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 2.9 MULTIASTRAL 3-CONFIGURATIONS 

 A geometric configuration is said to be of symmetry type [h1, h2] provided its 

points form h1 orbits, and its lines h2 orbits under the group of its isometric symmetries.  

We shall also say that such a configuration is [h1, h2]-astral, or, if the precise values of h1 

and h2 are not important in the discussion, that it is multiastral.  Clearly, if a configura-

tion of type [q, k] is [h1, h2]-astral then h1 ≥ (k+1)/2 and h2 ≥ (q+1)/2.  If  h1 and h2 have 

these minimal values we shall simplify the language and say that the configuration is as-

tral.  In cases where  h1 = h2 = h, we shall say that the configuration is  h-astral.  

 The study of these configurations is much less advanced, and promises to be more 

challenging than the investigation of the 2-astral 3-configurations.  There are two sources 

of the variety possible for h-astral 3-configurations.  On the one hand, similarly to the 

situation with dihedral astral configurations, in many cases there is at least one parameter 

that can assume a continuum of different real values.  On the other hand, if h ≥ 3, a line 

of the configuration can contain points from either two or three different orbits.  The case  

h = 2 is radically different from those with  h ≥ 3. 

The h-astral 3-configurations come in three varieties: 

 projectively h-astral, that is, configurations that are h-astral in the extended 

Euclidean (that is, projective) plane E2+, but not in the Euclidean plane E2 itself. 

 h-chiral that is, configurations in the Euclidean plane E2, with a cyclic symmetry 

group. 

 h-dihedral, that is configurations in the Euclidean plane E2, with a dihedral 

symmetry group. 

 Throughout, the use of a numerical prefix h-  means that there are at most h orbits 

of points and at most h orbits of lines, with equality in at least one case. 

 Examples of projectively astral configurations are shown in Figure 2.9.1 and 

2.9.2.  The configuration in Figure 2.9.1 is a realization of the Pappus configuration.  

Two 3-astral realization of the Desargues configuration (103) in E2+ are shown in Figure 
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2.9.2; they are among the illustrations given by Coxeter [C8].  Two examples of projec-

tively 3-astral configurations (153) are shown in Figure 2.9.3.  It is clear that similar ex-

amples of projectively h-astral  configurations could be found for all  h ≥ 4.  At least for 

small  h, the complete characterization of projectively astral configurations may be feasi-

ble but has not been worked out. 

 

Figure 1.  A 3-astral version of the Pappus configuration (93) in the extended Euclidean 

plane. 

 

(a)       (b) 

Figure 2.9.2. Two projectively 3-astral realizations of the Desargues configuration (103)  

(after [C8]). In (b) the line at infinity is included. 
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Figure 2.9.3.   Two examples of projectively 3-astral configurations (153). Notice that the 

one at left is [3, 2]-astral, and the one at right is [2, 3]-astral. 

 

 h-chiral astral configurations (n3) are much more interesting. We have discussed 

the 2-astral chiral configurations in Section 2.7.  For h ≥ 3 there is more than one possi-

bility. We begin by explaining the notation for h-chiral configurations in which each line 

is incident with points of two orbits only; the remaining case –– some lines incident with 

three orbits of points –– will be described later. The notation used in Section 2.7 will be 

expanded here; the general form for h-chiral configurations (n3) of this kind is  m#(b1, b2, 

… , bh; b0; λ1, λ2, … , λh-2)  –– or in a shorter symbol m#(b1, b2, … , bh; b0).  Here  n = 

hm and we have h–2 real parameters λj besides h+1 discrete ones bj.  Together these pa-

rameters lead to a quadratic equation for an additional parameter  λ.  This equation can 

have 2, 1 or 0 real solutions –– in the last case there are no corresponding real configura-

tions.  Our explanation is illustrated in Figure 2.9.4, using a 3-chiral configuration (273) 

as an example. 

 The detailed study of h-chiral configurations was initiated by Boben and Pisanski 

[B20] under the name "polycyclic configurations", and with slightly different notation.  

As pointed out in [B20], the dual of a configuration m#(b1, b2, … , bh; b0)  is the con-

figuration m#(bh, bh-1, … , b1; b1+b2+ … +bh–b0).  For h = 2 this reduces to the facts we 

shall discuss at length in Section 2.10. 
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Figure 2.9.4. The characteristic path in a 3-chiral configuration (273). 

 

As mentioned earlier, the symbol for an h-chiral configuration (n3), where  n = 

hm,  is of the form  m#(b1, b2, … , bh; b0; λ1, λ2, … , λh-2); the parameters are again de-

termined along a characteristic path.  The entries  b1, … , bh  are the spans of the di-

agonals in the different regular m-gons that are determined by the path; all the diagonals 

are oriented in the same way –– all clockwise or all counterclockwise –– and the real 

numbers  λ1, λ2, … , λh-2  denote the ratios in which each diagonal determined by a seg-

ment of the path is divided by the endpoint of the segment.  The path returns to the start-

ing polygon, but not necessarily to the starting point of the path.  The parameter b0 indi-

cates the vertex of the starting polygon at which the characteristic path ends.  These data 

lead to a quadratic equation for the ratio λ on the next-to-last segment; the ratio applica-

ble to the last segment is then completely determined.  Thus there are either two, or one, 
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or no real geometric configurations corresponding to a given symbol.  There are also pos-

sibilities of unintended incidences similar to the ones we encountered earlier, hence we 

are in general talking about representations of the symbols, rather than realizations.  In 

case the parameters  λ1, λ2, … , λh-2  in a symbol m#(b1, b2, … , bh; b0; λ1, λ2, … , λh-2) 

are not relevant or not known, we abbreviate the symbol to m#(b1, b2, … , bh; b0).  

The example in Figure 2.9.4 presents a 3-chiral configuration with symbol           

9#(2,3,2;6;0.5).  The points of the three orbits are denoted by Bj, Cj, Dj.  The determina-

tion of the symbol is highlighted by the three-step characteristic path.  Note that the ratio  

λ1  can be chosen freely, and in the illustration it was taken as  λ1 = 0.5 = C0B0/B2B0.  

Once the first  h-2  ratios  λj  are chosen, the last ratio  λh-1  (determining the position of 

the point of last orbit on the penultimate diagonal) is determined by a quadratic equation.  

(For details see [B20].)  In the illustration we have  h = 3, hence  λh-1 = λ2  (which is 

about  2/3).  Naturally, the symbol is not unique since it depends, besides the λj's for  h ≥ 

3,  on the orbit of the starting point, and on the orientation chosen.  The influence of the 

parameter λh-2 is illustrated in Figure 2.9.5. 

 Using symbols like u, v, w, ... for elements of the different orbits of points, we 

can say that the h-chiral configurations considered so far have lines of type {u,u,v}, 

{v,v,w}, ... . But other possibilities exist in which the incidences of lines with orbits of 

the points are different.  For example, in case h = 3, it is possible to have three orbits of 

lines, all three of the type {u,v,w}, or else, one of the type {u,v,w} and the other two of 

types {u,v,v} and {u,w,w}.  Three example of the former variety are shown in Figure 

2.9.6, while examples of the second kind are illustrated in Figure 2.9.7; the diagrams in 

Figure 2.2.1 show the (93)2 and (93)3 configurations, which is of these two kinds.  A nota-

tion for the configurations in Figure 2.9.6 is explained in the caption.  An apparently con-

venient notation is proposed for the kind of configurations shown in Figure 2.9.7.  It as-

signs the first symbol to the line and the point that are incident with three orbits of the 

other kind, and the other symbols in the obvious manner. For the notation one conven-
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iently chooses the one that involves the smallest maximal parameter. No additional de-

tails about either of these kinds of configurations are available as of this writing. 

 Naturally, for  h ≥ 4  it is possible to imagine an increasingly large number of 

types of h-chiral configurations. However, so far nothing has been done in this direction. 

7#(1, 2, 3; 5; 0.6) 7#(1, 2, 3; 5; 0.8)

7#(1, 2, 3; 5; 0.2) 7#(1, 2, 3; 5; 0.4)

 

Figure 2.9.5. An illustration of the dependence of a 3-chiral configuration (213) on the 

parameter  λ1. 
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         (a)     3#[1,1,1;0]        (b)       7#[1,4,2;0] 
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             (c)      18#[2,-1,3;0] 

Figure 2.9.6.  Two examples of 3-chiral configurations in which every line meets all three 
orbits of points, and every point meets lines of the three orbits.  The characteristic path 
(which does not have to be closed) leads to a symbol for the configuration.  The configu-
ration in (a) is another realization of the Pappus configuration. With each we show a re-
duced Levi diagram. 
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Figure 2.9.7.  Examples of 3-chiral configurations in which each line of one orbit is inci-

dent with points of each of three orbits, while the other lines are incident with two points 

from one orbit and one point from another orbit. Each is accompanied by a reduced Levi 

diagram.  As symbols for these configurations we can use 4#[1,2;1,2], 5#[1,2;1,2] and 

7#[1,4;3,5].  The configuration 5#[1,2;1,2] appears in van de Craats [V1]. 

 h-dihedral configurations are unexplored as well. In Figures 2.9.8, 2.9.9 and 

2.9.10 are shown a few examples. The examples in Figure 2.9.8 are obviously typical of 

an infinite class of analogous constructions.  In Figure 2.9.9 only two orbits of points are 

shown, the points of the third orbit can be chosen at several distinct locations.  This kind 
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of configurations can obviously be generalized in a variety of ways.  Figure 2.9.10 illus-

trates the degree of complication possible with h-astral configurations for larger h. 

 
Figure 2.9.8. Two examples of 3-dihedral 3-configurations.  The one at left is another re-

alization of the Pappus configuration. 

 
Figure 2.9.9.  Adding an orbit of points at suitable intersections leads to several different 

3–dihedral configurations.  Notice that such configurations are, in fact, [3, 2]-dihedral. 
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Figure 2.9.10.  A [4,5]-dihedral configuration (403) found by L. Berman. 

 

 

Exercises and problems 2.9 

1. Decide whether the two configurations in Figure 2.9.3 are dual –– or even polar –

– to each other. Is either of them isomorphic to the (153) configuration in Figure 1.1.1? 

2. Determine the number of distinct ways in which it is possible to replace the points 

in Figure 2.9.9 in such a way that the result is a [3, 2]-dihedral configuration. 

3. By moving the outer vertices in Figure 2.9.8 along the mirror, a continuum of 

(projectively) distinct configurations can be obtained; all these are isomorphic.  Are there 

any analogous configurations (153) that are not isomorphic to the one in Figure 2.9.8 ? 

4. For h1 = 2 and h1 = 3, determine the possible values of h2 for which there exist 

[h1, h2]-astral configurations of the various kinds.  Provide examples for all existing 

types. 

5. Construct examples of 4-chiral configurations (n3) with the smallest  n.  Justify 

your answer.  Generalize. 



Math 583G Configurations Page 2.9.11 
 

 

Figure 2.9.11. Two (183)  3-chiral configurations. 

 

6. Determine the symbols of the two configurations is Figure 2.9.11. 

7. Verify that the Cremona-Richmond configuration (153) shown in Figure 1.1.1 is 

of the type represented by the examples in Figure 2.9.7.  Find its symbol. 

8. Find the criteria for the property of the first two configurations of Figure 2.9.7 

(but not the third) that there are only two orbits of points (and two orbits of lines) under 

automorphisms. 

 


