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2.5 STEINITZ’S THEOREM – THE COMBINATORIAL PART 
 
 

As we have seen in previous sections, the question whether a given combinatorial 

(or topological) 3-configuration can be geometrically realized is very hard. This is the 

reason the 1894 PhD thesis of Ernst Steinitz [S17] is remarkable in its generality: Al-

though Steinitz fails in completely characterizing the realizability of combinatorial or 

topological 3-configurations, he come as close to doing so as anybody since then. 

Steinitz's claim (in our terminology).  Every connected combinatorial 

3-configuration (n3) has a geometric realization by points and lines as a #1-subfiguration 

in the Euclidean plane; moreover, the point and line of the ignored incidence can be arbi-

trarily chosen. 

Recall from Section 1.3 that a #1-subfiguration of a combinatorial configuration 

is a family of points and (straight) lines that satisfies all the incidence requirements ex-

cept possibly one that is ignored, and has no additional incidences. 

In the next section we shall see that this claim is not correct. However, even the 

weaker result that Steinitz’ arguments actually establish (see Theorem 2.6.1) is remark-

able in several ways.  Steinitz’ proof has two parts, a combinatorial and a geometric. The 

combinatorial part is correct, and was much ahead of its time. However, the geometric 

part is defective; we discuss this in the next section.  We start with the combinatorial part 

of Steinitz' theorem, and first recall from Section 1.3 a useful definition. 

 A configuration table for a combinatorial configuration is said to be orderly if 

every row of the table contains all the points (hence contains each precisely once).  For 

example, the configuration table in Table 2.1.1 is orderly, and the configuration tables in 

Sections 1.3 and 2.2 are not orderly. 

 The following is a basic result, due to Steinitz [S17].  

 Theorem 2.5.1. Every combinatorial k-configuration admits an orderly configura-
tion table. 
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A statement that Theorem 2.5.1 holds for  k = 3  appears in Martinetti [M2], with-

out any justification or hint of proof.  The majority of later writers do not mention the re-

sult – much less its proof – although many seem to accept it as selfevident.  On the other 

hand, the statement in Page and Dorwart [P1] regarding this result is incorrect, as are the 

consequences deduced by them from the erroneous statement.  It is interesting, as 

stressed by Gropp [G26], that Steinitz’s result is very well known in combinatorics, but 

under a different name and credited to other people.  It is considered a part of the branch 

of combinatorics called matching theory.  (For this discussion, a  matching in a graph is a 

collection of disjoint edges that contain all the nodes.) In this guise Steinitz's result from 

1894 was independently discovered by König [K13] in 1916; in modern terminology 

König's theorem can be formulated it as: Every bipartite graph having all nodes of the 

same valence has a matching.  This statement is completely equivalent with Theorem 

2.5.1, although neither König nor many later writers seem to have been aware of 

Steinitz’s theorem.  In still another guise, Steinitz’s theorem has been generalized by the 

theorem of P. Hall [H1] in 1935 concerning the existence of systems of distinct represen-

tatives.  For details and proofs see, for example, Roberts [R5, Chapter 12] or Brualdi 

[B29, Chapter 9].  None of these authors is aware of Steinitz either, although the idea of 

Steinitz’s proof is central to the topic. 

 We shall start by presenting a proof of this result, and then discuss some of its 

corollaries.  Our proof is modeled after Steinitz's presentation, but using what I hope is a 

better notation. For easier understanding of the proof, a worked-out example is given 

later in the section.  Except for the names of the points and lines, the steps in the example 

are precisely parallel to those of the proof.  In contrast to most of the proofs of the equi-

valent results mentioned in the preceding paragraph, Steinitz's proof is constructive; it 

can be used to find effectively an orderly configuration table, convenient for geometric 

constructions.  We shall see such an application in Section 5.2. 

 Given a fixed combinatorial configuration  (nk),  the first goal is to define a 1-to-1 

correspondence between points and lines such that each point is incident with (that is, is 

contained in) the corresponding line.  If we have such a correspondence the first step in 

the proof is complete.  We can certainly start constructing the correspondence by a 
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greedy algorithm: We pick an arbitrary point and pair it with one of the lines that are in-

cident with it; then we chose a point not on this line, and assign it to one of the lines con-

taining it, then a point on neither of these lines, etc.  Continuing with such a selection as 

long as possible, we find ourselves at the end in the following situation (adjusting the no-

tation as appropriate and convenient): 

 The points in a subset A  = {a1, a2, ... , ap}  of the set of configuration points have 

been assigned to the lines of the subset A  = {A1, A2, ... , Ap}  of the set of configuration 
lines, so that  aj ∈ Aj   for   j = 1, 2, ... , p.  We can assume that  p < n,  since otherwise 

we would be done with the first part of the proof.  Hence there is a set B  = {b1, b2, ... , 

bq}  of points of the configuration, and a set B  = {B1, B2, ... , Bq}  of lines of the configu-
ration, such that no point in  B   is incident with any line in B ;  clearly,  q = n – p.  Now 

we shall describe a procedure by which we shall change some of the assignments be-
tween points in A  and lines in A , so that it will be possible to modify and extend the as-

signment to include one point in B  and one line in B . 

 Let  B  be an arbitrarily chosen line in B ,  and let A0  be the subset of A  consist-

ing of the points of  B.  We denote by A0  the set of lines in A  that are associated with the 
points of A0.  Let A1 ⊆ A  \ A0  be the set of points of A  not in A0  that are on lines of 

A0,  and let  A1  be the set of lines associated with the points in A1.  Next, let A2 ⊆     

A \(A0 ∪ A1)  be the set of points of A  not in A0 ∪ A1  that are on lines of A1,  and let 

A2  be the set of lines associated with the points in A2.  We continue with assignments of 

this kind till we reach an  r  such that A r+1 is empty.  This clearly has to happen due to 

the finiteness of the configuration.  Let now A* = A0 ∪ A1 ∪  ... ∪ A r and A** = A \A*.  

Note that A* is the disjoint union of the sets A0, A1,  ... , A r.  Let  A*  and  A**  be the 

sets of lines associated with the points in A* and A**, respectively. 

 We now pick a line  L0 ∈ A0 ∪ A1 ∪  ... ∪ A r  such that  L0  is incident with at 
least one point  b  of B ,  so that  b ∈ L0.  (Such a line always exists, by a simple counting 

argument that will be given below.)  Let  p0  be the point of A*  that corresponds to  L0;  

then  p0  belongs to a well-determined set A s  for some  s ∈ {0, 1, ... , r}.  Then  p0 ∈ L1  

for some  L1 ∈ As-1, and let  p1  be the point of As-1 that corresponds to  L1.  Continuing 
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in this way we reach a line  Ls ∈ A0  and the corresponding point  ps ∈ A0.  Finally, 

there is a line  B ∈ B  such that  ps ∈ B.  Notice that we have the chain of incidences and 
correspondences 

b ∈ L0 ↔ p0 ∈ L1 ↔ p1 ∈ ... ∈ Ls ↔ ps ∈ B. 

Next, we change for the points of this chain the assignments with which we started by 

making  b  correspond to  L0,  p0  to  L1,  ps-1  to  Ls,  and  ps  to  B.  Thus we have now a 

new 1-to-1 correspondence which decreased the size of the sets  B   and B .   

 Repeating the procedure a finite number of times leads to an assignment of every 

point of the configuration to a line that is incident with it; this completes the first step of 

the proof, except for the demonstration of the assertion that we always can pick a line    

L0 ∈ A*  which contains a point of B .  If this were not the case then all points of B  

would  have to belong to A**, since they do not belong to lines in B  either.  But this is not 

possible, since the cardinalities of A**  and A**  are the same due to the correspondence 

established at the beginning, and all incidences of points in A** are with lines in A**  

and vice versa –– implying that no line in A**  can be incident with any point of B . 

 For the second step we rewrite the configuration table in such a way that for each 

line (that is, each column) the point assigned to it is in the first row.  Then the first row 

contains all the points, each once.  The other rows of the configuration table form now a 

configuration  (nk-1),  for which we repeat the steps we just did for the original configu-

ration.  Continuing in this way, we clearly reach an orderly configuration table in a finite 

number of steps. �  

 It may be mentioned that when we have only two rows to deal with, a simple in-

terchange of the order of the entries in some columns may be used instead of the more 

complicated procedure used in the general case. 

We next illustrate the algorithm used in the proof of Theorem 2.5.1 by an exam-

ple, the construction of an orderly configuration table for the combinatorial configuration  

(144)  given below. 
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 A B C D E F G H J K L M N  P . 

 a a a a b b b c c c d d d e 
 b f g h g h e h e f e f g f 
 c k n p k m p k m n k q m g 
 d m r q q n r r q p n r p h 
 
We select the starting assignments as follows: 
 
 A B C D E F G H J K L M N  A  

 a f g h b m e c q n d r p  A  

 

and rewrite the table as  
 
 A B C D E F G H J K L M N P 

 a f g h b m e c q n d r p e 
 b a a a g b b h c c e d d f 
 c k n p k h p k e f k f g g 
 d m r q q n r r m p n q m h 
 
so that the assigned points are in the first row for better visibility.  We are left with 
 
{k} = B     {P} = B . 
 
We put: 
 

A0 = {e, f, g, h} = set of points on  P, which happens to be the only line of B .  Then 

A0 = {G, B, C, D} = associated set of lines of A . 

A1 = {b, p, r, a, m, n, q} = points of A \ A0  on lines of A0. 

A1 = {E, N, M, A, F, K, J} = associated set of lines of A . 

A2 = {d, c} = points of A \ (A0 ∪ A1)  on lines of A1. 

A2 = {L, H} = associated set of lines of A .  Finally 

A3 = empty. 

Hence we have   
 

A* = A0 ∪ A1 ∪ A2 = {a, b, c, d, e, f, g, h, m, n, p, q, r} 
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A** = A  \ A*   in this case empty but need not be empty in general. 

 

Now we pick a line of A0 ∪ A1 ∪ A2  that contains an element of B .  In our case there is 

only one such element,  k,  and we have a choice of lines:  B,  E,  or  L.  In each case we 
can form a chain: 

k ∈ B ↔ f ∈ P     or 

k ∈ E ↔ b ∈ G ↔ e ∈ P      or 

k ∈ L ↔ d ∈ N ↔ p ∈ G ↔ e ∈ P and use it to change the assignments. 
 
We use the last, and it leads to a rewritten table: 
 
 A B C D E F G H J K L M N P 

 a f g h b m p c q n k r d e 
 b a a a g b e h c c d d p f 
 c k n p k h b k e f e f g g 
 d m r q q n r r m p n q m h 
 
Now we deal in the same way with the last three rows. 
 
 A B C D E F G H J K L M N  A  

 b a n p g h e k c f d q m  A  

 

Then we are left with 
 
{r} = B     {P} = B  

 

This time we put: 
 

A0 = {f, g, h} = set of points on a line (P)  of B . 

A0 = {K, E, F} = associated set of lines in A . 

A1 = {c, p, k, q, b, n} = points of A \A0  on lines of A  0. 

A1 = {J, D, H, M, A, C} = associated set of lines in A . 

A2 = {e, m, d, a} = points of A \ (A0∪A1)  on lines of A1. 
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A2 = {G, N, L, B} = corresponding set of lines in A . 

A3 = empty. 

Then we put: 

A* = A0 ∪ A1 ∪ A2 = {a, b, c, d, e, f, g, h, m, n, p, q, r} 

A** = A \A* = in this case empty (need not be empty in general) . 

Now we pick a line of A0 ∪ A1 ∪ A2  that contains an element of B . 

In our case there is only one such element,  r,  and we have a choice of the lines  C  and  
G.  In each case we can form a chain: 
r ∈ C ↔ n ∈ F ↔ h ∈ P  
r ∈ G ↔ e ∈ J ↔ c ∈ K ↔ f ∈ P. 

We shall use the former to change the assignments. 
 
 A B C D E F G H J K L M N P 

 a f g h b m p c q n k r d e 
 b a r p g n e k c f d q m h 
 c k a a k b b h e c e d p f 
 d m n q q h r r m p n f g g 
 
Making interchanges in columns   C, E, G, J, K, N  we finally reach the orderly table 
 
 
 A B C D E F G H J K L M N P 

 a f g h b m p c q n k r d e 
 b a r p g n e k c f d q m h 
 c k n a q b r h m p e d g f 
 d m a q k h b r e c n f p g 
 
in which each point appears in every row. 

* * * * * 

 Before proceeding with the next step in our study of Steinitz's theorem and its 

ramifications, we recall from Section 1.3 the concept of "multilaterals". A multilateral  
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Figure 2.5.1.  Some examples of multilaterals, in the three configurations (93) shown in 
Figure 2.2.1.  The first is a 6-lateral with sequence of points 1,4,2,5,3,6 (1) in the 
configuration (93)1.  The second is 9-lateral, with sequence of points 1,8,3,7,5,9,4,2,6 (1); 
since this multilateral involves all points (and hence also all lines) it is a Hamiltonian 
multilateral. The last diagram shows a trilateral 7,8,9 (7), and a 6-lateral 1,6,3,5,2,4 (1). 
Note that another 6-lateral is 1,5,2,6,3,4 (1).  The 3-lateral and either of the 6-laterals 
taken together form a multilateral decomposition of the configuration  (93)3. 

(often inconsistently called "polygon" in the literature) is any sequence of distinct points 

and distinct lines of a configuration that can be written as P0, L0, P1, L1, … , Pr-1, Lr-1, Pr 

(= P0), with each Li incident with Pi and Pi+1 (all subscripts understood  mod r).  Some 

examples of multilaterals are shown in Figure 2.5.1.  If the last point is not required to 

coincide with the first one, we are dealing with a multilateral path. A family of multilat-

erals in a configuration, that contains all points and all lines but each just once, is called a 

multilateral decomposition of the configuration. We shall return to the topic of multilat-

erals later (for example, in Chapter 5). 

 Our next aim is to modify an orderly configuration table in a way that will pre-

serve its orderly character but will be useful for the geometric steps. We assume that a 

line and one if its points are selected to be ignored in the geometric implementation, and 

that, as before, the configuration is connected.  We also assume that we are concerned 

with a 3-configuration. 

 First, the rows are permuted so that the selected point of the selected line is in the 

first row. Note that since the table is orderly, this yields a correspondence (possibly dif-
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ferent from the one we started with) in which each point is associated with a line that 

contains it.  As mentioned earlier, and as is easily seen, by possibly interchanging the or-

der of the columns (that is, lines) the orderly configuration table can be rearranged to 

show the multilateral decomposition in such a way that the lines of each constituent mul-

tilateral occur consecutively.  In each of the multilaterals we can assume that the point in 

the last position in one column is in the middle position in the following column (under-

stood modulo length of the multilateral). We rearrange the columns in such a way that the 

multilateral that contains the chosen line is placed last, and the selected line is chosen as 

the last line in the multilateral.  If the multilateral is Hamiltonian, this part of the proof is 

completed. Otherwise, since the configuration is connected, at least one of the points of 

the last multilateral must be associated to (that is, be in the first row of) a line which is 

not in the multilateral.  Choose the multilateral containing this line to be the next-to-last, 

and the line in question to be its last line.  Then some point of this multilateral must be 

associated with another multilateral not used so far, and we continue in the same way.  At 

the end we reach what we may call an arranged configuration table.  This proves 

 Theorem 2.5.2.  Every connected 3-configuration has an arranged configuration 

table. 

 As an illustration, we show in Table 2.5.2 an orderly configuration table of a con-

figuration (143).  Rearranging the columns so as to make the multilateral decomposition 

visible, we obtain the arranged configuration table, Table 2.5.3. 

 

 A B C D E F G H J K L M N P 
 c k n a q b r h m p e d g f 
 d m a q k h b r e c n f p g 
 b a r p g n e k c f d q m h 

Table 2.5.2. An orderly configuration table of a connected combinatorial configuration 

(143). 
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 A M P N K B J L C D E F H G 
 b q h m f a c d r p g n k e 
 c d f g p k m e n a q b h r 
 d f g p c m e n a q k h r b 

Table 2.5.3.  A rearranged configuration table of the (143) configuration of Table 2.5.2, 
in which the lines of each multilateral appear as consecutive columns.  The point e of line 
G was chosen as the exceptional point, so its row is the first one.  The line G is the last 
line of its multilateral, which is the last multilateral.  Each multilateral is specified by 
rows 2 and 3 of the table.  The table is arranged, in the sense described earlier. 

We shall see in the next section how such an arranged multilateral decomposi-

tion can be used geometrically.  Here we shall conclude the section by discussing cer-

tain ramifications of the results we have seen so far. 

Corollary 2.5.3.  Every connected k-configuration  C, with k ≥ 2, admits mul-

tilateral decompositions. 

Indeed, any two rows of an orderly configuration table determine, by the 

above, a multilateral decomposition of  C. 

Corollary 2.5.3.  Every connected k-configuration C, with k ≥ 2, is 

2-connected. 

Proof.  Assume that  C  is a connected k-configuration such that, without loss 

of generality, there is a line  L  for which for suitable elements  R' and R" there is no 

R'-to-R" multilateral path that misses  L.  By the connectedness of  C, there is a multi-

lateral path  M  that uses  L,  that is, there are two points  Q' and Q" of L that are part 

of this path  M.  In an orderly configuration table of  C, permuting the rows if neces-

sary, we may put  Q' and Q"  in the last rows of the block  L.  Let  S  be a multilateral 

decomposition of  C  determined by the last two rows of this orderly configuration 

table.  Then one of the multilaterals of this decompositions uses the points Q' and Q".  

But since the multilateral is a circuit, there is a multilateral path (formed by the lines 

other than L) that connects Q' and Q".  Substituting this path for the one that origi-
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nally connected  R' and R" eliminates the use of  L.  Hence the assumption that each 

path between  R' and R" uses L is incorrect, and so  C is 2-connected. 

We shall discuss additional connectedness results in Section 5.1. 

 

 

Exercises and problems 2.5. 

1. Use the procedure applied in the proof of Theorem 2.5.1 to replace the configura-
tion table in Table 2.5.4 by an orderly configuration table. 

  a b c d e f g h i j k l m n 
  1 1 1 1 2 2 2 3 3 3 4 4 6 7 
  2 5 6 10 3 5 8 4 5 11 5 9 7 8 
  4 8 9 13 9 6 12 6 7 12 10 11 10 9 
  7 11 12 14 10 14 13 8 13 14 12 13 11 14 
Table 2.5.4.  A (144) configuration table. 

2. Find orderly configuration tables for the two (123) configurations in Figure 
2.5.2. 
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Figure 2.5.2.  Two (123) configurations. 
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3. Justify the statement:  Any selection of two rows of an orderly configuration 

table defines a multilateral decomposition of the configuration.  List all multilateral 

decompositions resulting from possible choices of the rows in the orderly configura-

tion tables found in Exercise 2.5.2  for the configurations (123) shown in Figure 2.5.2. 

4. Justify the statement:  For every k-configuration C and every multilateral decom-
position of C, there is an orderly configuration table in which the multilateral decomposi-
tion can be obtained from the first two rows of the table. 

5. Modify the proof of Theorem 2.5.1 to establish the following strengthening: 
Every combinatorial k-configuration admits an orderly configuration table in which 
an arbitrarily chosen line is the last line of the table. 


