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4.6 TOPOLOGICAL CONFIGURATIONS 

 

 Studies of topological configurations have begun only in the very recent past.  

While in many ways analogous to geometric configurations, there are significant differ-

ences that deserve to be investigated in more detail. Here I will try to present the material 

that is available at this time. 

 The distinction between geometric and topological configurations became evident 

long ago, through Schroeter's proof [S6], [S8] that one of the ten combinatorial configu-

rations (103) cannot be geometrically realized; see Section 2.1 for more details. The fact 

that it almost can be realized geometrically (as in Figure 1.2.2, with lines just a bit bent) 

means that it is topologically realizable. However, neither this, nor the fact that it is not 

known whether there exist geometrically non-realizable 3-connected (n3) configurations 

with n > 10 that are topologically realizable, resulted in any consistent effort to find clari-

fication.  It took almost forty years after Schroeter's discovery for Levi [L3] to even de-

fine the appropriate concepts. 

 Another rather frustrating aspect of the situation concerning topological 

3-configurations comes about through Steinitz's theorem (see Section 2.6). In the case of 

topological 3-configurations unintended incidences pose no problem, and one may for-

mulate the resulting statement as follows: 

 Theorem 4.6.1.  Every connected combinatorial 3-configuration with n ≥ 9 can 

be realized by pseudolines if the incidence of an arbitrary point-line pair is disregarded. 

 Naturally, just as in the case of the Steinitz theorem itself, the unfulfilled inci-

dence can always be restored by allowing a curve of degree at most 2.  But there is no 

guarantee that this curve can be chosen in such a way that we obtain a topological con-

figuration.  As we have seen in Section 2.1, for n = 7 or 8 this is, in fact, impossible and 

there is no topological realization of these configurations. 

 A separate question is whether in certain families of 3-configurations (such as as-

tral, or 3-astral, or others) there exist topological configurations that cannot be realized by 

geometric ones of the same character. An affirmative answer to one of these questions 
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arises from the examples in Section 2.7 (in particular, see Figure 2.7.6).  However, the 

full extent of such situations for connected astral 3-configurations has not been deter-

mined.  More precisely, in Figure 4.6.1 we show four different astral 3-configurations of 

pseudolines which arise from unintended incidences in geometric astral configurations –– 

all four resulting in the same astral 4-configuration (244). 

 A different situation happens with the astral 3-configuration 12#(5,1;3). Its draw-

ing does not produce either the intended (243), nor a (244).  Instead, the resulting family 

of points and lines has some points on three lines and some on four, while some line are 

incident with just three points and some with 4.  This is illustrated in Figure 4.6.2(a).  

Again it is possible to avoid unintended incidences by replacing one orbit of lines by 

pseudolines, as indicated in Figure 4.6.2(b). 

 In all these cases it is not known whether actual geometric realizations of the 

3-configurations can be obtained if one does not impose symmetry restrictions. 

 Concerning topological 4-configurations, we have already discussed in Section 

3.2 the non-existence of topological (n4) configurations for n ≤ 16 and the fact that for 

every n ≥ 17 there exist topological (n4) configurations. Very recently, L. Berman [B4], 

determined the conditions for the existence of astral (that is, 2-astral) configurations of 

pseudolines with dihedral group of symmetries.  The main result of [B9] is the following:  

 Theorem 4.6.2.  Astral topological configurations (n4) exist if and only if n is 

even and n ≥ 22. 

 For the existence part of the proof it is sufficient to provide examples.  An astral 

(224) configuration of pseudolines was first shown in [G50], and has been reproduced in 

several other publications; see Figure 4.6.3.  Applying the notation we used in Sections 

3.5 and 3.6 to topological configurations, this is 11#(5,4;1,4).  It can be used as a tem-

plate for all even  n = 2m ≥ 22: For each  m ≥ 11, the symbol m#(5,4;1,4) represents such 

a configuration.  An example (with m = 17) is provided in Figure 4.6.4.  To establish the 

inequality for n, it is necessary to first notice that due to the requirements for topological  
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12#(4, 4; 2) 

12#(5, 1; -1) 12#(5, 1; 3)

12#(4, 4; 1)  

 

Figure 4.6.1.  Four instances where an astral geometric 3-configuration (123) leads to the 

astral 4-configuration (244).  The pseudolines can avoid the unintended incidences. 
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astral configurations, one can assume the configuration to be connected, have its points 

coincide with the vertices of two concentric regular m-gons, and have the concept of 

"span" of diagonals available –– just as for geometric configurations. Then it is easy to 

verify that the shorter span must be at least 4, hence the larger span at least 5, and there-

fore m greater than twice 5. (This is an abbreviated version of the detailed arguments in 

[B3].) ♦  

 
(a)      (b) 

Figure 4.6.2.  A drawing (a) of the astral 3-configuration 12#(5,1;3) produces no geomet-
ric configuration, but can be modified to a topological configuration (b). 

 
Figure 4.6.3.  A topological astral configuration (224), that can be described as 
11(5,4;1,4). 
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 A more detailed description of astral topological 4-configurations is given in [B9] 

as well.  It concentrates on those with dihedral symmetry. With a slight modification of 

the notation in [B9], we may summarize the results as follows.  Using the symbol 

m#(b,c;d,e) in the same meaning as explained in Sections 3.5 and 3.6, we note that: 

• The configuration points of the inner orbit can be situated on a circle of a radius 

that can vary between certain limits; 

• The points of the inner orbit are either aligned with those of the other orbit (Type 

1), or else situated at positions that enclose with them angles that are odd multi-

ples of π/m (Type 2). 

• m#(b,c;d,e) and m#(d,e;b,c) are equivalent; moreover c ≠ d and b ≠ e; we conven-

tionally assume that b < e; 

• It follows that c < b and d < e, and b – c > e – d; 

• For Type 1 configurations we have b – c ≡ e – d ≡ 0 mod 2, and 

 For Type 2 configurations we have b – c ≡ e – d ≡ 1 mod 2. 

 

Figure 4.6.4.  An astral topological configuration (344) of Type 2. It can be specified as 

17#(5,4;1,4). 
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 While these conditions impose many restraints on astral topological configura-

tions, it is also clear that most of them cannot be "straightened" or "stretched" into geo-

metric astral configurations. The reason in that the geometric m#(b,c;d,e) configurations 

exist only if m is a multiple of 6, while no such restriction holds in the topological case. 

 The smallest topological astral configurations is 11#(4,1;4,5) shown in Figure 

4.6.3 above. It is the only astral configuration (224), and is of Type 2. The smallest astral 

topological configuration of Type 1 is 13#(5,1;4,6), shown together with 17#(5,1;4,6) in 

Figure 4.6.5. 

 Even when m is divisible by 6 there are topological astral configurations 

m#(b,c;d,e) that are not stretchable.  The smallest such configuration is 18#(6,1;5,8), 

shown in Figure 4.6.6. 

     

(a)      (b) 

Figure 4.6.5.  Two astral topological configuration of Type 1. (a) The configuration 

13#(5,1;4,6), the smallest such configuration.  (b) Another (344) topological astral con-

figuration, that can be specified as 17#(5,1;4,6). 
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 Berman's paper [B9] contains a number of other results that we cannot get into 

here.  It should only be mentioned that there are examples of essentially chiral configura-

tions, that is, configurations that are astral under a cyclic symmetry group but are not 

even isomorphic to an astral configuration with mirror symmetries.  Such configurations 

do not exist for geometric astral configurations.  An example of an essentially chiral as-

tral configuration is shown in Figure 4.6.7.  A complete description of such configura-

tions is still lacking, as is also any treatment of k-astral topological configurations for 

k ≥ 3. 

 An interesting conjecture in [B9] can be formulated as follows: 

 Conjecture 4.6.1.  If the outer orbit of points in a astral topological configuration 

m#(b,c;d,e) with dihedral symmetry is on a circle of radius 1, then the inner orbit is on a 

circle of radius r, where  

0 < r < cos((b–c–1)π/m)/cos(π/m). 

 

 For a study of simplicial arrangements of pseudolines see [B8]. 

 

Figure 4.6.6.  The astral topological configuration 18#(6,1;5,8), the smallest configura-

tion with m divisible by 6 that is not a geometric astral configuration. 
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Figure 4.6.7.  A chiral astral configuration (304) that is not isomorphic to any astral con-

figuration that admits mirror symmetries. One of the pseudolines is drawn by heavy seg-

ments. It can be labeled 15#(6,1;5,7), and the fact that 6 – 1 ≡ 1 mod 2 while 7 – 5 ≡ 0 

mod 2 shows that it cannot be dihedral of either Type 1 or Type 2. 

 

Exercises and problems 4.6 

 

1. Justify the claims that the configurations in Figures 4.6.5a and 4.6.6 are the small-

est of their kind. 

2. What is the smallest topological 5-configuration you can find? 

3. How many distinct astral topological configurations (264) and (304) can you find? 

4. What are the smallest topological 3-astral 4-configurations you can find? 

5. Generalize the statement (in the proof of 4.6.2) that the symbol m#(5,4;1,4) de-

scribes a valid topological astral 4-configuration for each m ≥ 11. What about analogous 

statements for 3-astral configurations? 


