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3.3 CONSTRUCTIONS OF GEOMETRIC 4-CONFIGURATIONS   

The fact that the first graphic realization of any (n4) configuration (see Figure 

3.2.1) is less than twenty years old attests to the difficulties that have to be overcome in 

realizations of such configurations in any intelligible manner.  One reason for this situa-

tion is that an (n4) geometric configuration implies the (non-trivial) satisfaction of 2n 

collinearity conditions, while on the other hand, any finite set of  n  points (not all collin-

ear) has an affine image that depends on 2n – 6 parameters.  Hence there must be some 

dependences – obvious or hidden – between the collinearity conditions in every geomet-

ric configuration (n4).  For a relevant discussion of this topic see Michalucci and Schreck 

[M18]. 

 In contrast to the situation concerning (n3) configurations we have presented in 

Section 2.4, there is no reasonable method or algorithm to go from a combinatorial con-

figuration (n4) to a topological or geometric one –– even if any of these does exist.  Nor 

are any criteria known to distinguish topological configurations which admit geometric 

realizations from those that do not.  Hence, if we wish to find geometric 4-configurations 

we are, by necessity, forced to resort to more or less ad hoc arguments.  This does not 

preclude constructing by the same method large (even infinite) families of examples; 

however, finding such methods or isolated examples is more of an art than a deductive 

science.   

 In this section we shall describe several kinds of such constructions. The various 

families or constructions will be designated in the form (sm), where s is a suitable integer 

(or another short symbol); the reason for such a name is that for appropriate values of  m,  

the construction leads to a configuration (n4) with n = s m (or some other value that de-

pends on  m). 

 Following this preamble, let's turn to some concrete cases.  In most instances, the 

construction starts from some given configuration and yields a 4-configuration. 

 The first construction, which we call (5m), starts with an arbitrary  (m3)  configu-

ration  C; in the example in Figure 3.3.1 this is the (93) configuration shown with blue 
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points and lines.  We select in the plane a line  L  (heavy black line in Figure 3.3.1) which 

misses all the points of  C  and is neither parallel nor perpendicular to any line deter-

mined by any two points of  C.  We construct three additional copies of  C  by stretching  

C through three different ratios in the direction perpendicular to  L; only one such copy is 

shown (red points and lines) in Figure 3.3.1 in order to avoid crowding.  The resulting 

configuration  C*  consists of the four replicas of  C, together with the  m  intersection 

points of  C  with  L  (shown as hollow dots, which are also intersection points with  L  of 

the copies of  C),  and of the  m  lines perpendicular to  L  (shown dashed green) which 

pass through the points of  C  (and the other copies).  Hence this construction yields a 

configuration  C* of type  (n4),  with  n = 5m.  Since –– by Theorem 2.1.3 ––  (m3)  con-

figurations are well-known to exist if and only if  m ≥ 9,  this establishes the existence of 

configurations  (n4)  for all  n ≥ 45  which are divisible by  5.  Very important for the se-

quel is the observation that, as follows from the construction, each such configuration C* 

contains a set of  m  parallel lines.  Moreover, this construction yields "movable" con-

figurations in the sense explained in Section 5.7. 

 It should be noted that this construction ––as well as the ones discussed below –– 

leads in some cases to unwanted incidences, that is, to prefigurations.  However, this can 

in all cases be avoided by selecting appropriate parameters for the construction. 

L

C

 

Figure 3.3.1. An illustration of the (5m) construction. 
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 Our second construction is called (5/2m).  It starts with a (2m3) configuration C 

that has a line L of mirror symmetry with the following properties: No point of C lies on 

the mirror L, no point on L belongs to more than two lines of  C,  and no line of  C is per-

pendicular to  L.  It follows from the mirror property of L that there are  m  points of  L  

at which pairs of lines  of C meet. From  C  another copy is obtained by shrinking  C  to-

wards  L by a certain factor  f  (say f = ½), and then adding the  m  intersection points of 

the lines of the two copies with L, and the  m  lines perpendicular to  L  that pass through 

the points of the two configurations. This is illustrated for (104) and (124) in Figure 3.3.2, 

yielding configurations (254) and (304), respectively.  We note that this construction also 

yields configurations (5m4)  with  m  parallel lines. Moreover, this construction is mov-

able, that is, nontrivial parts of it can be changed in a continuous manner without chang-

ing other nontrivial parts.  (As already mentioned, we shall discuss movable 

    
 

Figure 3.3.2.  A (254) configuration with five parallel lines, and a (304) configuration with 

six parallel lines.  The one at left starts with a (103) configuration, the other one with a 

dihedral astral (123) configuration (blue points and lines); copies of these are obtained by 

shrinking in ratio f = ½ towards the vertical line of symmetry (black line).  Adding the 

five or six intersection points on the line of symmetry (hollow points, at right one at in-

finity) and five or six horizontal lines (green), completes these typical (5/2m) construc-

tions. 
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configurations in Section 5.7.)  This implies that the cross-ratio of the four points on each 

of the new (horizontal) lines (which is the same for all  m  of these lines) can be made 

equal to any predetermined value by an appropriate choice of  f.  In Figure 3.3.3. is 

shown an example of a (143) configuration to which the (5/2m) construction is applicable. 

 A construction of the only known (184) configuration was discovered very re-

cently by J. Bokowski and L. Schewe; it is illustrated in Figure 3.3.4, and two different 

realizations of the same configuration are shown in Figure 3.3.5.  This configuration can 

be considered the smallest member of an infinite family; we shall call this the (6m) con-

struction or family.  The idea to look for such a family came from noticing that the 

original rendering of the configuration (in Figure 3.3.4) contains a well-known subcon-

figuration (93), which we encountered in Figure 1.1.6, see Figure 3.3.6.  This observation 

led to the construction of a whole family of analogous configurations.  The (6m) con-

struction is explained on hand of the typical case illustrated in Figure 3.3.7.  The precise 

membership in the (6m) family has not been determined so far, but the family includes 

members (n4) for every  n = 6m  with odd  m ≥ 3.  An additional example is shown in 

Figure 3.3.8. 

 The next case to consider is (204), first described in [G47], shown in Figure 3.3.9.  

It too was discovered as a single configuration, and the family to which it belongs was  

 
Figure 3.3.3.  A (143) configuration that can be used to construct a configuration (354) by 

the method in Figure 3.3.2; this (354) configuration will have seven parallel lines. 
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Figure 3.3.4.  The only known geometric configuration (184) (after [B24]). 

    

oo

 
Figure 3.3.5.  Two versions of the configuration (184) (red points and black lines) from 

Figure 3.3.4. In each version, adding the three green lines yields a simplicial arrange-

ments of 21 lines (denoted A(21,2) in the catalog [G48]). 

 

found only later; for obvious reasons we call this the (4m) family or construction.  At 

the time of its discovery the construction seemed quite strange; particularly surprising is 

the use of two chiral configurations of the same handedness in order to obtain a mirror 

symmetric configuration.  By now we have a much better understanding of the process, 

although a general proof of the validity of the construction is still not available.   
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Figure 3.3.6.  The configuration (184) from Figure 3.3.4 arises from a copy of the con-

figuration (93)2 taken from Figure 1.1.6, shown here in red points and black lines, by the 

addition of nine additional points and lines (shown in blue). 
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Figure 3.3.7.  A (304) configuration in the (6m) family, the family that includes the con-

figuration (184) in Figure 3.3.4.  More generally, the construction of a ((6m)4) configura-

tion starts with a regular  m-gon  A1, ... Am, where m ≥ 3 is odd.  The point  Bi  is the 

midpoint of Ai and Ai+1, and Ci is selected on Bi,Bi+1 so that the line Ci,Ci+1 passes 

through Ai+2.  Then  Di is determined on Ci,Ci+1 so that DiCi/Ci+1Ci = CiBi+1/BiBi+1, and Ei 

is the midpoint of  Di and Di+1.  Finally,  m  points at infinity (not shown) are added, in 

the directions AiAi+1.  Lines are: AiAi+1, BiBi+1, CiCi+1, DiDi+1, EiEi+1 and AiBi+2.  All sub-

scripts are understood  mod m. 
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Figure 3.3.8.  Shown here is the (6m) construction in the case of the regular 7-gon (black 

lines), leading to a (424) configuration. The seven points at infinity are again not shown; 

they are in the directions of the quadruplets of parallel black and blue lines.  

 

 Extensive experimental evidence led to the general understanding explained be-

low.  It leads to the conclusion that geometric configurations  (n4)  exist for all  n = 4m, 

with  m ≥ 5. 

 The construction can be described as follows; the explanation is illustrated in Fig-

ures 3.3.10 and 3.3.11. We start (see parts (a) in these illustrations) with an astral con-

figuration  m#(b,c;d), which we denote  C, where  b ≥ c > d > 0  in the notation detailed 

in Section 2.6.  We call this the "outer part" of the construction, and we note that the out-

ermost points of the configuration  C  determine diagonals of span  c.  The other  m  

points of  C  determine diagonals of span  b;  through each of the outermost points of  C  

passes one of these diagonals.  The lines of symmetry of the two diagonals of span  c  at 

each outermost point of  C  (one of these is shown by the green line in (a)) can be used as  
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Figure 3.3.9.  A (204) configuration belonging to the (4m) family.  Here m = 5.  The con-

struction uses two astral (103) configurations; one is shown with red points and black 

lines, the other with blue points and green lines. 

 

mirrors to reflect the  m  inner points of  C  as well as the diagonals of span  b  (see parts 

(b) and (c)).  The  m  new points become the outermost points of the "inner part" of the 

configuration we are constructing.  To find the last  m  (inner) lines, we connect each of 

the new "outermost" points with one of the original inner points – specifically, we con-

nect it to the  (b+1)st  of these points, counting in the same orientation as used in calculat-

ing the symbol  m#(b,c;d).  This is indicated by the purple segments in parts (c).  The 

new lines (see parts (d)) pass through previous intersections of two lines, creating the last  

m  points of the  ((4m)4) configuration. 

 It is worth stressing that if the starting outer configuration is the selfpolar  

m#(b,b;d)  as in Figures 3.3.9 and 3.3.10, then the inner configuration is another copy  
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(a)      (b) 

     
(c)      (d) 

Figure 3.3.10.  The steps in the (4m) construction of a (284) configuration from the (143) 

configuration  7#(2,2;1), as explained in the text. 

 

(similar to the outer one) of  m#(b,b;d).  On the other hand, if  b > c  as in the illustration 

in Figure 3.3.11, then the outer and inner parts are the two isomorphic and mutually polar 

configurations with symbol  m#(b,c;d). 

 It is also worth mentioning that if  d > c then this construction (or any analogous 

one I could think of) does not seem to work.  This includes the case of selfpolar configu-

rations  m#(b,c;d)  with  d = (b + c)/2. 
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(a)      (b) 

     
(c)      (d) 

Figure 3.3.11.  Another illustration of the construction.  We start with a  (163)  configura-

tion  8#(3,2;1)  and obtain a  (324)  configuration.  Note that the outer and inner parts are 

not similar, but are polar to each other. 

 
 

 Another infinite family, which we designate as the (5/6m) family, is constructed 

as follows, starting from a 3-astral configuration (n4) with n = 6m, where m ≥ 5.  Let us 

assume this configuration satisfies the following conditions: 
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Figure 3.3.12.  Configurations (244) and (324) from the (4m) family; the latter is different 

from the one in Figure 3.3.11. 

 

(i) It has 2m-gonal dihedral symmetry. 

(ii)  The configuration is encoded by the symbol  (2m)#(s1,t1;s2,t2;s3,t3), where  

si  is the span of the i-th family of diagonals of the ith level polygon Pi, and  ti  is the order 

of the intersection point, counting from the midpoint of the diagonal  si,  and considering 

only diagonals of span  si  of the polygon Pi.  For more details see Section 3.6. 

(iii) s1  and  t3  are distinct, and both are even; this implies m ≥ 5. 

(iv) t1  and  s3  are odd. 

(v) s2  and  t2  have same parity. 

 Condition (iii) implies that both kinds of diagonals ending at points of P1 have 

even lengths.  Therefore, omitting every other point of  P1 and all the lines incident with 

these points leads to a loss of  m  points and  2m  lines.  (Note that, as shown in Figures 

3.3.13 and 3.3.14, "level 1" does not mean that  P1  is the "outermost level".)  The claim 

is that the above conditions imply that one can add to the remaining lines and points  m  

suitable lines through the center to obtain a  ((5m)4)  configuration.  The examples in 

Figures 3.3.13 and 3.3.14 illustrate the construction. 
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    10#(4,1,2,4,1,2)

    

10#(4,3,2,4,3,2)

    

10#(4,3,1,3,1,2)  

Figure 3.3.13.  The three (254) configurations obtainable by the (5/6m) construction. 



  Page 3.X.13 

18#(4,1,5,1,7,8)

14#(4,3,2,4,3,2)

12#(2,1,4,2,1,4)

 

Figure 3.3.14.  Configurations (304), (354) and (454) belonging to the (5/6m) family. 
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 The reason the construction works is the following.  All points of a 3-astral con-

figuration with (2m)-gonal dihedral symmetry (that is, based on a regular  (2m)-gon G) 

are on lines through the center that are mirrors for the symmetries of the configuration.  

The points of  G  are on mirrors that enclose angles that are multiples of  p/m.  More spe-

cifically, the two types of points on an  si  diagonal of  P1 are spaced an even multiple of  

p/m  if  si  and  ti  have the same parity, and an odd multiple of  p/m  if these parities are 

different. 

 In view of the above, conditions (iii), (iv) and (v) imply that viewed from the cen-

ter, the points of level 1 are not aligned with the points of the other two levels.  Hence 

these latter points are aligned, and provide the  m  lines required for the formation of a  

((5m)4)  configuration. 

 Since configurations  (2m)#(2,1,4,2,1,4)  and  (2m)#(2,3,4,2,3,4)  exist for all  

m ≥ 5,  our existence claim is justified.  In fact, for every  m ≥ 5 there exist additional 

possibilities.  This is illustrated in Figure 3.3.13, for  m = 5.  This case was the starting 

points of this construction.  Some of the configurations in Figure 3.3.13 were first con-

structed, independently and by ad hoc methods, by T. Pisanski and J. Bokowski. 

 A few other configurations in the (5/6m) family are illustrated in Figure 3.3.14. 

 The constructions we have seen so far started from given configurations that had 

to satisfy certain conditions.  The resulting (n4) configurations always had as  n  a com-

posite number –– more specifically, a multiple of 4, or 5, or 6.  Now we shall describe  

constructions that are applicable quite generally, but are apt to give  (n4)  configurations 

with other values of  n. 

 The general construction, which we call the (3m+) construction, has the interest-

ing feature that it is more easily visualized and explained in 3-space; the resulting con-

figuration is then readily projected into the plane.  We start with an  (m4)  configuration  

C  in the plane.  We assume that this is the  (x,y)-plane in a Cartesian (x,y,z)-system of 

coordinates, and that  C  has  p ≥ 1  lines parallel to the  x  axis, and  q ≥ 1  lines parallel 
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to the  y  axis, such that no two of them have a point of the configuration in common.  

(Note that by an affine transformation –– which does not change incidences –– any two 

sets of parallel lines can be made orthogonal.  The orthogonality is assumed only in order 

to simplify the description.)  We select a real number  h > 1 and keep it constant through-

out the discussion; it is convenient (but not necessary) to think of  h = 10.  We construct 

two copies of  C.  One is  C',  obtained from  C  by stretching  C  in ratio  (h–1)/h  (that is, 

in fact, shrinking it)  towards the  y-axis, stretching it in ratio  (h+1)h  towards the  x-axis, 

and then translating it to the level  z = 1.  A schematic representation of a section parallel 

to the x-axis is shown in Figure 3.3.15.The other is  C",  obtained similarly but by using 

the ratio  (h+1)/h  for stretching towards the  y-axis,  (h–1)h  for the ratio towards the  x-

axis, and translation to the plane  z = –1.  Thus,  C'  is obtained from  C  by the map  

f(x, y, 0) = (x(h–1)/h, y(h+1)/h, 1),  and  C"  by  g(x, y, 0) = (x(h+1)/h,  y(h–1)/h, –1).  It 

is easy to check that for each point  A = (x, y, 0)  the points  A, f(A)  and  g(A)  are col-

linear, and that the points  h(A) = (0, 2y, h)  and  h*(A) = (2x, 0, –h)  are collinear with 

them.  Now, for any four points  Aj  (j = 1, 2, 3, 4)  of  C  that are on a line  L  parallel to 

the x-axis –– that is, have the same  y-coordinate –– the point  h(Aj)  will be the same 

since it does not depend on the  x-coordinate.  Therefore we can conclude that by deleting 

the line  L  from the configuration  C  and its parallels in  C'  and  C",  while adding the  

x

z

H0

 
Figure 3.3.15. A schematic illustration of the (3m+) construction. 
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lines  from  Aj  to  h(Aj),  the points  Aj  and the corresponding points in  C'  and  C"   

will remain incident with four lines, and the new point  h(Aj)  will also be incident with 

four lines.  We deleted three lines and added four, and also added one point.  Thus, from 

the starting  (m4)  configuration we obtained a configuration  (n4)  where  n = 3m+1.  

Analogously, any four points of  C  collinear on a line parallel with the y-axis may lead to 

an additional increase in the number of points and lines; the assumed disjointedness of 

the two families of parallels is needed here to assure that no 5-point lines arises.  Pro-

ceeding similarly with some or all lines parallel to either the  x-axis or the  y-axis, we see 

that from  (m4)  we can obtain configurations  (n4)  for each  n  such that  3m + 1 ≤ n ≤ 

3m + p + q. 

 Next, we have the deleted unions constructions  (DU-1) and (DU-2).  Consider 

any configurations C1 = ((n')4) and C2 = ((n")4), such that the cross-ratio of points of C1 

on a certain line coincides with the cross-ratio of lines through a certain point of C2.  

Then omitting the line and the point in question, and adjusting the positions and sizes of 

the deleted configurations appropriately, we obtain a configuration with n' + n" – 1 

points.  In every case one can use for C2 a polar of C1, to go from (n4) to ((2n-1)4).  This 

is construction (DU-1); illustrations are provided in Figures 3.3.16 and 3.3.17.  For (DU-

2) we need to delete two disjoint lines and two unconnected points, respectively.  An il-

lustration is given in Figure 3.3.18.  Again, the only requirement is that the cross-ratios of 

the appropriate quadruplets of points and of lines be equal. 

 With this we have completed the description of the various constructions that will 

enable us to find geometric configurations (n4) for almost all values of  n ≥ 18.  The proof 

of this assertion, which we have already formulated as Theorem 3.2.4, will be given in 

the next section.  In it we shall utilize various configurations with very high symmetry –– 

astral, multiastral, and other.  Since their construction and properties are both interesting 

and complicated, we are not describing them here; instead, we shall devote to them sev-

eral later sections.   
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Figure 3.3.16.   (414) from two copies of (214) using (DU-1). 
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Figure 3.3.17.   (594) from two copies of (304) using (DU-1).  p+q = 8 
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Figure 3.3.18.  (464) from two copies of (244), using (DU-2).   

 

Exercises and problems 3.3 

1. Carry our the construction of the (354) configuration described in Figure 3.3.3. 

2. Determine whether any of the three configurations (254) in Figure 3.3.13 are iso-

morphic.  

3. Devise a general proof for the validity of the (4m) construction, as detailed in the 

text. 
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4. Formulate the analog of the (3m+) construction that leads from 3-configurations 

to 3-configurations. Illustrate by a simple example. 

5. The (6m) construction is applicable to regular star-polygons as well.  Explore the 

case of a pentagram, and of one of the regular star-heptagons. 

6. Explain why the (DU-1) construction cannot be applied to get a (434) from (204) 

and (244). 


