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3.6 2-ASTRAL 4-CONFIGURATIONS 

 Following the terminology introduced in Section 3.5, a geometric 4-configuration 

(that is, an (n4) configuration for some integer  n) is called 2-astral provided there are 

precisely two orbits of points and two orbits of lines under the symmetry group of the 

configurations, and the other conditions spelled out in Section 3.5 are satisfied.  Since  

k = 2 is the smallest value of  k  possible in a 4-configuration, following the convention 

proposed in Section 1.5 we shall call such configurations astral for short.  An astral 4-

configuration cannot have points at infinity, since any line through such a point would 

have to have three points of a single orbit in the finite part of the plane.  Hence we need 

to consider only what happen in the Euclidean plane.  

 The astral 4-configurations have been completely characterized.  To present this 

characterization we need an appropriate notation; this was set up in Section 3.5.  Here we 

shall present the list of these astral configurations (Theorem 3.6.1).  Before giving the 

proof that our list is complete we have to digress into explanations of some of the detailed 

results about intersection of diagonals in regular polygons –– a topic that has its own in-

teresting and convoluted history. Finally, a proof of completeness of the list will be 

given; the first such proof is that of L. Berman [B3], [B4]. 

 The notation for astral 4-configurations has evolved in several stages since the 

first publication on the topic in [G39].  The notation used here, introduced in Section 3.5, 

is the one that was found most suitable for the present purpose as well as for the generali-

zation to k-astral 4-configurations that we shall consider in Section 3.7.  The notation is 

explained by the example of a (484) astral configuration shown in Figure 3.5.5. One of its 

symbols is 24#(8,7;2,5); the configuration belongs to the cohort 24#{{8,2},{7,5}}; this 

cohort contains only one other configuration, with symbol 24#(8,5;2,7).  Both configura-

tions are shown in Figure 3.6.1. 

 In the next two figures we show the smallest astral 4-configurations.  The unique 

(244) is shown in Figure 3.6.2, while the six configurations (364) appear in Figure 3.6.3.  

Additional illustrations appear in several other sections, but in particular in Section 5.9. 
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(a)      (b) 

Figure 3.6.1.  The only two 2-astral configurations (484) in the cohort 24#{{8,2},{7,5}}.  

(a) The configuration 24#(8,7;2,5).  (b) The configuration 24#(8,5;2,7). 

 

 
Figure 3.6.2.  The smallest astral 4-configuration. It is a sporadic and selfdual (244), with 

symbol  12#(5, 4; 1, 4). 
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Figure 3.6.3.  The six configurations (364) belong to three cohorts:  18#{{6,1},{5,4}},  

18#{{7,2},{6, 5},  18#{{8,1},{7,6}}.  Near each configuration we show the lexico-
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graphically highest among its symbols.  Although it is not obvious from the symbols or 

the diagrams, the three configurations at left are isomorphic.  This isomorphism is estab-

lished by the labels near their vertices.  Since these configurations are isomorphic, their 

polars (shown at right) are also isomorphic to each other; they are not isomorphic to the 

other three configurations. 

 

 After these preliminaries, here is the detailed result. 

 Theorem 3.6.1.1  Astral 4-configurations m#(s1, t1; s2, t2) must satisfy all the con-

ditions from Section 3.5, and in particular the equation (A7): 

cos(s1π/m)·cos(s2π/m) = cos(t1π/m)·cos(t2π/m). 

The symbols of these configurations are: 

(i) The systematic configurations with symbols (6k)#(3k-j, 2k; j, 3k-2j)  for  k ≥ 2,  

1 ≤ j < 3k/2,  with j ≠ k. 

(ii) The systematic configurations with symbols (6k)#(2k, j; 3k-2j, 3k-j) for  k ≥ 2,  

1 ≤ j < 3k/2,  with j ≠ k.   By the general results of Section 3.5, these configurations are 

polar to the ones in (i) with the same values of k and j. 

 For even k and j = k/2, the configurations in (i) and (ii) are selfpolar, hence coin-

cide.  If  k = f·g and j = f·h, with f ≥ 2, g ≥ 2, then both (6k)#(3k-j, 2k; j, 3k-2j) and 

(6k)#(2k, j; 3k-2j, 3k-j) are disconnected.  Each consists of  f  equidistributed copies of 

(6g)#(3g-h, 2g; h, 3g-2h) or (6g)#(2g, h; 3g-2h, 3g-h)  and is denoted by (f) (6g)#(3g-h, 

2g; h, 3g-2h) or (f) (6g)#(2g, h; 3g-2h, 3g-h), respectively. 

 For simpler formulation, we can say that the configurations in (i) and (ii) are in 

the cohorts of (6k)#{{3k-j},{3k-2,2k}}for  k ≥ 2,  1 ≤ j < 3k/2,  with j ≠ k. 

(iii) The 27 symbols of the sporadic configurations listed in Table 3.6.1, and their 

multiples. 

                                                
1  I am indebted to L. Berman and T. Pisanski for a number of comments and cor-
rections. These led to the present formulation, which I hope is more informative and use-
ful than the statements in previous publications. 

Branko Grünbaum � 6/2/08 8:33 AM

Branko Grünbaum � 6/2/08 8:32 AM

Comment: P. 3.6.6, L. 1:   3k-j 

Comment:  



  Page 3.6.5 

 

30#(7,6;1,4)  30#(7,4;1,6) 
30#(8,6;2,6) 
30#(11,10;1,6)  30#(11,6;1,10) 
30#(12,10;6,10) 
30#(12,11;2,7)  30#(12,7;2,11) 
30#(13,12;1,8)  30#(13,8;1,12) 
30#(13,12;7,10)  30#(13,10;7,12) 
30#(14,12;4,12) 
30#(14,13;6,11)  30#(14,11;6,13) 
42#(13,12;1,6)  42#(13,6;1,12) 
42#(18,17;6,11)  42#(18,11;6,17) 
42#(19,18,5,12)  42#(19,12;5,18) 
60#(22,21;2,9)  60#(22,9;2,21) 
60#(25,24;5,12)  60#(25,12;5,24) 
60#(27,26;3,14)  60#(27,14;3,26) 

Table 3.6.1.  The complete list of connected sporadic astral 4-configurations. The three 

stand-alone symbols denote selfpolar configurations, the paired symbols correspond to 

configurations polar to each other. 

 Here too, the cohorts notation allows a more condensed listing: 

30#{{7,1}{6,4}},  30#{{8,2},{6,6}},  30#{{11,1},{10,6}},  30#{{12,6},{10,10}}, 

30#{{12,2},{11,7}},  30#{{13,1}12,8}},  30#{{13,7},{12,10}},  30#{{14,4},{12,12}}, 

30#{{14,6},{13,11}},  

42#{{13,1},{12,6}},  42#{{18,6},{17,11}},  42#{{19,5},{18,12}}, 

60#{{22,2},{21,9}},  60#{{25,5},{24,12}},  60#{{27,3},{26,14}}. 

 

 The proof of the theorem will be interwoven with an account of the history of its 

development.  In view of all the interest in configurations during the last quarter of the 

19th century (as well as the sporadic interest later), it is hard to understand that no 

graphical representation of any 4-configuration appeared in print prior to [G50] in 1990.  

The configuration shown above as Figure 3.6.2 was one of the configurations shown in 
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that paper.  Another was the (214) configuration that gave the paper its title; we shall en-

counter it again in Section 3.7. 

 In the early 1990 I found several 4-configurations in addition to the ones in [G50], 

with two or three orbits of points (and of lines); these were found by drawing with such 

software as was available to me (mainly MacDraw), until I was initiated to Mathe-

matica® through friendly persuasion by Stan Wagon.  (A few other k-astral 4-

configurations with various k's were communicated to my by J. F. Rigby.)  With pro-

grams in Mathematica it was possible to "experimentally" find all possible astral configu-

rations with reasonably small numbers of vertices.  This led to the understanding that 

there are systematic infinite families of such configurations, as well as an apparently fi-

nite number of sporadic configurations.  I became convinced that I have a complete de-

scription, and presented this in seminars and courses during the 1990s; the results were 

published in 2000 [G40], together with formal demonstrations of the geometric realizabil-

ity of these configurations. This covers the existence aspect of Theorem 3.6.1. 

 The main tool for the proof of completeness was the observation that an astral 

configuration m#(s1, t1; s2, t2) has a realization by straight lines if and only if the same 

points are reached starting from one of the regular polygons regardless of which of two 

diagonals we are following. In other words, the points described by (s1//t1) must coincide 

with the points (t2//s2). (Note that the designation (s2//t2) used in determining the symbol 

of the configuration refers to the diagonals as looked from the other polygon.)  This leads 

to the following necessary condition for the existence of an astral configuration 

m#(s1,t1;s2,t2) 

(1)  cos(s1π/m)·cos(s2π/m) = cos(t1π/m)·cos(t2π/m). 

Due to the dihedral symmetry of such configurations, this is also a sufficient condition 

for the existence.  Moreover, criterion (1) is easily implemented for computational 

searches; the results of these calculations led to the classes listed in Theorem 3.6.1. 

 For the convenience of use of Theorem 3.6.1 we list in Table 3.6.2 the cohort 

symbols of the systematic astral configurations (n4) with n ≤ 100. 
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12#{{5,1},{4,4}. 

18#{{8,1},{7,6}},  18#{{7,2},{6,5}},  18#{{6,1},{5,4}}. 

24#{{11,1},{10,8}},  24#{{10,2},{8,8}},  24#{{9,3},{8,6}},  24#{{8,2},{7,5}}. 

30#{{14,1},{13,10}},  30#{{13,2},{11,10}},  30#{{12,3},{10,9}},  

30#{{11,4},{10,7}},   30#{{10,3},{9,6}},   30#{{10,1},{8,7}}. 

36#{{17,1},{16,12}},  36#{{16,2},{14,12}},  36#{{15,3},{12,12}}, 36#{{14,4},{12,10}},  

36#{{13,5},{12,6}},  36#{(12,4},{11,7}},  36#{{12,2},{10,8}}. 

42#{{20,1},{19,14}},  42#{{19,2},{20,16}},  42#{{18,3},{15,14}}, 

42#{{17,4},{14,13}},  42#{{16,5},{14,11}},  42#{{15,6},{14,9}},  

42#{{14,5},{13,8}},  42#{{14,3},{12,9}},  42#{{14,1},{11,10}}. 

48#{{23,1},{22,16}},  48#{{22,2},{20,16}}, 48#{{21,3},{18,16}},    

48#{{20,4},{16,16}}, 48#{{19,5},{16,14}},  48#{{18,6},{16,12}},   

48#{{17,7},{16,10}},  48#{{16,6},{15,9}},  48#{{16,4},{14,10}},  

48#{{16,2},{13,11}}. 

Table 3.6.2.  The cohort symbols of all systematic astral (n4) configurations with  

n ≤ 100.  Disconnected configurations are in italics. 

 Once the characterization of the astral configurations has been guessed, it is easy 

to see that the symbols listed above correspond to actual geometric configurations, and 

are not results of an approximation error in the computations. 

 Indeed, for the symbols in part (i) we have to show that 

(2)  cos((3k-j)π/(6k))·cos(π(6k)) = cos(2kπ/(6k))·cos((3k-2j)π/(6k)). 

 In view of the trigonometric identity 

(3)  (cos a)·(cos b) = ½ (cos(a+b) + cos(a-b)) 

validity of (2) is equivalent to 

  ½ (cos 3kπ/(6k) + cos((3k-2j)π/(6k))) = (cos π/3)·cos((3k-2j)π/(6k)). 

Since cos π/2 = 0 and cos π/3 = ½, this is valid for all k and j; hence (2) is correct. The 

same calculation shows that the symbols in (ii) correspond to astral geometric configura-
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tions as well.  The fact that the above arguments did not rely on particular values of the 

cosines involved shows that (i) and (ii) are symbols of systematic configurations. 

 The existence of the sporadic configurations proceeds somewhat analogously, but 

needs to rely on information specific to the angles involved.  For example, concerning the 

configuration 30#(8,6;2,6) we note that (1) becomes 

  cos 8π/30 · cos 2π/30 = (cos 6π/30)2, 

which by (3) is equivalent to 

  ½ (cos 10π/30 + cos 6π/30) = (cos 6π/30)2 

Since cos π/3 = ½ and cos π/5 = ¼ (1 + √5), this reduces to 

  (12 + 4√5)/16 = (6 + 2√5)/8, 

which is obviously true. 

 Using other explicit algebraic values for cosines, similar arguments can be made 

for the other sporadic configurations with symbols that start with 30 or 60.  Among the 

values that can be used are 

  cos 2π/30 = (–1 + √5+ √6(5 + √5))/8, 

  cos 4π/30 = (1 + √5+ √6(5 - √5))/8, 

  cos 8π/30 = (1 – √5+ √6(5 + √5))/8, 

and so on. 

 For the symbols that involve 42 it is convenient to follow a slightly different path. 

The validity of the first of these symbols, 42#(13,12;1,6), is by (1) and (3) equivalent to 

  cos π/3 + cos 2π/7 = cos 3π/7 + cos π/7 

that is 

  1 + 2cos 2π/7 + 2cos 4π/7 + 2cos 6π/7 = 0. 

But this is simply an expression of the fact that the centroid of a regular heptagon, cen-

tered at the origin and with one vertex at (1,0), is itself at the origin.  An completely 

analogous reasoning shows the validity of the other symbols involving 42. 
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 What is still missing is a proof that there are no other astral 4-configurations. 

Since these configurations are determined by intersections of diagonals of regular poly-

gons, and since these have been extensively studied and completely determined, in the 

late 1990's it seemed to me that it should be very easy to supply the proof of complete-

ness.   

 In reality this task proved far from simple, and it was first successfully carried out 

in 2001 in the PhD work of L. Berman [B4], [B3].  Berman's rather complicated argu-

mentation relied on the complete description of intersections of diagonals of regular 

polygons, given by Poonen and Rubinstein [P8] in 1998.  Theirs was a new proof (and a 

much more convenient presentation) of material that has been contained, to a large ex-

tent, in earlier publications of G. Bol [B26] in 1933 (with some misprints) and J. F. Rigby 

[R3] in 19802.  For regular n-gons with prime n, or with any odd n, it has been proved by 

many authors that there are no intersections of more than two diagonals; references to 

these papers and other related material can be found in [R3], and especially in [P8].  

 However, independently of these developments, an approach that is easier to ap-

ply for our purposes was published by G. Myerson [M21] in 1993; it came to my atten-

tion only recently.  Myerson's result (his Theorem 4) that is relevant to our proof can be 

formulated as follows. 

 Theorem 3.6.2. (Myerson [M21]) . The equation 

  sin π/6 · sin t = sin(t/2) sin(π/2 – t/2) 

is valid for all t. The only other solutions of the equation 

(4)  sin x1π · sin x2π = sin x3π · sin x4π  

in rational x1, x2, x3, x4 with 0 < x1 < x3 ≤ x4 < x2 ≤ ½ are given in Table 3.6.3. 

                                                
2  In contrast to other writers on the topic, Rigby considers the multiple intersections 
of diagonals outside the n-gon as well.  However, his intended [R3, p. 222] investigation 
of outside intersections of four or more diagonals seems not to have been published, and 
remains an open problem. 
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 Label x1 x2 x3 x4  
––––––––––––––––––––––––––––––––––––––––– 
 1 1/21 8/21 1/14 3/14 
 2 1/14 5/14 2/21 5/21 
 3 4/21 10/21 3/14 5/14 
 4 1/20 9/20 1/15 4/15 
 5 2/15 7/15 3/20 7/20 
 6 1/30 3/10 1/15 2/15 
 7 1/15 7/15 1/10 7/30 
 8 1/10 13/30 2/15 4/15 
 9 4/15 7/15 3/10 11/30 
 10 1/30 11/30 1/10 1/10 
 11 7/30 13/30 3/10 3/10 
 12 1/15 4/15 1/10 1/6 
 13 2/15 8/15 1/6 3/10 
 14 1/12 5/12 1/10 3/10 
 15 1/10 3/10 1/6 1/6 
 
Table 3.6.3.  The complete list of sporadic solutions of equation (4) as given by Myerson 
in [M21]. 
 
 The result of Theorem 3.6.2 gives an immediate solution to the completeness 

question of Table 3.6.1.  Indeed, we only have to recall that sin α = cos(π/2 – α) in order 

to see that the rows of Table 3.6.3 correspond (in an appropriate permutation) to the rows 

of Table 3.6.1.  For example, rows with labels 1, 2, 3 correspond to the entries involving 

42 of the earlier table, while those labeled 4, 5, and 14 correspond to the last three rows 

of table 3.6.1. 

 This completes the proof of Theorem 3.6.1. 

 

Exercises and problems 3.6. 

 

1. Verify the complete correspondence between Myerson's list in Table 3.7.3 and the 

list of sporadic symbols in Table 3.6.1. 

2. Verify the validity of the existence claims made above for all sporadic configura-

tions. 

3.  Draw the configuration  36#(15,12; 3,12) =  (3) 12#(5,4;1,4).  Is it selfpolar? 
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4. Prove that the configurations 18#(6,5;1,4) and 18#(6,4;1,5) shown in Figure 3.6.3 

are not isomorphic. 

5. Determine whether the pairs of polar configurations in Figure 3.6.3 are in appro-

priate orientation to exhibit the polarity, or does one member of the pair have to be ro-

tated. 


