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2.4 GENERAL CONSTRUCTIONS FOR COMBINATORIAL  

 3-CONFIGURATIONS 

 

 From the start of investigations of configurations, the problem of constructing 

all configurations (n3) for each value of n attracted considerable attention. Many of 

the results on that topic have been presented in Sections 2.2 and 2.3 for specific small 

values of  n.  However, already in 1887 Martinetti [M2] described an inductive proce-

dure that can be used to generate the  (n3)  configurations if all configurations with 

fewer points are known.  He illustrated his method by determining all configurations  

(n3)  with  n ≤ 11, starting from the Fano configuration (73). As mentioned in Section 

2.3, his enumeration of the 31 configurations (113) was correct.  However, one of his 

claims was unfounded: He considered the enumeration of geometric configurations 

(n3) to be the same as the enumeration of the combinatorial (n3).  This claim was also 

stressed in the review [L54] of [M2] by E. K. Lampe. As we have seen, #c(n) = #g(n) 

for  n = 11 and 12, but not for n = 10 and certainly #c(n) ≠ #g(n) for all n ≥ 14.  In the re-

maining part of this section, we consider only combinatorial configurations, even though 

we speak of “points” and “lines”. 

 The central idea of Martinetti’s construction is the following:  Assume that in 

a combinatorial (n3) configuration we have two "parallel" lines (that is, lines of the 

configuration that have no point of the configuration in common). If  [A, A', A"]  and  

[B, B', B'']  are such lines and if  A  and  B  are on no line of the configuration, then 

we delete the two parallel lines and introduce a new point  C,  together with the three 

lines  [A, B, C],  [A', A", C],  [B', B", C].  This is illustrated in Figure 2.4.1.  Clearly, 

this leads to a combinatorial configuration ((n+1)3). A configuration is called reduci-

ble if it can be obtained from a smaller one by the process just described; otherwise it 

is irreducible.  Martinetti's main result is the claim that for each  n  there are very few 
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irreducible  (n3)  configurations, and he purports to give a complete description of all 

irreducible configurations.  More precisely: 

 Martinetti’s claim.  A connected  (n3)  combinatorial configuration is irre-

ducible if and only if it is one of the following: 

 (i) The cyclic configuration C3(n) with lines  [j, j+1, j+3]  (mod n), for  n ≥ 8; 

 (ii) n = 10m for some  m ≥ 1,  and the configuration is the one described below 

and denoted  M(m);  M(1) is the Desargues configuration  (103)1. 

 (iii) n = 9,  and the configuration is the Pappus configuration  (93)1. 

 (iv) n = 10,  and the configuration is  (103)2  or  (103)6. 

 Martinetti’s combinatorial configuration  M(m)  can best be explained as con-

sisting of  m  copies of the family of the ten points indicated by solid dots in Figure 

2.4.2, and the ten solid lines shown there.  The jth copy is joined to the (j+1)st by iden-

tifying  A’’’j , B’’’j , C’’’j with  Aj+1, Bj+1, Cj+1,  respectively; all subscripts taken  

(mod n). 
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Figure 2.4.1. Martinetti’s addition of a point and a line to a combinatorial configura-

tion (n3). 

 Martinetti’s proof is, not surprisingly, involved and long. The result was quoted 

or mentioned many times over the next century; see, for example, Steinitz [S19, pp. 486-

487], Steinitz-Merlin [S21, pp. 153 – 154], Gropp [G7], [G8], [G25], [G30], Carstens et 

al. [C1].  In some of these it was noticed that Martinetti should have included con-
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nectedness among the requirements of his claim.  Moreover, in lecture notes for my 

configurations courses in 1999 and 2002 I wrote: 

I have not checked the details, and I do not know it as a fact that anybody has.  

The statement has been accepted as true for these 115 years, and it may well be 

true.  On the other hand, Daublebski's enumeration of the  (123)  configura-

tions was also considered true for a comparable length of time ... 

As it turned out, my suspicion has been vindicated by Boben [B16], [B17].  He 

showed that Martinetti’s list of irreducible configurations is incomplete.  The problem 

in Martinetti’s proof arises as follows.  When constructing  M(m), we attach to each 

other  m  copies of the “module” in Figure 2.4.2 as indicated above, but stop before 

attaching  M(m) to M(1).  Martinetti formed that attachment “straight”, by identifying 

A’’’n  with A1, and similarly for the B’s and C’s, thus obtaining M(m). However, as 

shown by Boben, that attachment can be done in “twisted” ways as well; two such 

attachments yield irreducible configurations which we may denote by  M*(m) and 

M**(m).  These are obtained by identifying A’’’n with C1,  B’’’n with B1, and C’’’n 

with A1  for the former, and A’’’n with C1,  B’’’n with A1, and C’’’n with B1  for the 

latter.  A separate argument shows that the three resulting configurations are non-  
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Figure 2.4.2. The “module” used in the Martinetti construction.  Only the ten solid 
dots and the ten solid lines form one module. 
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isomorphic for every  m.  With this modification, we have the following corrected 

version of Martinetti’s result: 

Theorem 2.4.1. (Boben [B16], [B17]) A connected  (n3)  combinatorial configuration 

is irreducible if and only if it is one of the following: 

 (i) The cyclic configuration C3(n) with lines  [j, j+1, j+3]  (mod n), for  n ≥ 7; 

 (ii) n = 10m for some m ≥ 1, and the configuration is one of M(m), M*(m) or 

M**(m) described above. For m = 1 these are the configurations (103)1, (103)2 and 

(103)6  (in the notation used in Section 2.2). 

 (iii) n = 9,  and the configuration is the Pappus configuration  (93)1. 

A remarkable aspect of the situation is that all the irreducible configurations  

(n3)  with  n ≥ 9  are geometrically realizable by straight lines in the Euclidean plane.  

For the cyclic configurations we have seen this in the proof of Theorem 2.1.3. A dif-

ferent construction, involving cubic curves, was given by Schroeter [S6] in 1888.  For 

the configurations M(m) the realizability is almost obvious from Figure 2.4.2, and can 

be proved in general. 

Concerning configurations (n3) for particular values of  n ≥ 13,  there is very 

little specific information available in print.  Gropp [G13] applied Martinetti's theo-

rem to enumerate the combinatorial configurations with up to 14 points.  He reports 

that there are  2036  combinatorial configurations  (133),  and  21,399  combinatorial 

configurations  (143).  These numbers were confirmed by [B14]; this paper reports 

the numbers  #c(n) of combinatorial configurations (n3) for  n ≤ 18,  see Table 2.2.1. 

The number  #c(19) was reported in [B19] and [G46]. 

One of the combinatorial configurations  (143)  consists of two disjoint copies 

of the  (73)  configuration, and is therefore not geometrically  realizable.  It is not 

known whether the other  (133)  and  (143)  combinatorial configurations are geomet-
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rically realizable.  Clearly, analogous disconnected and non-realizable configurations 

exist for all n ≥ 14. However, even if considering only connected configurations, the 

statement in Steinitz [S19, p.490] and Steinitz-Merlin [S21, p.158] that for  n ≥ 11  all  

(n3)  combinatorial configurations are "probably realizable" is contradicted by the ex-

ample in Figure 2.2.8 (from [D10], see also Gropp [G25]), which shows that the 

statement is invalid even if restricted to configurations that are  "connected" and "re-

alizable by pseudolines".  (In the example in Figure 2.2.8, the left part of the figure 

has all but one of the incidences of the Pappus configuration, and therefore by Pappus' 

theorem the line  L  must be incident with the point  P.)  It is not known whether the  

(163)  in Figure 2.2.8 is the smallest configuration with these properties.  We shall 

discuss this and related question in Sections 2.5 and 2.6 dealing with a remarkable 

result of Steinitz. 

* * * * * 
Levi [L3, p. 93] mentions the possibility of obtaining a combinatorial configura-

tions ((n+1)3) from the configurations (n3).  He achieves this by manipulating Levi inci-

dence matrices in a way that is equivalent to the Martinetti method illustrated in Figure 

2.4.1.  However, Levi does not mention Martinetti, or irreducible configurations –– nor 

does he claim that all ((n+1)3) configurations are obtainable in this way. 

 

Exercises and problems 2.4. 

1. Prove that all the irreducible configurations with at least nine points specified in 
Theorem 2.4.1 are geometrically realizable by points and straight lines. 

2. Decide whether the (123) configurations in Figures 2.3.7 and 2.3.8 are reducible 
or irreducible. If any is reducible, to which irreducible one does it ultimately reduce?  Is it 
possible for one configuration to reduce to different irreducible configurations? 

3. Investigate the reducibility of the cyclic configurations C3(n,1,4). 

4. Give a formulation of Theorem 2.4.1 that is valid for all 3-configurations. 


