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4.3 [3, 4]- AND [4, 3]-CONFIGURATIONS 

 In the present section we shall survey the known facts concerning combinatorial 

and geometric [3, 4]-  and  [4, 3]-configurations.   

 The parameters of any combinatorial  (p3, n4)  or  (n4, p3)  configuration must sat-

isfy the conditions  3p = 4n,  p ≥ 1 + 3 · 3 = 10  and  n ≥ 1 + 4 · 2 = 9.  Thus  p  must be 

divisible by  4  and  n  must be divisible by  3,  so that the only possible configurations 

are those of the form  ((4r)3, (3r)4)  or  ((3r)4, (4r)3), respectively,  for  r = 3, 4, 5, ... .  For 

combinatorial as well as geometric configurations, the existence of  ((4r)3, (3r)4)  implies 

by duality resp. polarity the existence of  ((3r)4, (4r)3), and conversely.  Hence it is suffi-

cient in the following result to limit attention to one of the two cases. 

 Theorem 4.3.1.  For each integer  r ≥ 3  there exists a combinatorial configuration  

((4r)3, (3r)4;  topological and geometric  ((4r)3, (3r)4)  configurations exists for each  

r ≥ 4. 

 Proof.  We start with a combinatorial  (123, 94)  configuration, given by the fol-

lowing configuration table. 

 1 2 3 4 5 6 7 8 9 

 A A A L L L M M M 

 B G K B G K B G K 

 C F J J C F F J C 

 D E H E H D H D E 

Table 4.3.1.  A configuration table for a  (123, 94)  configuration. 

In order to complete the proof in case  r = 3, we have to prove that no combinato-

rial configuration  (123, 94)  can be realized by points and lines.  For that we recall the 

result known as “Sylvester’s problem”, which we mentioned in Section 2.1 as Lemma 

2.1.1.   

To apply the Sylvester result to the question at hand, we note that in any combina-

torial configuration  (123, 94)  the 36 pairwise intersections of the 9 lines have to occur in 
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12 triplets –– three intersections at each of the 12 points of the configuration.  However, 

since (by Sylvester) in every topological or geometric configuration at least one such in-

tersection is an “ordinary” one (which is therefore not a point of the configuration), there 

are not enough pairwise intersections to form 12 triplets.  

 On the other hand, it is possible to give a geometric realization of the dual con-

figuration, but with two of the “lines” neither straight lines nor pseudolines.  An example 

is shown in Figure 4.3.1. 

 

Figure 4.3.1.  A realization of a (94,123) configuration, dual to the one in Table 4.3.1;  

two of the “lines” are not straight. With a slight modification these two "lines" could have 

been chosen as circles. 

 For the remaining part of the proof of Theorem 4.3.1 we only have to exhibit ap-

propriate geometric configurations of points and lines.  The literature contains a number 

of papers devoted to the  (163, 124)  configurations, or to the  (124, 163)  configurations 

dual to them; several examples of the former kind are shown in Figure 4.3.2.   

 There appears to be no published mention of geometric  ((4r)3, (3r)4)  configura-

tions with  r ≥ 5.  However, examples of such configurations are very easy to produce.  

One method (see Figure 4.3.3) starts by placing  2r  points equidistributed on a circle.  

Each of these points is connected to the one diametrally opposite to it, as well as to the 

two points separated from it by two other points.  Adjoining the  2r  triple intersections 

(whose existence is clear by the symmetry of the diagram) yields a  ((4r)3, (3r)4)  con-

figuration, as required. 
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 Other  ((4r)3, (3r)4)  configurations may be constructed by slight variations of this 

method; several are shown in Figure 4.3.4.  In all these cases, the geometric existence of 

the configurations is an obvious consequence of the high degree of symmetry involved. 

 Although the configurations (163, 124)  and/or  (124, 163)  have been studied for 

at least 150 years (starting not later than Hesse [H2] in 1848, in the "prehistoric" era of 

configurations), there still are many unresolved questions.  It has been shown (or claimed 

– there seems to have been no independent verification) that there are precisely 574 com-

binatorial configurations (124, 163), see Gropp [G14], [G16].  The large number of such 

configurations helps explain why there is no clarity on the question which (or, whether 

all) configurations (1244, 163)  have geometric realizations in the Euclidean plane.  Two 

additional aspects probably contribute to the lack of clarity: On the one hand, most of the 

relevant papers have been published in journals that are not well known nor widely avail-

able, many in Czech which is not too widely spoken; a large number of references is 

listed below.  On the other hand, from the very beginning, these configurations have been   

Figure 4.3.2.  Three examples of configurations  (163, 124). 

Figure 4.3.3.  Examples of configurations  (203, 154),  (2433, 184)  and  (283, 214). 
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studied in close connection with the theory of cubic curves.  This connection, in turn, is 

not too well known these days, and also makes it hard to know which parts of the claims 

of possibility of realization rely on configurations in the complex plane, and which claims 

of impossibility are due to the restriction of attention to configurations with vertices on 

cubic curves.  See below for some relevant ideas. 

 From the duality in the projective plane it follows that geometric configurations    

((3r)4, (4r)3)  exist if and only if  r ≥ 4.  One example of a  (124, 163)  configuration is 

shown in Figure 4.3.5.  In contrast to the very symmetric diagrams representing the 

(163, 124)  configurations, the diagrams of the  (124, 163)  configurations shown in most 

publications are far from symmetric.   

  
Figure 4.3.4.  Additional examples of configurations (203, 154), (243, 184) and (283, 214). 
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 The reason for the difference is that projective duality does not in general pre-

serve Euclidean symmetries –– unless one considers the configurations in the extended 

Euclidean plane.  In particular, all examples in Figures 4.3.3 and 4.3.4 have lines passing 

through the center of symmetry (taken at the origin) which have to be mapped to “ideal 

points” in order to preserve symmetry.  If this is accepted, then it is easy to produce very 

symmetric  (163, 124)  configurations, such as the one in Figure 4.3.6. 

 

Figure 4.3.5. An example of a geometric configuration (124,163). 

 

Figure 4.3.6.  An example of a geometric configuration (124,163) that is astral in the ex-

tended Euclidean plane. 
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 Additional examples of quite symmetric (124, 163) configurations are shown in 

Figure 4.3.7. These have vertices on cubic curves.  

 In order to give a feeling for the relation of cubic curves to configurations, we 

show another example in Figure 4.3.8.  This is a geometric configuration (124,163) on a 

cubic curve, from the paper by V. Metelka [M17]. The equation of this cubic curve in 

homogeneous coordinates (x,y,z) is  

z (x2 + y2) + x(x2 – 3y2) = 0 

and the points are: 

M = (1,1,1) N = (0,1,0) O = (1,-1,1) P = (1,-t,2) 

Q = (1,t,2) R = (t,1,0) S = (-t,1 0) T = (1,t-2,1-t) 

U = (1,2-t,1-t) V = (1,t+2,t+1) W = (1,-t-2,t+1) X = (1,0,-1) 

where t = √3. 

 As is well known, an easy way to see whether three points given in homogeneous 

coordinates are collinear is by checking whether the determinant formed by their coordi-

nates is 0.  Thus the assertions about which triplets are collinear (as indicated by Figure 

4.3.8) can be algebraically verified. 

 As Metelka observed (this is the reason he considered the configuration "special") 

there are three additional lines that pass through three of the points. These three lines are 

indicated by the dashed lines in Figure 4.3.9.  It is worth noting that the maximal number 

of collinear triplets determined by 12 point is 19 – this is one of frequently raised "or-

chard problems"; see more details at [B33]. 

 As a clarification of what was briefly mentioned above regarding the use of cubic 

curves in looking for construction of configurations and related objects, in Figure 4.3.10 

we show a diagram of a cubic curve on which are marked several values of the "degree" 

parameter.  The following explanations are taken from the old paper [B33], from which 

the curve in Figure 4.3.10 was copied as well.  References to texts that establish the 

properties in question are given in [B33]; the notation is the one that seems traditional in 

the literature. 

 A suitable projective image of each real non-singular cubic curve has an equation 

of the form  
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(1)  y2 = 4x3 – g2x – g3 

where  g2 and g3 are real constants.  The curve  C  given by equation (1) may be pa-

rametrized by  

(2)  x = ℘(u),  y = d℘(u)/du, 

where ℘(u) is the Weierstrass elliptic function defined by 

  u = ∫℘(u)
∞

 (4x3 – g2x – g3)–1/2 dx. 

!

(b)

!

(a)

!

(c)  
Figure 4.3.7.  Three examples of quite symmetric configurations (124, 163).  The ∞ sym-

bol is meant to indicate that the line at infinity is a line of the configuration. 
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Figure 4.3.8.  A configuration (124, 163) with points on a cubic curve. 
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Figure 4.3.9.  The points of the (124, 163) configuration in Figure 4.3.8 determine three 

additional lines each incident with three of the points. 
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 The Weierstrass elliptic function ℘(u) is a doubly-periodic meromorphic function 

of the complex variable  u, and for real g2, g3 it has a real period that we shall denote  2ω  

(as well as a purely imaginary period 2ω').  The parametrization (2) yields for real  u  the 

"odd circuit" (branch) of the cubic  C.  In case D = g2
3 – 27g3

2 < 0 this is the only real 

part of the curve C ("unipartite cubic"), while in case D > 0 the curve C has also an "even 

circuit" corresponding to the values  u = v + ω', where v is real. (We shall be interested 

only in the  "odd circuit".) 

 The importance of cubic curves for the present concerns is based on the following 

result of N. H. Abel:  
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Figure 4.3.10.  A cubic curve, with a parametrization derived from the Weierstrass ℘(u) 

function, as explained in the text. 
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 Denoting by P(u) = (℘(u), d℘(u)/du) the point on the cubic C given by (1), (2) 

and corresponding to the real parameter u, a necessary and sufficient condition for the 

collinearity of the points  P(u), P(u'), P(u") on the odd circuit of C is 

  u + u' + u" ≡ 0 (mod 2ω). 

 The curve we use is given by the equation y2 = 4x3 – 1, and by consulting appro-

priate tables or software we find that ω = 1.529954037... .  As in much of the numerical 

work on the elliptic functions, we replace 2ω  by 360°; in Figure 4.3.10 we denote the 

points simple by their parameter-value in "degrees". 

 A practical weakness of the method is an inconvenient bunching of the points of 

interest.  The situation can be improved by using a suitable projective transformation of 

the curve C; this goes back to W. K. Clifford in 1865. The "odd circuit" of C contains 

three collinear points of inflection P(0), P(2ω/3), P(4ω/3). If we choose the line deter-

mined by these points as the "ideal line", and the points themselves to be in equiinclined 

directions, there results a very convenient and symmetric representation of C. 

 We are using the curve C with equation  y2 = 4x3 – 1, for which the Clifford 

transformation may be achieved by 

  x = (2x* + 1)/(2x* – 2),  y = 3y*/(x* – 1). 

This results (on omitting the asterisks) in the equation 

  (x – 1)(3y2 – (x + 2)2) = const. 

For better visibility we choose the constant as –300, yielding the curve in Figure 4.3.10. 

This curve is used in some of the exercises below. 

 

 The following is an extensive list of papers I am aware of that deal with  

(163, 124)  or  (124, 163)  configurations.  Some of them contain additional references to 

earlier papers.  [B34], [D5], [G14], [H2], [M9], [M10], [M11], [M12], [M13], [M14], 

[M15], [M16], [M17], [M5], [M6], [M7], [R6], [Z1], [Z2], [Z3], [Z6].  

 A configuration (154,203) was described by Cayley [C2*] in 1846. There seems to 

be no other discussion in the literature of  ((4r)3, (3r)4)  configurations with  r ≥ 5  (or 

their duals).  
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* * * * * * 
 The introduction of k-astral configurations helped develop the study of 3- and 4-

configurations.  It seems reasonable that investigations of [3,4]-configurations and similar 

objects would be advanced by moving from the concentration on the smallest cases to 

more general situations.  As examples capable of various generalizations we show in Fig-

ure 4.3.11 and 4.3.12 configurations (203,154) and (154,203) with cyclic symmetry group 

c5, and in Figure 4.3.12 a configuration (184,243) with symmetry group c6. It is clear that 

such configurations fit into infinite families for which the systematic investigation and 

notation still need to be developed. 

 
Figure 4.3.11.  A [4,3]-astral (203,154) configuration with symmetry group c5.  

 
Figure 4.3.12.  A [3,4]-astral (154,203) configuration with symmetry group c5.  
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Figure 4.3.13.  A [3,4]-astral (184,243) configuration with symmetry group c6. 

 

Exercises and problems 4.3. 

1. Show that each of the permutations (described by their cycle decompositions) 

(A)(L)(M)(BGK)(CFJ)(DEH) and (ABCD)(LGJHMKFE) maps the combinatorial con-

figuration (123, 94)  of Table 4.3.1 onto itself.  Deduce that the automorphisms of the 

configuration act transitively on its points as well as on its lines.  Decide whether the con-

figuration is flag-transitive?  (Flag = pair consisting of a "point" and a "line" incident 

with it.) 

2. Decide whether all combinatorial  (123, 94)  configurations are isomorphic, that 

is, whether the configuration (123, 94)  is unique.  (Hint: Delete a line and all its points.) 

3. Prove that any geometric realization of the  (123, 94)  configuration must contain 

at least two “lines” that are not straight. 

4. Set up the configuration table of the configuration (94, 123)  dual to the configura-

tion in Table 4.3.1.  Decide whether this configuration can be geometrically realized with 

straight lines or with pseudolines. 
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5. Describe the configuration table of the ((4r)3, (3r)4)  configuration constructed in 

the proof of Theorem 4.3.1. 

6. Show that the two  (203, 154)  configurations shown in Figures 4.3.3 and 4.3.4 are 

not isomorphic. 

7. Decide whether any among the three configurations  (163, 124)  in Figure 4.3.2  

are isomorphic, and whether the two configurations  (243, 184)  in Figure 4.3.4 are iso-

morphic. 

8. Starting with  12  points equidistributed on a circle, how many  (243, 184)  con-

figurations can you construct that have different appearance?  Are any two among them 

isomorphic? 

9. For general  r,  starting with  2r  points equidistributed on a circle, how many  

((4r)3, (3r)4)  configurations can you construct that have different appearance?  Are any 

among them isomorphic? 

10. Draw symmetric realizations in the extended Euclidean plane of the polars of the 

configurations in Figure 4.3.2. 

11. Decide whether any among the three configurations  (124, 163)  in Figure 4.3.7  

are isomorphic. 

12. Draw the polar configurations of the configurations in Figure 4.3.7. 

13. Verify that those triplets shown as collinear in Figures 4.3.8 and 4.3.9 that contain 

the point U are, in fact, collinear. 

14. Find in Figure 4.3.9 a configuration (124,163) that contains the dashed lines, and 

decide whether it is isomorphic with the configuration in Figure 4.3.8. 

15. Determine the group of automorphisms of the configuration in Figure 4.3.8. 
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16. On the cubic curve in Figure 4.3.10, find a configuration (92,63), and a configura-

tion (123).  Can you find any other configurations? 

17. Decide whether the configurations in Figures 4.3.11 and 4.3.12 are duals of each 

other? If so, find a duality map. If not, find their duals. 

18. Find the dual of the configuration in Figure 4.3.13. 

19. Develop a theory –– similar to the ones in Chapters 2 and 3 –– of the [4,3]-

configurations. 


