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2.8 ASTRAL 3-CONFIGURATIONS WITH DIHEDRAL SYMMETRY 
 GROUP 
 
 In contrast to the chiral astral configurations that –– in a certain sense –– are all 

formed alike, the dihedral ones come in several very different varieties. 

 The first variety consists of configurations that are astral in the extended Euclid-

ean plane but are not contained in the Euclidean plane itself; we shall refer to them as EE 

configurations.  It is clear that such configurations must have one orbit of points at infin-

ity, hence the other orbit of points needs to consist of the vertices of an isogonal polygon. 

In fact, the polygon must be regular.  Indeed, consider any point at infinity and the three 

lines incident with it, hence mutually parallel. Since there are only two transitivity classes 

of lines, two of these lines must be in the same orbit; this implies that the third line is 

situated between these two, and is in fact a mirror interchanging the two lines. Therefore 

the sides of the polygon contained in these lines are congruent, that is, the pairs of points 

are at equal distance apart.  But since each vertex must be on a third line (besides the two 

determined by the sides of the isogonal polygon), that line must be a mirror as well and 

therefore the adjacent sides of the polygon are of equal length. Hence the polygon is 

regular, and the configuration can be described as follows: 

 Theorem 2.8.1.  If  C  is an (n3) configuration of type EE, hence with dihedral 

symmetry group, that is astral in the extended Euclidean plane but is not contained in the 

Euclidean plane itself, then  n = 3m  for some m ≥ 3. The points of  C  are of the vertices 

of a regular (2m)-gon M and the  m  points at infinity in the directions of the  m  longest 

diagonals of  M.  The lines of C are the ones determined by the  m  longest diagonals of 

M, together with the 2m lines determined by pairs of points of  M  at span  m – j  for 

some 0 < j < m/2 with j ≡ m (mod 2).  The symmetry group of  C  is  d2m. 

 The EE configurations can therefore be characterized by a pair of integers  m  and  

j, and denoted by  EE(3m;m,j),  with  0 < 2j < m ≥ 3 and with j ≡ m (mod 2).  Several ex-

amples of EE configurations are shown in Figure 2.8.1. 
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EE(9;3,1)   EE(12;4,2) 

 
EE(15;5,1)   EE(15;5,3) 

Figure 2.8.1.  Examples of configurations of type EE.  In each case, points at infinity in 

the directions of the longest diagonals are indicated by the detached dots. 
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Figure 2.8.2.  The configuration EE(9;3,1) labeled with the symmetry group c6 (at left) 

and d6 (at right).  In both cases, the c points and the L lines are mapped onto themselves 

by halfturns. 
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Figure 2.8.3.  The reduced Levi graphs of configurations EE(3m;m,j). All labels are un-

derstood mod 2m. 

 
 The second variety of dihedral astral 3-configurations may be thought of as dihe-

drally doubled-up chiral astral configurations, and we shall call them DD configurations. 

The typical notation is m#(b,c;d;µ); it will be explained soon. The DD configurations re-

semble chiral astral configurations in many respects, but there is one large difference.  

 First, the difference.  The construction of chiral astral configurations starts with a 

set of points at the vertices of a regular polygon.  In the dihedral case, the  2m  vertices 

of any isogonal polygon can serve as starting points of a DD configuration ((4m)3).  Such 

vertices fall into two subsets of equal size, the  m  points in each subset being related by 

rotational symmetries of the whole set.  The two subsets of points are images of each 

other under reflective symmetries of the whole set.  The last entry  µ  in the symbol  

m#(b, c; d; µ)  of a dihedral astral (n3) configuration of type DD refers to the ratio (not 

exceeding 1) of the angles subtended by the sides of the isogonal (2m)-gon used in the 

construction. 

 Next, the similarities.  There are again –– naturally, in view of the definition of 

astrality –– two orbits of points and two orbits of lines.  Due to the presence of reflec-

tions, each orbit of elements has two suborbits, each suborbit consisting of  m  elements 

that are equivalent under rotations, without the need for reflections.  In the example 

shown in Figure 2.8.4, and in general, the points in the two suborbits of the first class are 
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denoted by Bj
+ and Bj

–, those in the second class by  Cj
+

  and Cj
–.  If b ≠ c, we shall usu-

ally assume  b > c.  The points Bj
+ and Bj

– are on endpoints of diagonals of span  b  of 

each of the two  m-gons determined by points of the suborbit, while Cj
+

 and Cj
– are on 

diagonals of span  c  of the other two m-gons.  One of the mirrors is the bisector of 

B0
+B0

–; it is indicated in Figure 2.8.4 by the dashed vertical line.  The Bj
+ and Bj

– points 

are obtained by rotation in counterclockwise orientation.  The construction of the con-

figuration  m#(b, c; d; µ)  proceeds as follows; it is illustrated in Figure 2.8.4, where  m = 

5, b = 2, c = 1, d = 1, and µ = 0.6.  

 B0
+ and Bb

+ determine the line L0
+ and the point C0

+, which divides the segment  

B0
+Bb

+  in a ratio λ; this ratio is fixed throughout the construction, but still undeter-

mined.  More generally, Bj
+ and Bj+b

+ determine Cj, clearly with the same ratio  λ.  Then 

the line M0
+ in determined by C0

+ and Cc
+; it passes through Bd

–, and more generally, 

Cj
+ and Cj+c

+ determine the line Mj
+ that is incident with Bj+d

–. This requirement de-

termines the value of λ through a quadratic equation.  In turn, the line Ld
– through  Bd

– 

and Bd-b
– passes through Cd, and finally Cd

– and Cd–c
– are collinear with B0 on the line 

Md
–.  As always, the subscripts are understood to be modulo m.  These requirements can 

all be met simultaneously, due to the symmetry of the sets of points involved. 
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Figure 2.8.4.  A dihedral astral configuration (203), with symmetry group d5.  The label-
ing illustrates the description given in the text.  The configuration has symbol 5#(2,1; 1; 
0.6). 
 
 As in the case of chiral astral configurations, the construction leads to a quadratic 

equation for λ.  Again, the various possibilities and properties encountered with the chiral 

astral configurations (n3) are largely present.  In particular, depending on the values of the 

parameters m, b, c, d, µ  of the configuration m#(b, c; d; µ), there can be two, one, or no 

real solutions.  Moreover, for suitable values of these parameters the resulting construc-

tion leads to superfigurations.  However, there has been very little done on a systematic 

investigation of the DD configurations.  Several additional examples of such configura-

tions and a case of superfiguration are shown in Figures 2.8.5 and 2.8.6. 

 There is no information available concerning the range of values of  d  for given  

m, b, c  and  µ,  or concerning the possible values of  λ  for given  m, b, c, d, µ.  Equally 

missing is any knowledge concerning duality, polarity, selfduality and selfpolarity of DD 

configurations. 
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 As with chiral astral configurations, the reduced Levi diagrams for dihedral astral 

3-configurations are very simple and straightforward. This is illustrated in Figure 2.8.7, 

which demonstrates the mutual reinforcing of the notation introduced above, and the 

graphs. 
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Figure 2.8.5.  Two dihedral astral configurations (283).  To reduce clutter, only the labels 

needed for the determination of the symbol are shown. (a) 7#(3,2;1;1.0) (b) 7#(3,2;4;1.0). 

 
Figure 2.8.6.  For a value of µ close to 0.5, the construction of the configuration 

7#(4,3;1;µ) leads to a superfiguration: there are unintended incidences, yielding points on 

four lines and lines through four points. 
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Figure 2.8.7.  The reduced Levi graph of the dihedral astral configuration  m#(b,c;d;µ).  

The construction of the graph follows the method given in Section 1.6, based on the la-

beling of these configurations described above and illustrated in Figures 2.8.4 and 2.8.5.  

If the inclusion of the parameter in the graph is desirable, it can be attached to the 0 on 

the edge going from L± to c±. 

 First examples of the third variety of dihedral astral 3-configurations were discov-

ered only last year, and appear in the paper [B11] by L. W. Berman and J. Bokowski.1  

We shall designate all configurations of this variety by BB with appropriate parameters 

attached.  Any BB configuration  (n3)  has  n = 3m  for an integer  m ≥ 5.  The configura-

tion depends on two other parameters which we call  s  and  t.  The meaning of these pa-

rameters will be explained as we describe the construction of the configuration  BB(m; s, 

t).  We shall illustrate the construction in the case of BB(5; 2, 2), see Figure 2.8.8, but use 

general terms in the explanation of the steps. 

 The first step (Figure 2.8.8a) is the construction of a regular m-gon  P, and select-

ing the midpoints of its sides; these midpoints are  m  of the points of the configuration, 

and the lines  Lj  determined by the sides of the  m-gon are  m  of the lines.  (The vertices 

of the m-gon play no added role in the construction, and are not marked in Figure 2.8.8.) 

 The second step (Figure 2.8.8b) is the selection of a chord of  P  of span  s,  and 

constructing the circumcircle  C  of the triangle determined by the endpoints of the chord 

and the center of  P.  The  parameter  s  needs to be in the range  2 ≤ s < m/2. 

                                                
1  I had the privilege of receiving a preprint of this paper from the authors. 
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(a)       (b) 

              
(c)       (d) 
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Figure 2.8.8.  The steps in the construction of the configuration BB(5;2,2). 
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(a)       (b) 

Figure 2.8.9.  Illustration of the possibilities in the third step of constructing configura-

tions BB(10; s, t).  In part (a)  s = 3 and  t  is either 2 or 3.  In part (b)  s = 4  and  2 ≤ t ≤ 

6. 

 
 The third step (Figure 2.8.8c) consists in determining the intersections of the cir-

cle  C  with the lines  Lj  constructed in the first step.  These intersection points always 

came in symmetric pairs.  In case  m = 5 (hence s = 2) there is only one such pair; the ex-

amples in Figure 2.8.9 show other possibilities.  There are always at least  s–1  pairs,  and 

no more than  2s – 3.  The precise number depends on  m  and  s  in a manner that has not 

been explicitly determined. 

 In the fourth step (Figure 2.8.8d) a selected pair of these intersection points is 

connected by lines with the endpoints of the chord of span  s  with which we started in 

the second step. (To avoid clutter, in Figure 2.8.8d each point of the pair is connected 

with only one endpoint of the chord.)  The parameter  t  is the label that can be given to 

the pairs, counting from the endpoints of the chord. 

 The fifth and final step (Figure 2.8.8e) consists in creating the images of the cho-

sen pair of points and the lines generated in the previous step, by rotations about the cen-

ter of the polygon P through all the multiples of 2π/m. 

 Some remarks about the BB configurations.   First, just as in the case of the DD 

configurations (and the chiral astral ones), in some instances the construction does not 

yield the expected configuration; instead a superfiguration is obtained.  This is illustrated 
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in Figure 2.8.10.  Also, the precise relations between the parameters of a BB configura-

tion have not been determined so far.  This is illustrated in Table 2.8.1, which shows the 

(experimentally determined) maximal value of  t  for given  m  and  s. 

 
        s 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
m_____________________________________________________________________ 
 5 2 
 6 2 
 7 2 3 
 8 2 3 
 9 2 3 6 
 10 2 3 6 
 11 2 3 6 7 
 12 2 3 4* 7 
 13 2 3 4 7 10 
 14 2 3 4 7 8 
 15 2 3 4 7 8 11 
 16 2 3 4 7 8 11 
 17 2 3 4 7 8 11 12 
 18 2 3 4 7 8 9 12 
 19 2 3 4 7 8 9 12 15 
 20 2 3 4 7 8 9 12 13 
 21 2 3 4 7 8 9 12 13 16 
 22 2 3 4 7 8 9 12 13 16 
 23 2 3 4 7 8 9 12 13 16 19 
 24 2 3 4 7 8 9 10* 13 14 17 
 25 2 3 4 7 8 9 10 13 14 17 20 
 26 2 3 4 7 8 9 10 13 14 17 20 
 27 2 3 4 7 8 9 10 13 14 17 18 21 
 28 2 3 4 7 8 9 10 13 14 17 18 21 
 29 2 3 4 7 8 9 10 13 14 15 18 21 22 
 30 2 3 4 7 8 9 10 13 14 15 18 19 22 
 31 2 3 4 7 8 9 10 13 14 15 18 19 22 25 
 32 2 3 4 7 8 9 10 13 14 15 18 19 22 25 
 33 2 3 4 7 8 9 10 13 14 15 18 19 22 23 28 
 34 2 3 4 7 8 9 10 13 14 15 18 19 22 23 26 
 35 2 3 4 7 8 9 10 13 14 15 18 19 22 23 26 29 
 36 2 3 4 7 8 9 10 13 14 15 16* 19 20 23 26 29 
 37 2 3 4 7 8 9 10 13 14 15 16 19 20 23 24 27 32 
(*) One of the lines is tangent to the circle at its intersection with another line. 
Table 2.8.1.  The maximal values of  t  for given  m  and  s  in configurations  BB(m; s,t). 
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 The BB configurations considered in [B11] are presented in a way tyat is some-

what different from the one followed here. The Berman-Bokowski construction corre-

sponds to the cases of even  s  only, and uses only that pair of intersection points which 

arises by the intersection of the circumcircle with the line parallel to the chord used to 

construct the circle.  This pair is in general the "middle" pair in the third step of our con-

struction. 

 Another phenomenon –– again shared by other classes of configurations –– is the 

possibility of the configuration being disconnected.  This happens, for example with the 

configuration BB(16; 6,6) shown in Figure 2.8.11. 

 
Figure 2.8.10.  An example of a superfiguration arising in the construction of a BB type 

configuration with  m = 12 and s = 4. 
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Figure 2.8.11.  In the case of BB(16; 6, 6) the construction leads to a disconnected con-

figuration. The two connected components are shown in different colors; each is BB(8; 3, 

3).  

 

 While the construction procedure seems to be working in the examples given 

above, there is an obvious need for justification in the general case.  It is, in fact, quite 

simple; we explain it for the configuration BB(m; s, t) by using the notation in the illus-

trative example shown in Figure 2.8.12, where  m = 9, s = 3, and t = 3.   

 The chord of span  s  (used to generate the circumcircle  K)  spans an angle of 

2πs/m at the center  O  of  K.  The line CB*, the legs of the isosceles triangle generated 

by the chord and O, and the segment OC are all well determined. Rotating this complex 

and the circle K about O through an angle of  2πs/m  brings K to K*, CB* to C*B, and 

OC to OC*.  The five angles denoted  γ  are all equal to each other because they are either 

basis angles of isosceles triangle, or spanned by congruent arcs of  K.  Hence the basis 

CC* of the isosceles triangle COC* encloses with the segment OC* the same angle  γ  as 

the line through C*B; hence that line passes through C, which justifies the construction. 
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Figure 2.8.12.  The validation of the construction of the BB configurations. 

 

 It should be noted that the procedure used to justify the construction dealt exclu-

sively with the green lines.  This leaves open the possibility to use a different value of  t  

for the red lines.  Naturally, the resulting configuration will not be astral. 

 Another point that needs to be made is the following.  For each  s,  the set of val-

ues of  t  possible is a (non-strictly) decreasing function of  m.  The experimental results 

in Table 2.8.1 are a consequence of reasonably complicated trigonometric relations.  The 

main problem in this context is to determine the maximal value of  t  possible in a 

BB(m; s,t) configuration.  From numerical evidence (see Table 2.8.2) it seems that this  

tmax  grows approximately as  7s/5  for sufficiently large  m,  although this appears a 

strange dependence. 
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Figure 2.8.13.  The labeling of BB configurations, and the resulting reduced Levi graphs. 

The graph at right corresponds to the general configuration BB(m; s, t); the asterisk indi-

cates that no definite relation to the parameters has been found so far. 
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 s tmax For  m ≥  s tmax For  m ≥  
––––––––––––––––––––––– ––––––––––––––––––––––– 
 2 2 5 21 29 72 
 3 3 7 22 30 90 
 4 4 12 23 31 127 
 5 7 11 24 32 372 
 6 8 14 25 35 84 
 7 9 18 26 36 99 
 8 10 24 27 37 125 
 9 11 42 28 38 183 
10 14 24 29 41 95 
11 15 29 30 42 110 
12 16 36 31 43 131 
13 17 50 32 44 167 
14 18 92 33 45 256 
15 21 41 34 48 121 
16 22 48 35 49 139 
17 23 61 36 50 167 
18 24 84 37 51 217 
19 25 78 38 52 335 
20 28 60 39 55 149 
    40 56 172 
 
Table 2.8.2.  The largest value  tmax  of  t  possible in configurations BB(m; s, t)  for a 
given  s  and for all sufficiently large  m. 
 

Exercises and problems 2.8. 

1. Determine what symbol could result for the configuration in Figure 2.8.4 if the 

role of B0
+ and B0

–  were reversed, while still assuming conterclockwise orientation.  

2. Determine what symbol could result for the configuration in Figure 2.8.4 if the 

role of the B-points and the C-points were reversed, while still assuming conterclockwise 

orientation.  

3. Verify the assignment of symbols to the configurations in Figure 2.8.5. 

4. Formulate a general criterion for the configuration BB(m; s,t) to be disconnected. 

5. Draw all the different configurations BB(11; 5,t). 

6. How many different configurations 4#(b, c; d; 0.3) are there? 
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7. Find some restrictions on the parameters of the DD and BB kinds of astral con-

figurations. 

8. Find disconnected configurations m#(b, c; d; µ). 

9. Find a geometric construction for configurations m#(b, c; d; µ). 

 
Figure 2.8.14. Two dihedral astral 3-configurations. 

 

10. Find the symbols for the configurations in Figure 2.8.14. 


