3.9 OPEN PROBLEMS

Among the most intriguing open problems concerning 4-configurations are the following.

1. Is there any analog for 4-configurations of Steinitz's theorem (Theorem 2.6.1)? This theorem can be interpreted as saying that every connected combinatorial 3-configuration can be represented geometrically in the plane if one incidence is disregarded. How much of a combinatorial 4-configuration can be realized?
2. Can any of the cyclic configurations (n_{4}) with generating lines $\{0,1,6,-3\}$ or $\{0,1,5,-2\}$, described in Section 3.1, can be geometrically realized (for any $\mathrm{n} \geq 18$)? Cany any cyclic 4-configurations be geometrically realized?
3. It is clear that there are some 4-configurations that can be geometrically realized in rational plane; as an example we may take the configuration $\mathcal{L} C(4)$ introduced in Section 1.1, and other similarly built configurations. Can any astral (or k-astral) configuration that can be geometric realized (or represented) in the Euclidean plane be realized (or represented) in the rational plane? (It is well known that this cannot be done in a k-astral way.)
4. The astral configuration $\left(24_{4}\right)$ in Figure 3.6 .2 and the 3-astral configuration $\left(21_{4}\right)$ in Figure 3.7.1 have the property that the underlying combinatorial configurations have groups of automorphisms that act transitively on the flags of the configuration. (A flag consists of a line and a point, incident with each other.) The configuration $\mathcal{L} C(4)$ mentioned above has the same property. Do there exist any other 4 configurations with a single orbit of flags (under automorphisms)?
