the 

configuration. At least one of the connected components resulting from the removal 

of  L  has at most h points incident with  L, where 1 ≤ h ≤ k/2.  Then the number of 

incidences of the m lines of this component with the  p  points of the component is, on 

the one hand, equal to km, but on the other hand equal to  k(p – 1) + h, since L was 

incident with h points.  These numbers should be equal, but as one of them is divisible 

by k and the other is not, a contradiction was reached. ¨ 

 Theorem 5.1.1 is due to Steinitz [S1], as is the idea of its proof.  We have seen 

earlier (Corolary 2.5.3) a different proof of this result.  But that proof relied on the 

construction of an orderly configuration table, which was a rather deep result. The 

approach here provides a good example of the utility of introducing graph-theoretic 

concepts (in particular, the Levi graph), in considerations of configurations.  Steinitz 

did not have such tools, and as a consequence he needed more than a page of densely 

printed (and clumsily formulated) arguments to state and prove Theorem 5.1.1. 

 As a strengthening of Theorem 5.1.1 one might conjecture that each connected 

k-configuration, k ≥ 3, is 3-connected. However, this is not the case. A counterexam-

ple is shown in Figure 5.1.3.  It is known that all combinatorial configurations  (n3)  
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with  n ≤ 13 are connected and, moreover, are 3-connected.  This is best possible 

since for n = 14 there are counterexamples to both parts.  The combinatorial configu-

ration consisting of two disjoint copies of the Fano configuration is disconnected, 

while the configuration in Figure 5.1.3 is connected but not 3-connected.  Any dis-

connected geometric (or topological) configuration (n3) must have  n ≥ 18. 

 For 4-configurations the corresponding numbers are: 

 There are disconnected combinatorial configurations (n4) if and only if n ≥ 26. 

 There are disconnected topological configurations (n4) if and only if n ≥ 34. 

 There are disconnected geometric configurations (n4) if and only if n ≥ 36. 

 The example in Figure 5.1.3 shows that there are 2-connected 2-configurations 

that are not 3-connected.  This leads to the following problem: 

 If k ≥ 4 and 2 ≤ j < k, do there exist j-connected k-configurations that are not 

(j+1)-connected?   

 

 
Figure 5.1.3.  A connected configuration (143) which is not 3-connected. 

 An affirmative answer is given by the construction described in the proof of 

the following theorem: 

 Theorem 5.1.2. For each  k ≥ 4 and each j with  2≤ j < k  there exist geometric 

k-configurations that are j-connected but not (j+1)-connected. 

 Proof.  We consider first the case j = 2.  The text deals with arbitrary  k,  and 

the illustration in Figure 5.1.4 presents in parallel the case  k = 4.  We start with cop-

ies of configurations   LC(k)  described in Section 1.1 (see also [P9]), with a slight 
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modification.  As described in Section 1.1,   LC(k)  consists of an array of  kk  points 

of the integer lattice in the Euclidean k-space  Ek, with all coordinates in range [0, k-

1], together with the lines parallel to the coordinate axes through these points.  The 

modification we need here is that in one of the directions the coordinate  k–1  is re-

places by a convenient other integer.  Our attention focuses on one of the lines in that 

direction, and the  k  points on it.  (If desired, we way think of these configurations as 

projected into the plane.)  In Figure 5.1.4 this situation is schematically indicated; one 

of the gray rectangles represents the modified configuration  LC(k),  the dashed line 

within the rectangle represents the chosen line, and the four dots represent the four 

points of   LC(k) on that line.  We need 2k configurations of this type, indicated by the 

gray rectangles, and positioned in such a way that two of the solid lines connect the k 

configurations at left with the k configurations at right, while each of the other 2k–2 

solid lines connects the k copies in each half among themselves.  Note that in each 

half, a single configuration is placed differently than the other k–1.  Finally, we delete 

the dotted lines, thus creating a k-configuration.  It is obvious that the resulting con-

figuration is 2-connected, but the deletion of the two lines running between the two 

halves disconnects it; hence the configuration is not 3-connected. 

 For  j > 2 we proceed analogously, but with an additional step.  The construc-

tion is illustrated in Figure 5.1.5. 

 The first modification of the above construction is that the left half now has j–1 

dots "above" the rest, and the right half has k–j+1 such points.  Naturally, the correspond-

ing numbers are the "bottom" are k–j+1 and j–1.  Also, we do not insert the bottom con-

necting line between the two halves.  Instead, we take a stack of  k  copies of what we 

constructed so far (it is best to imagine these copies to be in parallel planes, stacked 

above each other), and connected the corresponding points that were originally connected 

by the omitted bottom line.  This is the desired configuration.  It is clearly j-connected,  
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Figure 5.1.4.  The construction of a geometric 4-configuration that is 2-connected but not 
3-connected. 

 
Figure 5.1.5.  The construction of a geometric 4-configuration that is 3-connected but not 
4-connected. 
 

but the right part at each level can be disconnected from the rest by the omission of the   

j–1 lines connecting it to the other levels, and the line connecting it to the other half at its 

own level. ¨ 

 It is clear that these constructions lead to very large configurations even in the 

smallest cases: (20484) in Figure 5.1.4, and (81924) in Figure 5.1.5.  There probably exist 

much smaller configurations with the same properties –– but justifying the existence of 

the appropriate projective images to yield the alignments necessary may be more in-

volved.  Rather obviously, much smaller combinatorial configurations with the properties 

discussed in Theorem 5.1.2 may exist, but this seems of rather marginal interest.  On the 

other hand, even though one may expect to find combinatorial configurations of this type 

that are smaller than the corresponding geometric ones, no actual examples seem to be 

available. 
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* * * * * 

 In course on configurations I gave in the 1990 I made several conjectures that 

aimed at extending the result of Theorem 5.1.5 above to unbalanced [q,k]-configurations 

with  3 ≤ q ≠ k ≥ 3.  Xin Chen, a student in that course, produced various counterexam-

ples; among them one proving that there exist [4,3]-configurations which are 1-connected 

but not 2-connected. 

 A small modification of Chen's procedure leads to: 

 Theorem 5.1.3.  Combinatorial [q,k]-configurations that are 1-connected but not 

2-connected exist if and only if  q ≠ k. 

 Proof.  As we have seen in Theorem 5.1.5, every connected k-configuration 

2-connected.  For the other direction, due to duality, if  q ≠ k  it is enough to consider the 

case  q > k.  We start by forming a [q,k]-configuration, cyclic as far as possible.  By this 

is meant that one uses as many cyclic sequences as necessary -- in the illustration below 

we need two such cycles. These configurations are generalization of the cyclic configura-

tions C3(n)  we introduced on In Section 2.1.  (The use of "cyclic" configurations comes 

only to simplify the checking that the tables which will be constructed are actually con-

figuration tables.)  Then we use a Martinetti-type construction (see Section 2.4): we se-

lect some  k–1  lines with a property specified below, add one more point, and form a 

fragment in which all points except the new one are incident with  q  lines, and the new 

point is incident with  k  lines.  The selected lines (which are then omitted) should be 

such that their points can be grouped in a way that no pair occurs in any other line; the 

new point is "cross-connected" to the points in these lines.  As an illustration, the case  

q = 4,  k = 3  is explicitly presented in detail .  Here we take  n = 12,  the chosen lines are  

1 2 4  and  7 8 10, and the additional point is  0.  This way the configuration  

  1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 

  2 3 4 5 6 7 8 9 10 11 12 1 5 6 7 8 

  4 5 6 7 8 9 10 11 12 1 2 3 9 10 11 12 

yields the subfiguration 
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 0 0 0 2 3 4 5 6 8 9 10 11 12 1 2 3 4 

 1 2 4 3 4 5 6 7 9 10 11 12 1 5 6 7 8 

 7 8 10 5 6 7 8 9 11 12 1 2 3 9 10 11 12 

If three copies of this fragment are taken, distinguished by the number of dashes, and a 

line  0 0' 0"  is added, we get a combinatorial  (394, 523)  configuration which is con-

nected but not  2-connected. 

 In the general case, the additional point  0  of the fragment will be on  k  lines 

only, thus having a deficit of  q–k lines.  To supply these we find a connected [q–k, k]-

configuration C.  Then we take as many copies of the fragment as there are points in C,  

and identify the point  0  of one copy of the fragment with each point of the configuration 

C.  (In the above example,  C  is the [1, 3]-configuration which consists of just three 

points and one line.) This clearly yields a [q,k]-configuration of type which is connected 

but not 2-connected since each copy of the point  0  disconnects the configuration.  ¨ 

 It is not known whether the  (394, 523)  configuration is the smallest of this type. 

 Theorem 5.1.3 deals with combinatorial configurations, and the question arises 

whether there exist connected geometric [q,k]-configurations, with q ≠ k, that are not 

2-connected. 

 A partial affirmative answer is given by the following result. 

 Theorem 5.1.4.  For every q and k, with  min{q,k} ≥ 3 and q ≠ k, there exist 

geometric [q,k]-configurations that are connected but not 2-connected. 

 Proof.  We first consider the case  [4,3]-configurations.  We start with a tricyclic 

3-configuration  C1  shown in Figure 5.1.6.  (This particular configuration is (543), but it 

is likely that smaller configurations of the same general type could be used in the con-

struction.)  The significance of the two heavily drawn lines will be explained soon.  As in 

some of the other constructions, the next step is best explained by thinking of the con-

figuration  C1 as contained in a plane of the 3-dimensional space.  By adding two congru-

ent copies, situated perpendicularly above and below  C1, and adding vertical lines 

through all points of  C1,  we obtain a configuration  (1624, 2163), which we designate   
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C2.  Now we delete the two heavily drawn lines from the configuration  C1 –– but not 

from the two copies of it, which we used in  C2.  Instead of these two lines we introduce 

three new lines, as shown in Figure 5.1.7, and a new point incident with all three of these.  

(The existence of such a triplet of lines depends on the variability afforded to tricyclic 

configurations by the presence of an arbitrary parameter.)  This step leads from  C2  to  a 

prefiguration  C3.  All lines in  C3  are incident with three points, and all points of  C3  

except the newly introduced point are incident with four lines.   

 In the final step we take two additional copies of  C3  and connects the three ex-

ceptional points by a line.  This results in a [4,3]-configuration which is connected but 

obviously is not 2-connected.   

 An easy modification of this construction for works for q > 4. All that is needed is 

to use copies of  C2  to construct (in 4-space, for greater comfort) a [5,3]- or [6,3]- etc. 

configuration, before proceeding to  C3  and to the final configuration. 

 Clearly, the polars of these configurations (or, more precisely, of their projections 

into the plane) yield the appropriate connected but not 2-connected [3,k]-configurations, 

with  k ≥ 4.  

 

Figure 5.1.6.  The tricyclic configuration  C1  used in the proof of Theorem 5.1.4.  
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Figure 5.1.7.  The prefiguration  C3 used in the proof of Theorem 5.1.4.  The new point is 

indicated by the green dot. 

 Now, if min{q, k} ≥ 4, we need an additional step in the construction. We shall 

assume that q ≥ k, since otherwise we could construct the dual configurations.  We start 

again with the (543) configuration  C1  shown in Figure 5.1.6.  By repeatedly using the 

procedure we designated (5m) in Section 3.3, we generate from  C1  a [q,k]-configuration  

C*.  In Section 3.3 we went only one step, from 3- to 4-configurations.  But an easy 

modification allows the construction of a k-configuration C** that contains the original  

C1  as a subconfiguration.  By stacking k copies of C** and connecting them with lines 

through corresponding points, a [k+1,k]-configuration is obtained; repetition of this step 

leads to the required  C*.  Now we replace – as before – the two lines drawn heavily in 

Figure 5.1.6 by the three lines and a point as shown in Figure 5.1.7.  The newly intro-

duced point  O  is the only point that is on just  q-1  lines.  Now taking  k-1 additional 

copies of C* and connecting the   k  points  (O and its images in the other copies of C*) 

by a line gives the desired [q,k]-configuration which is connected but not 2-connected.    

* * * * * * 

 Two elements (points or lines) of a configuration are said to be independent if 

they are: 
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 Two points that are on no line of the configuration; 

 Two lines if they are not incident with a point of the configuration; 

 A point and a line if they are not incident. 

 A family of elements in a configuration is called independent if any two of its 

elements are independent. 

 A configuration C is said to be unsplittable1 if the deletion of any independent 

family of its elements leaves a connected configuration.  In other words, if for every in-

dependent family F, any two elements that do not belong to the family F are in a multilat-

eral that does not use any element in F.  Equivalently,  C is splittable if it can be discon-

nected by an independent family of elements.   

 For example, the (123) configuration in Figure 5.1.8 has several 5-element inde-

pendent families but no 6-element independent families. It is easy (even if tedious) to 

check that the configuration is unsplittable. Similarly, for the (153) configuration in Fig-

ure 5.1.9, the maximal number of elements in an independent family is 6, and the con-

figuration is unsplittable.  These and other examples lead to 

Conjecture 5.1.1.   The maximal number of elements in an independent family in a con-

nected configuration (nk) is  [n/k] + 1. 

 
Figure 5.1.8.  Two independent families of five elements each (shown in red), that do not 
disconnect the (123) configuration. 
                                                
1  The material on independent families and unsplittable configurations is part of an 
ongoing collaboration with Tomaz Pisanski; it was presented in part in [P9]. 
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Figure 5.1.9.  An independent family of six elements (red) in a (153) configuration. 

 

 We shall encounter unsplittable configurations in Section 5.6. Here we shall con-

clude with 

Theorem 5.1.5.  Every unsplittable 3-configuration is 3-connected. 

Proof.  Assume that a connected configuration C is not 3-connected; we shall show it is 

splittable.  As a consequence of Steinitz's theorem 2.5.1 it is possible to present C in an 

orderly configuration table, hence it must be at least 2-connected. 

 If C is not 3-connected, it can be disconnected by two elements, and we have the 

two possibilities: 

 (i) Both elements are of the same kind; without loss of generality we can assume 

that the disconnecting set consists of two points. 

 (ii) The disconnecting set consists of one point and one line. 

If either of these disconnecting sets were not a splitting set, the two points must be inci-

dent with a line of C, or the points and line must be incident, respectively. 

 In case (i), let the two points be A and B, and let L be the line incident with both. 

Let D be the third point of L.  It is impossible that of the six lines incident with L, only 

two come from the same connected component. (If this were the case, either the two lines 

would be incident with the one of the points A, B, D –– which would mean that C is not 
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2-connected; or else the two lines would be incident one each with A and B. Then taking 

two copies of this components, together with A, B, and L, and attaching three such sys-

tems at a point corresponding to D in all three, would again yield a configuration that is 

not 2-connected.) So each component has three lines incident with L. Since L is incident 

with only six lines, and A, B disconnect C, the arrangement must be like the one in Fig-

ure 5.1.11.  But then the point B and line M are a splitting set. 

 In case (ii), the situation must again be as shown in Figure 5.1.10, with A and L 

the disconnecting elements, and again M and B are a splitting set. ¨ 

 We may note that the converse of Theorem 5.1.5 does not hold. There are 3-

connected configurations that are splittable.  The smallest I know is the (153) configura-

tion shown in Figure 5.1.11. 

 

L

M

A B

D

 
Figure 5.1.10.  Schematic arrangement used in the proof of Theorem 5.1.5. 

 

Figure 5.1.11. This 3-connected configuration (153) is splittable. A splitting set consists 

of the three green dots. 
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Exercises and problems 5.1 

1. The geometric [q,k]-configurations constructed in the proof of Theorem 5.1.4 are 

quite large, even in the case of [4,3]-configurations.  Find smaller examples of connected 

but not 2-connected geometric [4,3]-configurations. 

2. Do there exist reasonably-sized 2-connected but not 3-connected geometric [4,3]-

configurations?  It is clear that this question can be generalized. 

3. Without relying on polarity, give a detailed proof of Theorem 5.1.4 for the case of 

geometric [3,4]-configurations. 

4. Prove that Conjecture 5.1.1 is true for k = 2, even without the connectedness as-

sumption. Show that it is invalid for k = 3 if connectedness is not assumed. 

5. Show that Conjecture 5.1.1 holds for all (103) configurations. 

6. Show that the cyclic configuration C3(n) (see Section 2.1 for the definition) is 

unsplittable. 

7. Investigate which of the cyclic configurations C3(n,a,b)  (see definition in Exer-

cise 2.1.2)  are unsplittable. 

8. The independent families of elements of a configuration C can be characterized as 

corresponding to independent (that is, unconnected) sets of vertices in the independence 

graph I(C) of C.  (The independence graph of C can be defined as the (graph-theoretic) 

square of the Levi graph L(C); this is the graph in which two vertices are connected by 

an edge is they are connected in the original graph, or if they share a common adjacent 

vertex. Equivalently, I(C) is the union of L(C) with the edges of the Menger graph M(C) 

described in Section 1.4, and the edges of M(C*), where C* is the configuration dual to 

C.) 


