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2.11 OPEN PROBLEMS (AND A FEW EXERCISES) 
 
 Many unsolved problems and open question have been mentioned in the 

preceding sections.  While some of these may be challenging and others may hold 

interest for some people, there are a few problems concerning 3-configurations that seem 

to be of a fundamental nature; these problems exhibit the paucity of our understanding of 

what makes geometric configurations work.  Some of the problems are related to 

Steinitz's geometric theorem of Section 2.6. 

1. The first problem concerns geometric realizations of connected combinatorial 

configurations. By Theorem 2.6.1 we know that a (geometric) prefiguration 

representation is always possible if one incidence is disregarded. As shown by the 

examples of the (73) and (83) configurations, even allowing pseudolines it is not possible 

to achieve the last incidence.  However, it is well possible that all connected (n3) 

configurations with n ≥ 9 admit realizations as topological configurations, or even (for n 

≥ 11) realizations as geometric prefigurations.  On the other hand, it may well be that 

already for n = 13 some counterexamples can be found for either version of the question.  

A subsidiary question is to determine the maximal number t(n) of "lines" in a topological 

configuration (n3) that may need to be non-straight pseudolines in each realization of the 

configuration in question.  It seems that t(n) ≥ c n for some c > 0. 

2. The second problem deals with obstructions to geometric realization of 

2-connected 3-configurations with n ≥ 11 lines.  All known examples that include 

unwanted incidences (superfigurations) contain either a Pappus or a Desargues 

subfiguration (one incidence of the configuration is missed), or several such 

subfigurations.  Are there any other obstructions to the geometric realizability, or is the 

presence of at least one of these two a characterization of 3-configurations with unwanted 

incidences? 

3. The third problem, simply stated, is this: Is the combinatorial configuration (103)4 

using the notation in Section 2.2, the only 3-connected configuration (n3) with n ≥ 9 that 

does not have a geometric realization?  A negative answer may appear at any time –– if 

somebody hits upon an appropriate example –– possibly even with n = 13.  On the other 
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hand, a positive solution would seem to require several breakthroughs in directions for 

which we are not even dimly aware of how to start.  These would have to include the 

elimination of superfigurations (unwanted incidences) as well as subfigurations (missing 

incidences, as in Steinitz's theorem).  As a possible example of a negative solution 

consider the abstract configuration (143) derived from the geometric configuration in 

Figure 2.11.1 on replacing the existing incidences of points A and B with the lines a and 

b, and insisting instead that A be incident with a, and B with b. 
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Figure 2.11.1.  Is there a geometric realization of the combinatorial configuration (143) 

obtained from the above by keeping all indicated incidences except that C is to be 

incident with c (and not with b) and B be incident with b? 

4. Is it true that if a 3-configuration admits a geometric realization in the Euclidean 

plane then it admits a realization in the rational plane? Or is it (at least) true that every 

geometrically realizable 3-configuration can also be realized in a plane over a quadratic 

extension of the rational field?  In contrast, it is easy to verify that the #2-superfiguration 

shown in Figure 1.3.4 is realizable in the Euclidean plane but not in the rational plane. 

5. For the various classes of very symmetric 3-configurations (such as astral, 3-

chiral, k-dihedral, BB, ... ) determine the precise range of the parameters for such 

configurations. 
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6. For connected astral configurations m#(b,c;d), is m = 12 the only case in which 

various superfigurations occur? 

7. Is there any relation between the automorphism group of a configuration and the 

symmetries of its possible realizations?  In particular, if the automorphisms act 

transitively on the points (or lines, or flags), does there have to exist a realization with 

non-trivial symmetry? 

8. The object in Figure 2.11.2 is not a configuration, but the labeling clearly 

indicates that it is selfdual; the same can be said for the superfiguration in Figure 1.3.4.  

These seem to be interesting objects, analogous to configurations in the sense used in this 

book –– but without any systematic framework to support their investigation.  A formal 

proposal to consider such "generalized configurations" was made in [Z9] by K. Zindler as 

long ago as 1889. An example described by Zindler (as well as in the review [S11] of 

[Z9] by H. Schubert) is shown in Figure 2.11.3. However, it seems that Zindler's general 

challenge has never been met. 
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Figure 2.11.2. An intriguing selfdual collection of 15 points and 15 lines. 
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9. Decide whether the selfduality of the superfiguration in Figure 2.11.2 is a 

selfpolarity. 

10. Prove that the incidences claimed in Figure 2.11.3 are valid. 

 

 

Figure 2.11.3.  A "generalized configuration" of 13 points and 13 lines from Zindler [Z9]. 

It consists of four concyclic points (red) that determine a complete quadrangle (six blue 

lines) and its three "diagonal points" (green). The four tangents (red) to the circle at the 

four concyclic points are a complete quadrilateral that determines the six blue points  and 

the three "diagonal lines (green). The selfpolar "configuration" has six points incident 

with three lines each, and seven points incident with four lines each, and dually for lines. 


