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3.1 COMBINATORIAL 4-CONFIGURATIONS 

The history of configurations (n4) is much shorter than that of configurations (n3), 

and more easily told.   

The first explicit mention of such configurations seems to be in a paper [K11, p. 

440] by Felix Klein in 1879, which deals with quartic curves in the complex plane.  He 

noted that there is a family of 21 points and 21 lines with incidences that make it into a 

(214) configuration, in our terminology –– albeit in the complex plane.  Although this 

particular configuration continued to interest mathematicians (various references can be 

found in Coxeter [C10], and Burnside [B32] discovered it independently), it did not have 

any noticeable direct influence on the study of (n4) configurations in general.  However, 

it did play later a significant role in the theory of geometric configurations, which we 

shall discuss in Section 3.2. 

The first slightly more general treatment of such configurations was by Georges 

Brunel (1856 – 1900) in [B31], a paper that seems to have escaped the attention of all 

writers on the topic of configurations (n4) prior to [G46]1.  In an earlier paper [B30] 

Brunel followed an idea quite popular at that time: a polygon inscribed and circumscribed 

to itself (with sides understood as lines). Clearly, these are a special class of (combinato-

rial or geometric) 3-configurations, which we will discuss in Section 5.2.  Aware of the 

need to distinguish between combinatorial and geometric configurations, in [B31] Brunel 

pursued this idea farther, by considering a "polygon doubly inscribed and circumscribed" 

to itself.  In the current terminology we call such polygons "Hamiltonian circuits (or mul-

tilaterals)" of the configuration, and we will consider them in more detail in Sections 5.2 

to 5.4.  Each line of such a doubly self-inscribed and self-circumscribed "polygon" is in-

cident, besides the two points (vertices of the polygon) that define it as a side of the poly-

                                                
1 Biographical data on Brunel, and comments on his work, may be found in [B2] and, in 
great detail, in [D11]; see also [G29]. 
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gon, with precisely two additional vertices of the polygon.  Brunel determines that any 

combinatorial configuration (n4) must satisfy  n ≥ 13, and gives two constructions.   

In the first, Brunel presents a configuration table (that is actually an orderly con-

figuration table, in the terminology of Section 2.5), and states that while the verification 

that this indeed determines a combinatorial configuration (354) is easy, the graphical rep-

resentation requires some effort.  (Unfortunately, the remarks in [D11, p. LXVIII] con-

cerning the geometric realization of this configurations are, at best, misleading.)  From 

Brunel's statement (especially in view of his later comments concerning the other con-

struction) one may conclude that he had found a geometric realization of this configura-

tion.  In fact, this configuration turns out to be isomorphic to the geometric configuration 

(354) mentioned in [G50], communicated to the authors by Ludwig Danzer.  (See also 

[G49].)  Although no reasonable diagram of this configuration seems to be available, the 

configuration can be described easily enough by a construction of the kind used by 

Cayley and others in similar contexts a century and a half ago.  In the case under discus-

sion, start with seven points in general position in real 4-space; consider the 35  2-planes 

and 35  3-spaces they generate, and intersect this family by a 2-dimensional plane in gen-

eral position to obtains the required geometric configuration (354).  The absence of any 

reasonable geometric symmetry makes this configuration visually unattractive. 

Brunel's second construction yields combinatorial configurations (n4) on which a 

cyclic group operates transitively.  This includes explicitly specified configurations for 13 

≤ n ≤ 16.  Unfortunately, the results Brunel presents are marred possibly by typos, but 

also by outright errors.  Among the latter, in several cases Brunel lists isomorphic doubly 

selfinscribed and selfcircumscribed polygons as distinct.  For example, in case n = 13 

Brunel lists cyclic translates of {0,1,4,6} and {0,1,3,9} as the two polygons, although the 

permutation  (0)(1)(2)(3,4)(5)(6,9,8,10,12,7)(11) maps the first polygon onto the second.  

Moreover, it is rather easy to prove that up to isomorphism, there can be only one such 

combinatorial configuration; this is completely analogous to the proof (in Section 2.2) 
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that the configuration (73) is unique.  But even allowing for these shortcomings, we see 

that Brunel anticipated the corresponding results of Merlin [M8], and even went a bit be-

yond them.  A corrected list would show one cyclic configuration (or polygon) for n = 13 

and 14, three for n = 15, and two for n = 16.  This coincides with the recent list of cyclic 

configurations given by Betten and Betten [B13], to which we shall return soon.  Brunel 

also noted that translates of  {0,1,4,6}  yield a configuration  (n4)  for all  n ≥ 13; this an-

ticipated by nearly a century a result of Gropp [G8]. 

Merlin mentions in [M8] that configurations (n4) have not been investigated sys-

tematically, although some isolated ones were discovered by F. Klein [K11], W. Burnside 

[B32], and others.  Like Brunel, he constructs a combinatorial configuration (134); 

moreover, he proves its uniqueness and minimality.  He also constructs a configuration 

(144) and proves it is unique.  Merlin states that there are exactly three distinct configu-

rations (154) which, however, are not presented.  In fact, he is mistaken.  As shown by 

Betten and Betten [B13], there are four different configurations (154), three of which are 

cyclic and coincide with the three doubly selfinscribed and selfcircumscribed polygons of 

Brunel (who did not comment on the possibility of noncyclic configurations (154), or (n4) 

in general).  In the same context, Merlin makes two additional errors:   

(i) He claims that his three configurations (154) can be distinguished by the num-

ber of vertex-disjoint triangles present in them, which he claims to be 5, 1 and 0, respec-

tively.  In fact, all four configurations (154) have five such triangles, the maximal possi-

ble number.   

(ii) He states that his configurations (134), (144) and (154) have orderly configura-

tion tables; this is correct –– see Section 2.5 –– and has been proved by Steinitz in [S17] 

for all configurations (nk). However, Merlin then claims that it follows that there is no 

Hamiltonian circuit for any of them –– which is wrong.  Steinitz's orderliness result has 
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no such implications, and cyclic 4-configurations such as Brunel's explicit constructions 

in [B31] (of which Merlin is unaware) provide counterexamples to Merlin's claim. 

By a construction analogous to the one devised by Martinetti (in [M2], see Sec-

tion 2.3) for configurations (n3),  Merlin shows that for every n ≥ 30 there are combinato-

rial configurations (n4).  In fact, it is easy to show that there are such configurations for 

all  n ≥ 13;  for example, as noted by Brunel and mentioned above, for all  n ≥ 13  it is 

enough to consider cyclic translates of the "line" {0,1,4,6}. 

Concerning the number N(n) of distinct combinatorial configurations (n4), the 

only known values are those given by Betten and Betten [B13]: the old  N(13) = N(14) = 

1, and their new results  N(15) = 4,  N(16) = 19,  N(17) = 1972, and N(18) = 971171.  

These new numbers seem not to have been independently verified, except for the value 

N(17) = 1972 (see [B29]). 

The configurations (134) and (144) can be obtained as cyclic configurations with 

generating "line" {0,1,4,6}. The four configurations (154) can be characterized as fol-

lows: The three cyclic ones are generated by the "lines"  {0,1,4,6},  {0,1,5,7}  and  

{0,1,3,7},  given already by Brunel.  The other three configurations given by Brunel yield 

isomorphic configurations (two to the first, and one to the second).  Betten and Betten 

[B13] give other generators for the three cyclic configurations: {0,2,8,12},  {0,1,9,11}, 

and {0,1,9,13}, respectively; these are shown in [B13] by Levi incidence matrices  (see 

Section 1.4), – but matrices that do not exhibit the cyclic character of the configurations.  

Their fourth configuration (n4) is clearly illustrated in [B13] by a Levi incidence matrix 

shown in Figure 3.1.1(a).  As it is the only non-cyclic configuration (154), it is necessarily 

selfdual.  An incidence matrix exhibiting one of the selfdualities is shown in Figure 

3.1.1(b); it is obtained by suitable permutations of the rows and columns of the matrix in 

Figure 3.1.1(a). 
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(a)      (b) 

Figure 3.1.1.  (a) A Levi incidence matrix of the non-cyclic  (154)  configuration con-
structed by Betten and Betten [B13].  (b) A selfdual incidence matrix of this configura-
tion.  

Brunel's generating "lines" of the three cyclic configurations (154) given in [B31] 

have an advantage over the ones given by Betten and Betten [B13], even though they are 

isomorphic for the (154) configurations: Brunel's can serve as generating lines for combi-

natorial configurations (n4) for all  n ≥ 15. 

Concerning the (164) combinatorial configurations, it should be noted that the 

three generating lines of the cyclic (154) configurations listed above do serve to generate 

cyclic (164) configurations –– but the three resulting configurations are isomorphic. There 

is one other configuration (164), also cyclic, specified in Betten and Betten [B13] by its 

generating line  {0, 1, 6, 13};  Brunel renders the same configuration, but with a typo; 

when corrected, its generating line is {0,1,3,12}, or equivalently, {0,1,3,–4}.  The gener-

ating lines {0, 1, 6, 13} or {0,1,3,12} do not yield a cyclic configuration for all  n > 16; 

however, if the generating line is taken in the form {0,1,6,–3} or {0,1,5,–2}, which are 

equivalent for (164), then they works for all such  n.  Obviously, any generating line for a 

cyclic configuration is also a generating line for all sufficiently large  n.  
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Besides the two cyclic configurations, Betten and Betten [B13] describe 17 non-

cyclic combinatorial configurations (164); they state that these 19 are the complete list, 

but give no details of the determination of this claim.  There seems to have been no inde-

pendent confirmation of this list.  As with all the listings in [B13], it seems that no atten-

tion was given to finding presentations of the configurations as symmetric as possible; in 

particular, there is no mention of duality or selfduality.  Beyond the cyclic configurations 

already mentioned, and the (154) configuration in Figure 3.1.1(a), this is illustrated by 

one of the seventeen (164) configurations illustrated in Figure 8 of [B13].  This example 

is shown in Figure 3.1.2(a). 

Betten and Betten [B13] state (or at least imply) that there are only two cyclic 

configurations (174); their generating lines given are equivalent to the ones mentioned 

above, {0,1,4,6} and {0,1,5,–2}. 
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(a)      (b) 

Figure 3.1.2.  (a) A (164) combinatorial configuration as illustrated in [B13] by its 

Levi incidence matrix.  (b) A symmetric incidence matrix of the same configuration, il-

lustrating its selfduality. 
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As we shall see in Section 3.2, except for one of the (174), none of the combinato-

rial configurations (n4) with n ≤ 17, is even topologically realizable (see Section 3.2).  

Merlin [M8] shows that the configurations (134), (144) and the three cyclic (154) are not 

geometrically realizable.  But he also notes that geometric configurations (n4) do exist for 

infinitely many values of  n.  His construction uses "stacks" of 3-configurations and ver-

tical lines through their vertices to construct [4,3]-configurations,  and then stacks of du-

als of the projections of these into the plane to construct 4-configurations.  While this 

yields geometric configurations (n4) for infinitely many values of  n,  there are infinitely 

many  n  that are not covered. 

 Much new information on the question of existence of topological and geometric 

4-configurations has become available recently.  We discuss it in the following sections. 

Exercises and problems 3.1 

1. Decide whether the (354) configuration of Brunel is cyclic or not. 

2. Prove that the three cyclic configurations (154) generated by the "lines"  {0,1,4,6},  

{0,1,5,7}  and  {0,1,3,7},  given by Brunel, are distinct (non-isomorphic). 

3. Prove that the three cyclic configurations (154) generated by the "lines"  {0,1,4,6},  

{0,1,5,7} and {0,1,3,7} are isomorphic to the three generated by {0,2,8,12}, {0,1,9,11}, 

and {0,1,9,13}, respectively. 

4. Investigate the duality properties of the three cyclic configurations (154). 

5. Validate the claim that the three generating lines in Exercise 2 yield isomorphic 

configurations (164). 

6.  Show that the cyclic (164) configurations with starting lines {0,1,4,6} and 

{0,1,6,13} are not isomorphic. 


