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3.5 ASTRAL 4-CONFIGURATIONS 
 In this section we start our investigation of a special class of 4-configurations 

which we call k-astral for some k ≥ 2.  They are of interest for several reasons.  To begin 

with, such configurations were the first 4-configurations for which geometric realizations 

were found (see, for example, [G50], [G40], [B20], and the other publications that will be 

mentioned later).  Next, they have a clear-cut definition that leads to a natural notation, as 

well to construction of the configuration given its symbol.  Finally, they exhibit a variety 

of phenomena that add interest to their study, such as the relation of a configuration to its 

dual (actually, its polar) configuration, and questions of realizability versus representa-

tion. 

 k-astral configurations have appeared under several different names, and with 

several different definitions – not all of which coincide in all cases.  In several publica-

tions configurations we call k-astral have been termed celestial. The intention in the pre-

sent account of these configurations is to have an easily implementable decision algo-

rithm for checking the membership of either a given configuration to the class, or of a 

symbol for correspondence to a geometric configuration. 

 Definition 3.5.1.   A (n4) configuration C is k-astral provided all the following 

conditions are satisfied: 

 (A1) k ≥ 2 and n = k·m, for some m ≥ 7. 

 (A2) The points of C are at the vertices of k regular convex m-gons, with com-

mon centers and such that all angles subtended from this center by the various points of C 

are multiples of π/m. 

 (A3) C has symmetry group dm; the vertices of each k-gon form an orbit. 

 (A4) Each line of C contains two points from each of two m-gons (point orbits); 

each point is incident with two lines each from two line orbits. 

 We have already encountered various configurations that are k-astral, for example 

the ones in Figures 1.1.2 and 1.5.1(a). Two additional examples are shown in Figure 

3.5.1. 
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(a)      (b) 

Figure 3.5.1. (a) A 3-astral configuration (424) with symbol  14#(5,3;2,4;1,3).  (b) A 

4-astral configuration (454) with symbol  12#(5,4;3,2;4,5;2,3). 

 Some comments deserve to be made regarding k-astral configurations. 

 (i) In most cases the  k  regular m-gons have different sizes; however, in 

some cases with k ≥ 3  there may be pairs of polygons with the same size. We shall give 

examples later. 

 (ii) The conditions in Definition 3.5.1 could be weakened at the expense of 

complicating the verification. 

 (iii) It will turn out to be convenient to consider the case of connected k-astral 

configurations separately from the case of disconnected ones. 

 Theorem 3.5.1.  Each k-astral configuration C can be assigned a symbol 

m#(s1,t1;s2,t2; ... ,sk,tk) in such a way that C is the only configuration from which that 

symbol arises.  At most 2k distinct symbols correspond to each configuration; such sym-

bols are said to be equivalent.  The family of equivalent symbols can be obtained from 
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any one of them by cyclic permutations of an even number of steps of the 2k entries in 

parentheses, or by reversal of these. 

 Proof.  The proof consists of a description of the steps leading from the configu-

ration to one of the symbols, and observing the stages at which distinct symbols may 

arise.  The main tools in the derivation are a notation for the intersection points of the di-

agonals determined by each of the regular m-gons, and the "characteristic paths" along 

lines of the configuration. 

 For a regular convex m-gon M, the span s of a diagonal S is the number of edges 

of M between the endpoints of S, taken as the smaller of the two possible numbers; hence 

s ≤ m/2. Despite talking about "endpoints", by "diagonal" we understand both the ele-

mentary-geometric meaning of the term as a segment, as well as the whole line deter-

mined by this segment.  In Figure 3.5.1, the outer polygon has diagonals of spans 3 and 5 

for both configurations (a) and (b). 

 The intersections of a diagonal S of span  s  with the other diagonals of span  s  of 

the same polygon M are denoted by the symbol (s//t), where  t  is the position of the inter-

section points on S, counting from the midpoint of S.  (Instead of (s//t), the notation [[s,t]] 

has also been used.) Thus, for example, each endpoint of S has symbol (s//s). The inter-

section points are not limited to the diagonal considered as a segment, but continue "out-

side" and exist for all t < m/2.  If m is even, one may consider the point-at-infinity on S as 

having t = m/2.  An illustration of the notation (s//t) is given in Figure 3.5.2. 

 The use of polar coordinates is particularly convenient for the intersection points 

(s//t), since it is easily seen that in the setting of Figure 3.5.2, such a point has coordinates 

(cos s·π/m / cos t·π/m, t·π/m).  If the endpoints of the diagonal are not on the unit circle 

but at distance r, then the first polar coordinate needs to be multiplied by r. 

 A characteristic path P of a (connected) k-astral configuration C consists of k 

segments of lines of the configuration, determined as follows.  The procedure we describe 

here is illustrated by the example in Figure 3.5.3.   
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Figure 3.5.2.  The determination of the symbol (s//t) of an intersection point of diagonals 

of a regular m-gon.  Here  m = 12, the diagonals are of span s = 4, the vertices of the 

m-gon with unit radius have polar coordinates (1, ν), where ν is a multiple of  π/m. In the 

diagram ν = 4π/m, angle DOB is 3π/m, so that s = 4, t = 3.  This gives for D the symbol 

(s//t) = (4//3). The right triangles OCA and OCD imply that OD = cos s·π/m / cos t·π/m, 

hence D has polar coordinates (cos s·π/m / cos t·π/m, t·π/m). 

 As the first step we orient all lines of C in the same sense, generally taken to be 

counterclockwise as seen from the center.  Next, we choose an arbitrary point P0 of C and 

through it an arbitrary line L1 for which P0 is the earlier of the two points in the same or-

bit; this involves the choice of one line from the two orbits of points through P0.  On L1 

we take the first point (in the orientation we adopted) of the other orbit of points incident 

with L1, and denote it P1.  We choose as line L2 a line through P1 that is in the orbit dif-

ferent from L1, and for which P1 is the earlier point in its orbit.  On L2 we choose the ear-

lier point in the orbit different from the one of P1, and denote it P2.  Continuing in the 

same way, we select the line Lj+1 through the already selected point Pj that is in the orbit 

different from Lj, and for which Pj is the earlier point among the points on Lj+1 belonging  
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Figure 3.5.3. An illustration of the construction of a characteristic path (shown green) 

and the corresponding symbol of the configuration, according to the description given in 

the text.  Since P1 = (4//2), P2 = (3//4), P3 = (2//3), and k = 3 while m = 9, the resulting 

symbol of this (274) configuration is 9#(4,2;3,4;2,3). 

to the orbit different from the orbit of the earlier point Pj.  This continues until we reach 

the line Lk and the point Pk. (in Figure 3.5.3 we have k = 3.) This point Pk necessarily be-

longs to the same orbit as the starting point P0; in the illustration Pk coincides with P0, but 

this is not necessarily the case.  Figure 3.5.4 illustrates the possibility of Pk being differ-

ent from P0. By using the notation (sj//tj) for the point Pj, the characteristic path 

P0,L1,P1,L2,P2, ... Lk,Pk  determines a symbol m#(s1,t1;s2,t2; ... ;sk,tk) for the configuration.  

 What are the possible alternative symbols for a configuration?  We arbitrarily 

chose the orientation of the lines, the starting point of the characteristic path, and the 

starting line through that point.  The choice of orientation does not lead to any new sym-

bols since a k-astral configuration has dihedral symmetry group dk.  However, the other  
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Figure 3.5.4. Another illustration of the construction of a characteristic path and the 

symbol of the configuration.  Since P1 = (4//3), P2 = (2//3), P3 = (1//3), and k = 3 while 

m = 9, the resulting symbol of this (274) configuration is 9#(4,3;2,3;1,3), and P3 ≠ P0. 

two choices obviously matter, and in general lead to 2k distinct symbols –– k choices of 

the orbit of the starting point of the path, and two choices for the starting line through that 

point.  As an illustration we show in Figure 3.5.5 the four characteristic paths and the re-

sulting four equivalent symbols for the 2-astral configuration (484).   

 The various equivalent symbols for a given k-astral configuration arise in one of 

the following two ways.  For a given characteristic path, selecting on this path a different 

point as the starting point clearly permutes the symbols (sj//tj) cyclically, that is, by an 

even number of steps in the symbol m#(s1,t1;s2,t2; ... ;sk,tk) of the configuration.  This 

yields up to k distinct symbols.  On the other hand, if we consider a diagonal of span  s,  

the symbol (s//t) for the tth  intersection point (counting from the midpoint) can be inter-

preted as saying that on the orbit of all points (s//t) the same diagonal line has span  t,  

and the original endpoints (that gave span  s  to the diagonal) now have symbol  (t//s).  
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This means the following: Starting with a given characteristic path but traversing it in the 

opposite direction, will reverse the roles of  sj  and  tj  in all the diagonals, as well as the 

order of the points.  Hence this leads to the reversal of all the entries in the original sym-

bol, thus accounting for (up to) an additional  k  symbols. 

 The construction of the symbols for a k-astral configuration (n4) leads to several 

notable properties of the symbols and the configurations.  For ease of reference we list 

them as a continuation of the entries in Theorem 3.5.1. 

 (A5) Since the symbol (s//s) denotes the endpoints of a diagonal of span s, 

(hence would not constitute a step in the characteristic path) any two adjacent entries in 

the symbol m#(s1,t1;s2,t2; ... ;sk,tk) must be different; this includes the requirement that  s1  

and  tk  are distinct. 

 Next, as obvious from the reasoning concerning the symbol (s//t) and visible in 

Figure 3.5.2, the polar angle of the point (s/t) differs from 0 by a multiple of  π/m.  The 

parity of that multiple is the same as the parity of  s+t.  Since the endpoint of a character-

istic path leads to a point in the orbit of the starting point, and the polar angles of any two 

such points differ by a multiple of 2π/m, it follows that the sum of all entries in the paren-

theses of a symbol m#(s1,t1;s2,t2; ... ;sk,tk) must be even, or equivalently, that  

 (A6)     δ = ½   Σ1≤j≤k
  (sj – tj )    is an integer. 

 If condition (A6) is not satisfied in a symbol that fulfils all other requirements, 

then the last point of the characteristic path ends midway between points of the orbit of 

the starting point –– and consequently has only two lines incident with it, just as the start-

ing point is incident with only two lines.  We shall discuss this in more detail later, but 

already here we can supply in Figure 3.5.6 an example of such a situation. 
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Figure 3.5.5.  Four characteristic paths (green) for a 2-astral (484) configuration; all pro-

ceed counterclockwise.  In order to avoid excessive clutter, in each path only the starting 

point is labeled.  The path on top starts in the outer ring of points; it leads to the symbol 

24#(5, 2; 7, 8), since the first point of the inner ring that is encountered by the path has 

symbol  (5//2), and the first point met after that in the outer ring has symbol (7//8).  The 

other characteristic paths lead to the symbols 24#(7, 8; 5, 2),  24#(2, 5; 8, 7), and 24#(8, 

7; 2, 5), respectively, in counterclockwise order of the starting points. 

 

 One additional –– and very important and useful –– property of all k-astral 4-

configurations follows from the comments we made after the introduction of the (s//t) 

notation.  Since the radius of a point (s//t) of a regular convex m-gon with circumradius  r 

is  r · cos (s·π/m) / cos (t·π/m),  the distance of the point Pj from the center is (assuming the 

starting point of the characteristic path is at unit distance from the center): 

   Π1≤i≤j
  (cos (si·π/m) / cos (ti·π/m)). 
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Figure 3.5.6.  The symbol 15#(4,2;1,3;2,3) satisfies all conditions for a valid symbol of a 

3-astral 4-configuration (454), except (A6). The characteristic path (green) that starts at 

the top point (large red) leads to a point (blue) at an in-between position. Both the starting 

point and the end point of the path are incident with just two lines each –– hence the 

symbol does not correspond to any 4-configuration. 

Since the endpoint of any characteristic path is in the same orbit as the starting point, this 

yields 

 (A7)  Π1≤j≤k
  cos (sj·π/m)  =  Π1≤j≤k

  cos (tj·π/m)  

 It is easy to verify that in all examples of k-astral configurations presented in this 

section the condition (A7) is fulfilled.   

 The appropriateness of the characteristic path approach to the notation for k-astral 

4-configurations can be seen in the straightforward translation of the characteristic path 

into the reduced Levi diagram of the configuration.  Without entering in lengthy descrip-
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tions of the procedure (which is essentially taken from Boben and Pisanski [B20]), we 

show in Figure 3.5.7 a typical example.  The configuration 20#(9,8;2,6;1,4) and a charac-

teristic path leading to this symbol are shown in part (a), while part (b) presents a reduced 

Levi diagram of this configuration.  In part (c) we show the reduced Levi diagram of the  
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Figure 3.5.7.  (a) The 3-astral configuration 20#(9,8;2,6;1,4) and a characteristic path . (b) 

The corresponding reduced Levi graph of 20#(9,8;2,6;1,4) .  (c)  The reduced Levi graph 

of the 3-astral configuration m#(s1,t1;s2,t2;s3,t3).   
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general case of a 3-astral configuration  m#(s1,t1;s2,t2;s3,t3).  The corresponding situation 

for a k-astral configuration differs only in the length of the circuit, so that it contains k 

white and k black points.  The value of δ is determined by (A6). 

 Next, we explore what happens if the 2k entries between parentheses of a symbol 

m#(s1,t1;s2,t2; ... ;sk,tk) of a k-astral configuration C are changed by a cyclic permutation 

that moves them an odd number of steps.  What –– if anything –– can we say about a 

configuration C* that would correspond to  m#(t1,s2;t2, ... ,sk;tk,s1) ? 

 Considering the well-known relations between points and lines polar to them with 

respect to a circle of a given radius and center (illustrated in Figure 3.5.8, see also, for 

example, [<C12 Chapter 6]), we see that for a configuration corresponding to the symbol 

m#(t1,s2;t2, ... ,sk;tk,s1), the distance of the line Lj of C* that is polar to the point Pj of C 

with respect to a circle of unit radius should satisfy 

 distance(O, Lj) = OPj* = Π1≤i≤j
  (cos (ti·π/m) / cos (si·π/m)) = 1/OPj =  

 1/Π1≤i≤j
  (cos (si·π/m) / cos (ti·π/m)) = Π1≤i≤j

  (cos (ti·π/m) / cos (si·π/m)). 

O

P

L

P*

 
Figure 3.5.8.  If the point P and the line L are polars of each other with respect to the cir-

cle of radius r and center O, then the distance between O and L is the same as the distance 

OP*, and the relation between the distances is OP·OP* = r2. 
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Hence distances from the center O of all lines of the putative configuration C* are correct 

for them being the polars of the points of C, and since incidences and symmetry are all 

preserved under polarity, we can conclude: 

Theorem 3.5.2.  If the symbol m#(s1,t1;s2,t2; ... ;sk,tk) corresponds to a k-astral 

4-configuration then the symbol m#(t1,s2;t2, ... ,sk;tk,s1) corresponds to a k-astral 4-

configuration that is polar to the former with respect to the unit circle with center at the 

common center of both configurations. 

 A notational remark.  Unless there is a definite reason to do otherwise, we shall 

always strive to use the lexicographically highest symbol for each k-astral 

4-configuration. 

 Several concepts simplify the listing and classification of possible k-astral con-

figurations. One is based on the observation that if we switch the positions of two entries 

separated by an odd number of other entries in the symbol of an astral configuration, the 

modified symbol automatically satisfies all the conditions listed above, except possibly 

(A5).  By repeated application of this observation while avoiding a violation of (A5), we 

arrive to the conclusion that it is sensible to introduce the cohort concept and notation.  

For a k-astral configuration with symbol m#(s1,t1;s2,t2; ... ;sk,tk)  the cohort symbol is 

m#{s, t} = m#{{s1,s2, ... ,sk},{t1,t2, ... ,tk}}; it stands for all the valid assignments of suit-

able permutations of the si's and permutations of the ti's into a symbol for a k-astral con-

figuration.  For example, for the configuration in Figure 3.5.1(a) the symbol is 

14#(5,3;2,4;1,3), and the cohort symbol is 14#{{5,2,1},{4,3,3}}; This cohort symbol in-

dicates, and is shared by, the six distinct 3-astral configurations 14#(5,4;2,3;1,3),  

14#(5,3;2,4;1,3).  14#(5,3;2,3;1,4),  14#(5,4;1,3;2,3),  14#(5,3;1,4;2,3), and 

14#(5,3;1,3;2,4). 

 The second comes from the observation that all the conditions, except possibly 

(A5), are satisfied if in the cohort symbol m#{s,t} the sets  s  and  t  are the same.  As an 

example, the configuration we used in Figure 3.5.3 has symbol 9#(4,2;3,4;2,3), hence  s = 

t ={4,3,2}.  Since the condition (A7) is satisfied without the need to make any calcula-
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tions, we shall say that the cohort 9#{{4,3,2},{4,3,2}} is trivial. On occasion we shall 

use "trivial" also for an individual configuration in a trivial cohort.  For odd k, a typical 

representative of a trivial cohort is  m#(a,b;c, ... ;u,v;w,a;b,c; ... ,u;v,w), while for even  k  

we can use  m#(a,b;c,d; ... ;v,w;b,a;d,c; ... ;w,v).  We should mention here that there can-

not be any 2-astral configurations of the trivial type. 

 We shall say that a cohort symbol m#{s,t} of k-astral configurations is systematic 

provided  m  and the elements of  s  and  t  depend on one or more parameters in such a 

way that the validity on (A7) can be ascertained using only trigonometric identities and 

without the need to calculate specific values of the parametrized si's and ti's.  As we shall 

illustrate in Section 3.6, the cohort with  m = 6k, s = {3k-j,j}, t = {3k-2j,2k} is a system-

atic 2-astral cohort. 

 If a k-astral configuration belongs neither to a trivial cohort nor to a systematic 

one, we shall say that the configuration and its cohort are sporadic.  For k = 2 all spo-

radic configurations are known, and we list them in Section 3.6.  However, already for 

k = 3 we have only examples of such configurations (as discussed in Section 3.7), but no 

complete characterization. 

 If a cohort symbol m#{s,t} of a k-astral configurations contains the same integer 

in both s and t, a cohort symbol of a (k-1)-astral configurations may result if this integer 

is deleted from both  s  and  t.  As is easily verified, all the conditions for (k-1)-astral 

symbol are automatically verified, except possibly (A5).  We call clade of m#{s,t} all the 

cohorts resulting from one or several applications of this procedure. This will be illus-

trated in Section 3.7. 

* * * * * * 

 We end this section with an unsolved problem of methodology in the study of  k-

astral configurations.  We required in the definition that the symmetry group of every as-

tral configuration is dk.  In fact, the other conditions show that this happens automatically 

if we require that the cyclic group ck is a symmetry group of the configuration.  The char-
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acteristic path, the symbol, and the reduced Levi graph of each k-astral configuration are 

all based on the cyclic group.  The reason is that (as far as I know) nobody has come up 

with a reasonable version of all these based on the dihedral symmetry group.  The con-

struction of a reduced Levi graph that is based on the dihedral symmetry is certainly fea-

sible – but does not appear to be useful.  How come? 

Exercises and problems 3.5 

1. Devise symbols for the configurations in Figure 3.5.9. 

     

Figure 3.5.9. Two 3-astral 4-configurations. 

2. What are the symbols for the objects in Figure 3.5.10.  Devise a characteristic 

path in each and find out. 

3. Superimpose each object in Figure 3.5.10 with a copy rotated 12° about the cen-

ter. What is the result? Can you find a symbol for it? 

4. Find the dual configurations of the ones in Figure 3.5.9. 

5. Find a symbol for the 4-configuration in Figure 3.5.11. 
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Figure 3.5.10. Not configurations! 

 

Figure 3.5.11. A configuration (604). 


