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2.7 ASTRAL 3-CONFIGURATIONS WITH CYCLIC SYMMETRY GROUP 

 

 We have seen in Section 1.5 that a 2-astral 3-configuration must have two orbits 

of points and two orbits of lines.  By the convention introduced there we simplify the ex-

pressions and call such configurations astral, for short. 

 Lemma 2.7.1.  If an astral 3-configuration has one orbit of points at infinity, it 

must have reflective symmetries. 

 Proof.  If such a configuration has no reflective symmetries, then the orbit of 

points in the finite plane has to coincide with the vertices of a regular polygon; the only 

alternative would be that they are the vertices of an isogonal polygon – but their equiva-

lence requires reflection.  Each of the points at infinity is on three lines, two of which are 

in the same orbit.  Even if these two are related by a rotational (halfturn) symmetry, they 

must be parallel and of the same length, and by the rotational symmetry the third line 

parallel to them must pass through the center of the polygon.  Thus all lines come in trip-

lets of parallel lines, the middle one serving as mirror for the other two; these mirror lines 

are spaced at equal angles, hence they are mirrors of the configuration.  Hence we again 

are led to reflective symmetries. � 

 As a consequence of Lemma 2.7.1 we see that astral configurations (n3) that have 

a cyclic group of symmetries are necessarily configurations in the Euclidean plane.  As-

tral 3-configurations with a cyclic group of symmetries and no mirrors will be called 

chiral. (Note that this does not mean that all astral configurations contained in the 

Euclidean plane have a cyclic group of symmetries. We shall consider those with dihedral 

symmetry in Section 2.8.)  The points of a chiral astral configuration are at the vertices of 

two concentric regular polygons with m = n/2 vertices each; the polygons clearly have 

different sizes.  As we shall show next, such 3-configurations depend (up to similarity) on 

three additional integer parameters.  The notation we shall use for these configurations is  

m#(b,c;d); a detailed explanation follows, and an illustration is given in Figure 2.7.1. 
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 The lines of one geometric transitivity class are the diagonals of one of the poly-

gons, those of the other class are diagonals of the other polygon; each line of the configu-

ration contains two points of one polygon and one of the other.  The numbers of edges of 

the polygons bridged (spanned) by the diagonals are the integers  b  and  c  of the symbol; 

usually we shall follow the convention that  m/2 > b ≥ c > 0, but the relative size of b and 

c is not of intrinsic importance and it is sometimes convenient to disregard the conven-

tion.  The corresponding points (vertices) are accordingly called the  b-points resp.  c-

points, and the lines are  b-lines and  c-lines.  Starting from an arbitrary  b-point  denoted  

B0,  and proceeding in an arbitrary orientation we label the other  b-points consecutively  

B1, … , Bm-1.  Each  b-line is then of the form Li = aff(Bi, Bi+b), and it contains a c-point 

which we label Ci.  The  c-line that passes through  C0  determines the labeling of the  

c-lines.  In the orientation of the  c-points which is induced by the orientation chosen for 

the  b-points, the earlier point of that  c-line is C0,  and the later accordingly is  Cc.  The 

remaining  c-points are then labeled in the obvious way; the c-lines are labeled by Mi = 

aff(Ci, Ci+c), .  Here and throughout, all subscripts are to be understood  mod m.  From a 

given  (n3)  configuration of the kind considered, the values of  m,  b  and  c  can be read 

off instantly.  Now we can find a tentative determinations of the symbol  d  in the nota-

tion  m#(b,c;d) for the configuration.  We consider the b-point that is incident with the c-

line M0 = aff(C0, Cc); like all b-points, it already carries a label.  This label we take as the 

value of  d  in the preliminary symbol of the configuration. 

 The value of  d  in the final symbol requires a comparison of two possibilities.  

One is what we have just described, and the other is obtained in the same way but going 

in the opposite orientation around the b-polygon.  As the final symbol  m#(b,c;d)  for the 

configuration we shall generally choose that one of the alternatives which has the smaller 

value of  d.  As is easily verified, the two values of  d  add up to  b+c;  hence we may as-

sume that  d ≤ (a+b)/2, which means that in fact only one of the determinations has to be 

carried out.  If it yields such a value of  d  we take it, otherwise we subtract it from  b+c  

to get the correct value of  d.  This is illustrated by the examples in Figure 2.7.2. 
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Figure 2.7.1. An example of the labeling and designation of a chiral astral configuration. 
Following the explanations in the text, this is configuration 8#(3,2;1). 
 
 While our conventions assign a unique symbol to each astral (n3) configuration, 

the converse is not valid. In general, two configurations are represented by the same sym-

bol  m#(b c; d).  They differ by the ratio of the radius of the circle of  c-points to that of 

the  b-points;  the one with smaller ratio is denoted by a single tag  ', the other one by 

double tags ''. This is illustrated in Figure 2.7.3. Another way of distinguishing the two 

configurations is by specifying the ratio in which the point C0 divides the segment B0Bb; 

this information is very useful for drawing the configuration, as well as for determining 

which symbols are possible. 
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Figure 2.7.2. Additional examples of labeling astral (n3) configurations. The one in the 

upper row has symbols 7#(3, 2; 4) and 7#(3, 2; 1), so the latter is the one conventionally 

accepted.  The configuration in the bottom row has symbols 11#(5, 1; 10) = 11#(5, 1; –1) 

since all subscripts can be taken (mod n) and 11#(5, 1; 7). Hence the conventional sym-

bol is 11#(5, 1; –1). 

 However, in cases in which either  b = c  or  2d = b + c the symbol  m#(b, c; d)  

represents only a single configuration.  Examples of these situations are shown in Figure 

2.7.4, for the symbols  6#(2, 2; 1)  and  11#(5, 1; 3).   

 If the highest common factor of  m, b, c, d  is  f > 1, then the configuration 

m#(b,c;d)  is not connected, but consists of  f  copies of the configuration  m/f#(b/f, c/f; 

d/f) .  However, exceptions to all the above happen when there are additional “accidental”  
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Figure 2.7.3.  The two astral configurations with common symbol 7#(3, 2; 1). The one on 

the left is specified by 7#(3, 2; 1)', the other one by 7#(3, 2; 1)''. 

incidences.  For example, an attempt to draw the configuration  12#(5, 1; 3)  leads to the 

superfiguration shown in Figure 2.7.5a; it has additional incidences and is, in fact, a con-

figuration (244).  In Figure 2.7.5b we show how sensitive the situation is with respect to 

correctly drawing the configurations – a seemingly legitimate configuration does not 

really exist.  On the other hand, Figure 2.7.5a can be interpreted as a representation of the 

configuration 12#(5,1;3), as well as a representation of configurations 12#(5,1,-1),  

12#(4,4;1)  and  12#(4,4;2).  Figure 2.7.5b serves to illustrate a topological realization of 

the configuration 12#(5,1;-1). 

 A different type of unintended incidences is illustrated by the example in Figure 

2.7.6.  Here the result is a collection of points and lines which is not a configuration un-

der the definitions we adopted at the beginning, since some lines (but not all) are incident 

with four points, and some points with four lines. 

 Disregarding the possible presence of unintended incidences, how does one get 

from the symbol to a drawing, and how does one decide whether a symbol corresponds to 

any configuration?  For the answer to both parts of the question, we can proceed either 

algebraically or geometrically. 
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Figure 2.7.4.  Astral configurations which are examples of the case in which only a single 
configuration corresponds to its symbol, here  6#(2, 2; 1) and 11#(5, 1; 3). 

 In the algebraic approach, given a symbol  m#(b, c; d)  we start with the vertices 

of a regular m-gon, and draw all diagonals of span  b  (or their extensions, if needed).  

Points of the other orbit will be the vertices of another regular m-gon, situated on the di-

agonals of the first one.  Their location is determined by the ratio which, in the notation 

of Figure 2.7.1, is given by the still undetermined ratio of lengths  λ = B0C0/B0Bb.  The 

position of  Cc  is determined by the same ratio, since  λ = BcCc/BcBb+c.  Now, the line  

C0Cc contains the point  Bd  of the first orbit.  Hence, writing the collinearity condition in 

terms of a determinant, involving the variable λ and the known coordinates of the B 

points, yields a quadratic equation for λ.  Depending on whether there are two, one, or no 

solution in real numbers we obtain the pair of isomorphic configurations, a single con-

figuration, or no configuration at all.  Thus the complete characterization of possible 

symbols is, in principle, determinable by the non-negativity of the discriminant of that 

quadratic equation.  In any particular case, the software used (various versions of 

Mathematica® on different Macintosh computers) had no problem finding the value(s) of 

λ, and then drawing the configuration(s).  However, no amount of effort, on the computer 

or manually, was successful in explicitly describing the necessary and sufficient condi-

tions on the integer parameters  m, b, c, d  for the existence of the configurations.  The  
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(a)      (b) 

Figure 2.7.5.  The diagram in (a) is supposed to show the configuration 12#(5,1;3); how-

ever, additional incidences turn it into an astral (244) configuration which, by the conven-

tions we shall specify in Section 3.5, has the symbol 12#(5,4;1,4).  Note that the same 

(244) configuration results when drawing any of 12#(5,1,-1),  12#(4,4;1)  and  12#(4,4;2). 

The first of these is illustrated by the pseudoline configuration in (b).  Note that these are 

actually straight lines, but that their incidences are faked (ever so slightly).  For a differ-

ent presentation of these cases see Figure 5.8.1 and the explanations given there. 

 

best I could do is to deduce several necessary conditions from many specific cases, and 

from an argument to be described below.  In any case, the known conditions for a symbol 

m#(b, c; d) are as follows (this includes the notational conventions introduced earlier): 

0 < c ≤ b < m/2 

2[(b + c – m)/2] ≤ c – b +1 ≤ 2d ≤ b + c 

0 ≠ d ≠ c 

2 cos(bπ/m) cos(cπ/m) ≤ 1 + cos((b + c – 2d)π/m) 
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 While the use of calculational and graphic capabilities of appropriate software 

(Mathematica, Mathlab, Maple, and others) enables one to find out whether a symbol 

leads to a configuration, it is of same interest to note that geometric means can yield the 

same result.  In fact, if the vertices of a regular  m-gon are given, the configurations  

m#(b, c; d)  can be drawn with just the classical Euclidean tools.  (Naturally, the con-

struction of the regular  m-gon may or may not be possible with Euclidean tools, depend-

ing on the value of  m.)  Here is how the construction proceeds, illustrated for  m#(b,c;d) 

= 11#(5,1;2)  by the steps in Figure 2.7.7. 

• (a) Draw the lines determined by the diagonals of span  b = 5; this yields a 

regular polygon  P  of type {m/b}. 

• (b) Construct the isosceles triangle T determined by two vertices V1 and V2 of 

P, that are separated by span  c = 1,  and the center O of  P. 

• (c) Construct the circumcircle C of the triangle T described in (b). 

• (d) Label the sides of the polygon  P.  We label "0" the two lines of P that 

touch  T at V1 and V2,  but do not go through the interior of  T.  The other lines of   

 
Figure 2.7.6.  A drawing of the astral configuration 12#(3, 3; 1) shows unintended 

incidences.  The resulting family of points and lines is not a configuration according to 

our definitions; it is a superfiguration.  In fact, by ignoring some incidences, it could be 

interpreted as a representation of the astral configuration 12#(3, 3; 1). 
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P  are numbered by their sequence at the central convex m-gon determined by 

these lines.  The sides closer to the center of C are labeled "1", "2", ... in order, the 

ones farther from the center of C are labeled "-1", "-2", ... . 

• (e) Find the intersection points of the lines of P with the circle C. 

 
(a)     (b) 
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(c)     (d) 

Figure 2.7.7 (first part). The geometric construction of the configuration 11#(5,1;2). 
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• (f) Label these intersection points by the labels of the lines. 

• (g) Select one of the points labeled d = 2, and draw the line connecting it with 

one of the points V1, V2. 

• (h) Rotate through all the multiples of  2π/m = 2π/11 the point chosen in (g) 

and the line constructed there.  A configuration  m#(b,c;d) = 11#(5,1;2) is ob-

tained. 
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(g)     (h) 

Figure 2.7.7. (second part) 
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• (i) The same construction as in (g) and (h), but with the other point labeled    

d = 2, yields the other configuration 11#(5,1;2).  The remaining possibilities of 

pairing a point labeled "2" with the other Vj yield configurations congruent to the 

ones in (h) and (i). 

• (j) An analogous construction but with a point labeled "3" yields the configu-

ration 11#(5,1;3).  As we shall see in Section XY this configuration is selfpolar. 

 Naturally, these constructions need justification, which we shall provide below.  

However, it is appropriate to recall that establishing results by using graphical means can 

be rigorously justified; see, for example, [M19]. 

 The reasoning follows the above method of construction, and is illustrated in Fig-

ure 2.7.8 by the example of the configuration 11#(4,3;2).   
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(i)     (j) 

Figure 2.7.7. (third part). 

 

 The triangle  O V2 V1 is isosceles. The angle O V(2) V1 equals the angle O V2 

V1 since both are peripheral angles over the same arc O V1.  Let  X be the point on the 

ray V(2) V1 such that the angle V(2) O X equals the angle V2 O V1.  Then the triangle O 

X V(2) has correspondingly equal angles with the triangle O V1 V2, hence is similar to it.  
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Therefore it is also isosceles, so OX has the same length as OV(2) and is thus on the cir-

cle centered at O and with radius OV(2).  As the angle  V(2) O X  is the same as the an-

gle V2 O V1, which spans a diagonal of span  c = 3  of the m-gon (m = 11), it follows 

that follows that  V(2) X spans the same diagonal on the m-gon determined by the rotates 

of V(2).  The existence of the configuration  m#(b,c;d) = 11#(4,3;2) is established. � 
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Figure 2.7.8.  Starting with the {11/4} polygon (black points and lines), the configura-

tions 11#(4,3;2) is constructed by the method described above. 

 

 Using the description of the determination of the symbol m#(b,c;d) of an astral 

configuration (n3) it is immediate that the reduced Levi graph is as shown in Figure 2.7.9.  

The simplicity of the reduced Levi graph of such a configuration can be interpreted as the 

source of the usefulness of such graphs, but it also serves to indicate that the encoding of 

such an astral configuration by our symbol is natural and not arbitrary. 
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Figure 2.7.9.  The reduced Levi graph of an astral configuration m#(b,c;d); the notation is 

analogous to the one used in Figure 2.7.1. 

 

 Astral 3-configurations of were first defined in [G39], but isolated examples occur 

in earlier publications.  The first seem to be by Zacharias [Z4]; he shows examples of as-

tral (103), (123) and (143) configurations and comments on their star-like appearance, but 

reaches no general conclusions or constructions.  Similarly, van de Craats [V1] shows the 

astral (103) and notes various interesting properties associated with it; he also shows an 

astral (143), and mentions that analogous astral (n3) can be found for all n = 2m+2, where 

m ≥ 2.  Several other examples can be found in [B19], as well as in [G46]. 

Exercises and problems 2.7. 

1. Derive explicitly the quadratic equation for λ mentioned in the text in the case of 

9#(4,2;3), and use this to draw this configuration using suitable software. 

2. Derive explicitly the quadratic equation for λ in the general case m#(b,c;d), and 

try to find criteria on these parameters that will imply that the solutions of the equation 

are real. 

3. Use the geometric construction to draw the configuration 9#(4,2;3). 
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4. Show that the configurations 12#(5,1;2) and 12#(5,1;4) are congruent.  Explain 

this, and generalize.  

5. The configuration 5#(2,2;1) has a cyclic automorphism group that acts transitively 

on its points and lines.  Describe this group, and determine whether it acts transitively on 

the flags of the configuration. 

6. The automorphisms group of the astral chiral configurations  5#(2,2;1) is transi-

tive on its points.  Find other astral chiral configurations with this property. Can you 

characterize all such configurations? 


