
Version 10/18/08 

3.2 EXISTENCE OF TOPOLOGICAL AND GEOMETRIC  

 4-CONFIGURATIONS 

As mentioned in Section 3.1, both Brunel [B31] in 1897 and Merlin [M8] in 1913 

discussed geometric 4-configurations in the real Euclidean plane, and were clear about 

the distinction between combinatorial and geometric configurations. However, neither 

did actually show a drawing of any geometric configuration.   

The first published diagram of a geometric configuration (n4) appeared only in 

[G50], published in 1990.  It is reproduced here as Figure 3.2.1.  As it happens, it is a re-

alization of Klein's configuration (214),  introduced in [K11] and mentioned in Section 

3.1.  The paper [G50] marked the beginning of research of geometric configurations (n4); 

the results of these investigations form the topic of the remaining part of Chapter 3.  The 

results are intimately connected to the study of topological configurations (n4), and we 

shall first describe the known facts concerning these configurations.  

 
Figure 3.2.1.  A geometric configuration (214). 
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The arguments given by Merlin [M8] to establish the non-existence of geometric 

configurations (n4) for  n ≤ 15, do not carry over to topological configurations.  However, 

we have: 

Theorem 3.2.1. (Bokowski and Schewe [B23])  For  n ≤ 16 there are no topologi-

cal configurations (n4). 

This is the best possible, since we also have 

Theorem 3.2.2.  (Bokowski, Grünbaum and Schewe [B22])  Topological configu-

rations (n4) exist for every n ≥ 17. 

In contrast to this situation, we have: 

Theorem 3.2.3.  (Bokowski and Schewe [B24])  For  n ≤ 17 there are no geomet-

ric configurations (n4). 

Theorem 3.2.4.  (Bokowski and Schewe [B24])  There exist geometric configura-

tions (n4) for all  n ≥ 18  except possibly for  n = 19, 22, 23, 26, 37, 43. 

Theorems 3.2.3 and 3.2.4 demonstrate how the understanding of the (n4) configu-

rations has developed during the past twenty years.  In [G50] it was conjectured that there 

are no geometric configurations (n4) with n ≤ 21 other than the configuration in Figure 

3.2.1.  Similar conjectures were repeated in various other publications, such as  [G41], 

[G42], [G43].  However, the recent discovery (see [G47]) of a  (204)  configuration led to 

a modified conjecture, that geometric configurations  (n4)  exist only for  n ≥ 20 .  But 

this was also short-lived, and was resolved in the negative by the discovery of a geomet-

ric (184) configuration by J. Bokowski and L. Schewe [B24].  Thus Theorems 3.2.3 and 

3.2.4 settle the 20-years quest for the smallest geometric configuration  (n4). 
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The history of the Theorem 3.2.4 illustrates the rapid improvement in the under-

standing of configurations (n4).  The first version, in [G47], established that connected  

(n4)  configurations exist for every  n ≥ 21  except possibly if  n = 32  or  n = p  or  n = 2p  

or  n = p2  or  n = 2p2  or  n = p1p2,  where  p, p1, p2  are odd primes and  p1 < p2 < 2p1.  

The number of exceptional cases was soon reduced (in [G41]) to a finite number: There 

are  (n4)  configurations for all  n ≥ 21  except possibly if  n  has one of the following 

thirty two values:  22, 23, 25, 26, 29, 31, 32, 34, 37, 38, 41, 43, 46, 47, 49, 53, 58, 59, 61, 

62, 67, 71, 77, 79, 89, 97, 98, 103, 113, 131, 178, 179.  Newly found construction meth-

ods [G43] reduced the list of possible exceptions to the following ten values:  22, 23, 26, 

29, 31, 32, 34, 37, 38, 43.  All this was while the general belief was that  21  is the small-

est number of points in an (n4) configuration.  After Theorem 3.2.3 was established, and 

additional constructions found, the result became that connected  (n4)  configurations ex-

ist if and only if  n ≥ 18,  except possibly if  n  has one of the eight values  18, 19, 22, 23, 

26, 34, 37, 43.  Finally, the discovery of a (184) configuration led to the result stated 

above [B24]. 

The proofs of Theorems 3.2.3 and 3.2.4 will be given in the next section; here we 

shall give outlines, and some details, of the proofs of Theorems 3.2.1 and 3.2.2. 

The proof of Theorem 3.2.1 given in [B23] is easy for  n ≤ 15.  The case n = 16 is 

much more complicated, and forms the bulk (six pages) of that paper.  It follows a large 

number of a priori possible topological subconfigurations, and in each case leads to a 

contradiction. We have to refer the reader to the original paper.  In contrast, the case 

n ≤ 15 is easily explained, and for fixed  k  is applicable to all combinatorial configura-

tions (nk)  with  n  sufficiently small.  We present the proof from [B23] with only minor 

adaptations. 

Assume that a combinatorial (nk) configuration is realized by pseudolines in the 

projective plane.  Due to the possibility of locally perturbing pseudolines at points that 

are not vertices of the configuration, we may assume that in the arrangement (see Ap-
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pendix A2) generated by the perturbed pseudolines each vertex of the arrangement is in-

cident with either  k  or  2  pseudolines.  Since each of the former accounts for   k(k-1)/2  

pairwise intersections of pseudolines, the total number of vertices of the modified ar-

rangement is  f0 = n + n(n–1)/2 – nk(k-1)/2 = n(n – k2 + k + 1)/2.  Similarly, the number 

of edges of the modified arrangement is  f1 = n(n – k2 + 2k – 1).  From Euler's theorem 

for the projective plane it follows that the number of cells (faces) of the arrangement is f2 

= f1 – f0 + 1 = n(n – k2 + 3k – 5)/2.  On the other hand, arrangements of pseudolines have 

no digons, hence counting incidences of edges and cells yields 3f2 ≤ 2f1.  Therefore we 

have  f(n) = –n2 + nk2 + nk – 5n + 6 ≤ 0 as a necessary condition for the existence of a 

topological realization of a combinatorial (nk).  For fixed k, this function  f(n)  of  n  has 

its only maximum for  n = (k2 + k – 5)/2 and is decreasing for all larger  n.  Simple check-

ing shows that for k = 4 we have  (42 + 4 – 5)/2 < 8  and  f(15) = 6 > 0, hence (n4) is not 

topologically realizable for  n ≤ 15.  Since  f(16) = –10 < 0, this criterion is not applicable 

for n = 16.  On the other hand, this result shows that there are no topologically realizable 

configurations (n5) for n ≤ 24, nor are there any topological (n6) for  n ≤ 36. 

Turning now to Theorem 3.2.2, the first thing to observe is that geometric con-

figurations are, obviously, examples of topological configurations.  Hence, assuming that 

Theorem 3.2.4 can be proved without reliance on Theorem 3.2.2 (as is in fact the case), 

we need only provide examples of topological configurations for those values of  n ≥ 17  

for which there are no known geometric configurations.  These values are n = 17, 19, 22, 

23, 26, 37, 43.  We shall now show such examples, together with a few others that we 

find appropriate for various reasons.  Most of these examples are modified from [B22]. 

In Figure 3.2.2 we show a topological configuration (174) that is a realization of 

the configuration given by Table 3.2.1.  This is taken from [B22], where a proof is out-

lined according to which this combinatorial configuration (174) is the only one admitting 

a topological realization.  It should be noted that this realization has 4-fold rotational 

symmetry in the extended Euclidean plane.  It is not known whether there are realizations 

with any symmetry in the Euclidean plane proper, or whether there are additional combi-

natorial automorphisms.  Since the configuration is the only topologically realizable (174) 
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configuration, it is necessarily self-dual.  (Although it seems not well-known, topological 

configurations in the projective plane do have dual configurations.  This can be inferred 

from results in [G6].) 

1 1 1 1 2 2 2 3 3 3 4 4 4 8 9 10 10 
2 5 8 11 5 6 7 5 6 7 5 6 7 13 13 11 12 
3 6 9 12 8 9 11 12 8 9 11 10 12 15 14 14 16 
4 7 10 13 14 15 16 15 16 17 17 13 14 17 16 15 17 

Table 3.2.1.  A configuration table of the only (174) configuration that admits a topologi-
cal realization. 
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Figure 3.2.2.  A topological configuration (174).  It is a realization of the unique combina-

torial configuration (174), specified in Table 3.2.1, that has a topological realization. 

A topological configuration (184) is shown in Figure 3.2.3. This configuration is 

not isomorphic to the geometric configuration (184) we shall see in the next section, and 

it is not known whether is can be realized geometrically.  On the other hand, it has a six-

fold rotational symmetry. 
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Figure 3.2.3.  An example of a topological configuration (184) with six-fold rotational 

symmetry in the Euclidean plane.  Adapted from [B22]. 
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(a)      (b) 

Figure 3.2.4.  Topological configurations (a) (194) and (b) (234).  Adapted from [B22]. 
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In contrast, all known topological configurations (194) and (234) have only trivial 

symmetry groups. Examples of these configurations are shown in Figure 3.2.4.  

The examples of topological configurations presented so far have been ad hoc, 

obtained essentially through (lots of) trial and error.  Their rather ungainly appearance is 

a reminder of their genesis.  In contrast, the examples of configurations (224) and (264) 

shown in Figure 3.2.5, are members of a systematic family: they are topological exam-

ples of astral configurations; the geometric members of the family will be studied in de-

tail in several sections, starting with Section 3.5.  The two examples in Figure 3.2.5 are 

representatives of configurations (n4) possible for all even n ≥ 22.  In the terms of astral 

configurations we shall discuss in Sections 3.5 and 3.6, these configurations have spans 4 

and 5; other possibilities exist, increasing in number with increasing  n.  Additional in-

formation will be given in the discussion of geometric astral configurations, and in Sec-

tion 5.8. 

     

Figure 3.2.5. Topological configurations (224) and (264), with 11-fold resp. 13-fold dihe-

dral symmetry.  They are typical of topological astral configurations (n4) possible for all 

even n ≥ 22. 
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The examples we provide for (374) and (434) are special cases of a much more 

general construction, that is actually very simple.  Assuming we have a (pk) topological 

configuration, and a (qk) topological configuration, for some k ≥ 2, we can construct an 

(nk) topological configuration, where  n = p + q – 1, in the following way:  Delete one 

pseudoline from the former configuration, and a point from the latter, and make the  k  

pseudolines that are now incident with only  k–1 points, pass through the  k  points that 

are incident with only k–1 pseudolines.  In Figure 3.2.6 is shown the case of (244) and 

(204) geometric configurations, leading to a (434) topological configuration; the signifi-

cant points and lines are shown in red. Another (434) configuration could be obtained by 

pairing in the same way an (184) configuration with a (264).  The same kind of construc-

tion with (204) and (184) configurations (either geometric or topological) yields the last of 

the required topological configurations, (374); alternatively, the topological (174) could be 

paired with the geometric (214).  A different topological configuration (374) is shown in 

[B22].  We shall revisit the same idea for construction of geometric configurations in the 

next section. 

 

Figure 3.2.6. A topological configuration (434). The red points are collinear on the de-

leted line, the red (pseudo)lines were concurrent at a deleted point of the (204) configura-

tion. 
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Since the combinatorial (n4) configurations, for n = 13, 14, 15, 16, as well as a 

large majority of such configurations for n ≥ 17, cannot be realized by topological con-

figurations, two kinds of questions arise naturally. 

First, what relaxation of incidence requirements would be sufficient to enable the 

construction of topological near-configurations realizing these combinatorial ones? 

Second, what are the obstructions preventing topological realizations of some of 

the combinatorial configurations?  For the smallest combinatorial configurations (such as 

(73), (134), (215), (316), (498), ... ) the existence of ordinary points in any family of pseu-

dolines not all of which pass through the same point (see Lemma 2.1.1) can be inter-

preted as such an obstruction.  Indeed, it implies that these configurations cannot have 

topological realizations since all intersections of pairs of pseudolines would have to be 

"used up" in points incident with multiple pseudolines, leading to an absence of ordinary 

points. 

The inequality –n2 + nk2 + nk – 5n + 6 ≤ 0 mentioned above as a necessary condi-

tion for the existence of an (nk) topological configuration is another kind of obstruction.  

It shows that combinatorial configurations (nk)  with  n ≤ k2 + k – 5 cannot be topologi-

cally realized.  Since  n ≥ k2 – k + 1  in all cases, that shows that for each  k  certain val-

ues of  n  lead to topologically non-realizable configurations (nk).  However, it must be 

noted that for quite a few of the relevant pairs  n, k  there exist no combinatorial configu-

rations either – and there is no necessary and sufficient criterion for their existence. 

Exercises and problems 3.2. 

1. Construct the configuration table dual to the one in Table 3.2.1, and show that it is 

realized by the configuration in Figure 3.2.2. 

2. Prove that the topological (184) configuration in Figure 3.2.3 is not isomorphic to 

the geometric (184) configuration shown in Figure 3.3.4 and 3.3.5. 

3. Find a topological (184) configuration that is dual to the one in Figure 3.2.3. 
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4. Construct a topological (374) configuration. 

5. There seems to be no a priori reason that would preclude the existence of topo-

logical (194) or (234) configurations with halfturn symmetry.  Do any exist? 

6. Determine how many topological configurations (264) with dihedral symmetry d13 

exist. 

7. Which multiastral combinatorial configurations (n4) have topological realizations? 


