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2.3 ENUMERATION OF 3-CONFIGURATIONS (Part 2) 

 Combinatorial configurations  (113)  were first enumerated by Martinetti [M2] in 

1887;  using the method we shall describe in the next section, he found that #c(11) = 31.  

The enumeration of these configurations was independently carried out by Daublebsky 

[D1] in 1894; he used a variant of the remainders method.  Diagrams supposed to show 

geometric realizations of all 31 combinatorial configurations (that is #g(n) = 31) were 

provided by Daublebsky in an appendix to [D2] in 1895 (shown in Figure 2.3.1 below; 

see also Figure 2.3.2).   

 Daublebsky states that all these combinatorial configurations can be realized as 

geometric configurations (that is, with points and straight lines) given by his diagrams, 

but does not give any justification beyond the intimation that he followed the method of 

Schroeter [S8].  An independent verification of the geometric realizability of all 31 con-

figurations  (113)  was provided only nearly a century later, by Sturmfels and White 

[S23], [S24] in 1988 and 1990, with a different method; we shall discuss this method a 

little later.  Sturmfels and White also proved that each of these configurations can be real-

ized in the rational plane, in other words, one can always draw the configurations so that 

the vertices are at points of the integer lattice. The value of #c(11) = 31 was inde-

pendently confirmed by Gropp (see [G8]) and by Betten et al. [B14], among others. 

* * * * * The first enumeration of the combinatorial configu-

rations (123) was carried out by Daublebsky [D2] in 1895, again using the method of re-

mainder figures.  He found that only 18 different remainder figures could possibly occur 

in such a configuration.  Through various arguments (described only in general terms) 

Daublebsky arrived to the conclusion that these remainder figures could be combined to 

yield something like 1600 configurations (123).  Then he “… drew a schematic diagram 

of each configuration on a separate piece of paper …” and determined for each the “re-

mainder system”, that is, a list of the different remainder figures occurring in the configu-

ration.  Finally, configurations with the same remainder system were investigated to see 

whether they are isomorphic.  This turned out to be the case in most—but not all—cases 
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(see Exercises 2.3.4 and 2.3.5).  Daublebsky presented the resulting 228 combinatorial 

configurations by their configurations tables (in the form he gave them, these take 23 

pages!!!).  He also gave some other data and provided drawings for geometric realiza-

tions of a few of the configurations.  In a later paper [D3], Daublebsky gave results of his 

investigations of the groups of automorphisms of each of the 228 combinatorial configu-

rations (123).  However, not all of these are correct.  The first independent enumeration 

of the combinatorial  (123)  configurations was carried out only in 1990, by Gropp (see 

[G8]).  It showed that Daublebsky missed one, so that there are in fact #c(12) = 229  such 

configurations.  Gropp published the configuration table of this additional configuration 

in [G13] and communicated it to me; the table can also be read off from the illustrations 

in the more readily available [D10] and [G25].  As with configurations (113), the 229 

combinatorial configurations (123) have been independently enumerated (by two differ-

ent methods) in [B14].  Even so, Dolgachev [D8] in 2004 still quotes #c(12) = 228. 

 The only published proof that all 228 combinatorial configurations (123) found by 

Daublebsky are geometrically realizable was given only recently, by Sturmfels and White 

[S23], [S24].  Sturmfels and White also proved that all these  (123)  configurations are 

realizable in the rational plane.  In a private communication, B. Sturmfels showed that the 

"new" combinatorial configuration found by Gropp is also geometrically realizable, even 

in the rational plane; a diagram is shown in Dorwart – Grünbaum [D10] in 1992. 

 The numbers  #c(n)  of combinatorial configurations for 13 ≤ n ≤ 19 were deter-

mined by various computer programs.  For 12 ≤ n ≤ 14 these values were first found by 

Gropp [G8], for n = 15 by Betten and Betten, [B11]; the values for 16 ≤ n ≤ 18 in Table 

2.2.1 are from Betten, Brinkmann and Pisanski [B14].  The value #c(19) = 7,640,941,062 

was determined by these authors and published in [B19] and [G46].  However, there is no 

information available about the possibilities of realization of the combinatorial configura-

tions (n3) for n ≥ 13 by topological or geometric configurations, beyond individual exam-



Version 10/18/08  Page 2.3.3 

ples –– these will be discussed in the following sections.  This is not very surprising in 

 



Version 10/18/08  Page 2.3.4 

Figure 2.3.1. (first half). 

 

Figure 2.3.1 (second half). The diagrams of the (113) configurations, from Daublebsky 

[D2]. 
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Figure 2.3.2. Diagrams of Daublebsky’s configurations (113)4 and (113)5 redrawn for 
better visibility. 
 

view of the number of combinatorial configurations. As shown in Table 2.2.1, this num-

ber is well above 2000 for n = 13, and increases by factors exceeding 10 for larger n.   

 This completes the discussion of the data in Table 2.2.1. The only additional in-

formation that is available is that #c(n) > #t(n) for all  n ≥ 14, and that #t(n) > #g(n) for all  

n ≥ 16.  The former happens due to the existence of disconnected configurations – that 

is, configurations that are disjoint unions of two or more configurations, between the 

elements of which there are no incidences.   

 As an example, consider the (143) which consists of two disjoint copies of the 

Fano configuration (73), or the (153) formed by disjoint copies of (73) and (83); the latter 

was implicitly recognized as disconnected by Betten and Betten [B11], the former is ex-

plicitly mentioned by Gropp [G7].  Since disconnected configurations arise as unions of 

smaller configurations, it is easy to determine the number of such configurations for all n 

≤ 19.  Since the (73) and (83) set-configurations are not geometrically realizable, the 

smallest geometrically realizable disconnected configurations are the six arising as unions 

of two configurations (93).  The same is true for topological configurations. 
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 On the other hand, the inequality between the numbers #t(n) and #g(n) of topo-

logical and geometric configurations for n ≥ 16 is a consequence of the existence of topo-

logical configurations of the kind illustrated by the scheme in Figure 2.3.3.  Due to the 

theorem of Pappus, if this configuration scheme is rendered with straight lines instead of 

line segments, the points A2, B2, C2, and F3 are seen to be collinear.  Hence this is a su-

perfiguration and not a geometric configuration; clearly, this is not a problem if pseu-

dolines are used.  This example can be understood as arising by a "melding" of the Pap-

pus configuration (93)1 and the Fano configuration (73).  (Note that the Fano part is miss-

ing one incidence, and this subfiguration is realizable by straight lines.)  This construc-

tion can be modified in various ways.  For example, instead of the Fano configuration 

one could use any (n3) configuration, and instead of the Pappus configuration one could 

use Desargues' configuration (103)1.  This completes the proof of #t(n) > #g(n) for all  n ≥ 

16.  It is not known whether #t(n) = #g(n) for n = 13, 14, 15.  
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Figure 2.3.3.  Pappus’ theorem implies that the points A2, B2, C2, and F3 are collinear,  

hence this does not realize a configuration (163).  It is obvious that using pseudolines the 

unwanted incidence can be avoided. 
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 This ignorance is part of a larger open question.  The single example establishing 

#t(10) > #g(10) differs in one important respect from the examples just given with n ≥ 16: 

The latter are only 2-connected, while the combinatorial and topological (103)4 is 

3-connected.  The lack of any other 3-connected examples leads to 

Conjecture 2.3.1.  Every 3-connected topological configuration  (n3) with n ≥ 11 is geo-

metrically realizable. 

* * * * * 

 The Schroeter constructions explained and illustrated above would nowadays be 

said to be generic constructions, the terminology supposing to indicate that it applies in 

run-of-the-mill situations.  In fact, if understood literally –– that all the choices can be 

made arbitrarily, with only the stated restrictions –– the constructions may fail to lead to 

the configurations they are supposed to yield. Instead, superfigurations may result due to 

"accidental" incidences.  This is illustrated in Figure 2.3.4. 
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Figure 2.3.4. Failure of the Schroeder construction of the configuration (103)3: The line 

890 contains the point 1. Notation is the same as in Figure 2.2.5. 

 It is hard to understand that no publication on configurations during the classical 

period even mentioned the possibility of superfigurations arising in the construction of 

geometric configurations.  This is astonishing since the study of accidental incidences in 
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the Desargues configuration was already old hat at that time.  In Figure 2.3.5 we show a 

Desargues superfigurations, with a line on four points and a point on four lines.  The ex-

ceptional point and line are shown in contrasting color.  In the paper [S22] Sternfeld et al. 

study possible superfigurations of (103) configurations (and more general incidence sys-

tems), both combinatorial and geometric.  We conjecture: 

Conjecture 2.3.2.  Every geometric configuration (n3) with n ≥ 10 admits superfigura-

tions with at least one pair of "accidental" incidences. 

 It is worth mentioning that the three (93) configurations do not have limiting posi-

tions that are superfigurations.  On the other hand, the Pappus configuration (93)1 has rep-

resentatives in which an additional point incident with three lines, or a line incident with 

three of the points, or both, can be found.  The last alternative is illustrated in Figure 

2.3.6.  It is not known whether many other configurations have this property. 

     

Figure 2.3.5.  A superfiguration arising from the Desargues configuration (103)1 through 

multiple incidences. The point and line of perspectivity are shown in teal. 

 

1. Find the remainder systems of Daublebsky’s configurations (113)4 and (113)5 

shown in Figure 2.3.2, and use them to show that these are distinct configurations. 
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3. Find a superfiguration of the Desargues configuration that has three points and 

three lines incident with four elements of the other kind –– or prove that such a configu-

ration cannot exist. 

4. Consider the two (123) configurations from Daublebski's paper [D2] shown in 

Figure 2.3.7, with their labels as given by Daublebski.  Although they are tantalizingly 

similar, show that they are not isomorphic. 

5. Determine whether the two (123) configurations in Figure 2.3.8 are isomorphic, 

and whether any is isomorphic with either of the configurations in Figure 2.3.7. 
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Figure 2.3.7.  Two configurations (123) from [D2]. 
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Figure 2.3.8.  Two (123) configurations. 


