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2.10 DUALITY OF ASTRAL 3-CONFIGURATIONS 

 In this section we shall investigate the duality and polarity properties of the chiral 

astral configurations (n3).  It should be kept in mind that the presentation is based on the 

assumption that we know all such configurations although, in fact, we are certain only to 

the extent that the topic has been explored by numerical calculations. As we have seen in 

Section 2.7, to a symbol m#(b,c;d) correspond either two, or one, or no chiral astral con-

figurations (n3), where n = 2m. In the case of two configurations, by their very construc-

tion they are isomorphic. But more is true: 

 Theorem 2.10.1.  Every chiral astral configuration m#(b,c;d) is selfdual. 

 Proof.  From the definition given above of the labels of points and lines of such 

configurations, illustrated in Figure 2.10.1  (which is a copy of Figure 2.7.1), we see that 

the line Lj contains the points  Bj, Cj, Bj+b, and the line  Mj contains the points 

Bj+d,Cj,Cj+c.  The resulting incidences can then be described by the following criteria: 

Bj ∈ Lk  ⇔  j – k ≡ 0 or b  (mod m) 

 Bj ∈ Mk  ⇔  j – k ≡ d  (mod m) 

 Cj ∈ Lk  ⇔  j – k ≡ 0  (mod m) 

 Cj ∈ Mk  ⇔  j – k ≡ 0 or c  (mod m). 

 From these relations there follows at once that for every configuration  m#(b, c; d)  

the mapping  δ  determined by  δ(Bj) = L-j,  δ(Cj) = M-j-d,  δ(Lj) = B-j  and  δ(Mj) = C-j-d  

is a selfduality.  � 

 Another consequence is: 

 If two distinct configurations have the same symbol m#(b, c; d) then they are dual 

to each other. 

 This follows from the fact that they are isomorphic.  But even more is true: 

 Theorem 2.10.2.  If two distinct configurations have the same symbol m#(b, c; d) 

then they are polars of each other. 
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Figure 2.10.1.  The labeling of the configuration  8#(3, 2; 1)  explained in the text. 

 

 Proof.   Indeed, polars are combinatorially dual to each other, and the only 

combinatorially dual astral configuration of an astral configuration m#(b, c; d) is either 

the configuration itself, or the other one with the same symbol.  Since there are two con-

figurations m#(b, c; d), neither is polar to itself, but each is polar to the other.  � 

 This fact is illustrated in Figure 2.10.2. 

 It is almost selfevident that in general there are other duality maps from a configu-

ration to its dual. For example, Figure 2.10.3 presents the same pair of configuration as 

Figure 2.10.2(a), with a labeling that shows that the map ε from the red configuration to 

the black one is a duality different from the duality δ described above.  
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(a)      (b) 

Figure 2.10.2. (a)  The configuration 7#(3,2;1)' (red points and green lines) and its polar 
7#(3,2,1)" (blue points and black lines). Polarity is with respect to the purple circle.  (b)  
The same for 10#(4,3;2)' and 10#(4,3;2)". 
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Figure 2.10.3. The dual configurations of Figure 2.10.2(a) illustrate a duality map ε. 
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 In case that only a single configuration m#(b,c;d) exists (that is, if b + c = 2d, or if 

b = c), the configuration is not only selfdual, but selfpolar.  The map  δ  is applicable to 

all selfdual configurations, and is concordant with selfpolarity.  The polars (in an appro-

priate circle) are congruent to each other, but only after a reflection in a suitable mirror.  

 For configurations of this type, the map  δ  and its rotates are the only maps com-

patible with the polarity.  We say that these configurations are oppositely selfpolar.  This 

happens for the selfpolar configurations with symbol  m#(b,b;d).  Examples are shown in 

Figure 2.10.4. 

 Other configurations, called directly selfpolar configurations, have symbols of 

type  m#(b,c;d)  with  2d = b+c.  Here the polar pairs are congruent without reflection. 

There are two subtypes: In the first, both b and c are even, in the second they are both 

odd.  In the former case the polars actually coincide with each other, while in the latter 

they are related by reflection in the common center (that is rotation through 180°).  The 

two subtypes are illustrated in Figures 2.10.5 and 2.10.6. 

 

(a)  #(2,2;1)     (b)  8#(3,3;2) 

Figure 2.10.3. Two examples of oppositely selfpolar configurations, characterized by 
symbols of the type  m#(b,b;d). 
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(a)   10#(4,2;3)    (b)   13#(6,4;5) 

Figure 2.10.4.  Two examples of directly selfpolar configurations m#(b,c;d) with b and c 
even. In this subtype the polars may coincide (for an appropriate circle). In the illustration 
the circle was chosen to yield different sizes, in order to improve intelligibility. 

 

(a)   9#(3,1;2)     11#(5,1;3) 

Figure 2.10.5.  Two examples of directly selfpolar configurations m#(b,c;d) with b and c 
odd. In this subtype the polars are congruent but coincide only after reflection in the 
common center (that is, a rotation of 180°). We also say that these configurations are 
selfpolar*. 
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Exercises 2.10. 

1. Verify that the correspondence  δ  is a duality.  Determine whether this corre-
spondence establishes a selfduality. 

2. Describe the duality introduced by the polarity, for the polar configuration in Fig-
ure 2.10.2(b); use the labels on the two configurations that are given by their isomor-
phism. 

3. Label the selfpolar configurations in Figures 2.10.4 and 2.10.5 to show that they 
are selfdual. 

4. Verify that the Cremona-Richmond configuration (153), shown in Figure 1.1.1 
and mentioned in Exercise 2.9.7, is selfdual.  Is it selfpolar, and if it is, what is its type?  

5.  Find criteria for dual pairs of configurations of the various kinds discussed in 
Sections 2.8 and 2.9. 

6. R. Artzy [A1] considers selfdual configurations and for a given selfduality δ de-
scribes a RLG ("reduced Levi graph" –– this is not the same concept we are using 
throughout the book!) by identifying each element B with its image δ(B).  This clearly 
depends on the selfduality chosen, but in each case the original Levi graph can be re-
trieved in a unique way.  As observed by Artzy, the RLG may contain loops, this occurs 
in case B and δ(B) are incident.  Artzy illustrates the use of RLGs by investigating spe-
cial cases of the Desargues configuration. (On this topic see also Killgrove et al. [K10].) 
Assign labels to the RLG in Figure 2.10.6b to show that it corresponds to the Pappus con-
figuration in Figure 1.10.6a, with the selfduality δ indicated by the upper and lower case 
letters. 

7. Find a selfduality δ of the Desargues configuration in Figure 2.10.7a that leads to 
the RLG in Figure 2.10.7b. 

8. Is there a meaningful extension to all polar pairs of astral 3-configurations of the 
distinction between directly and oppositely selfpolar ones? 

9. Describe the polars of the configurations BB(m; s, t), and determine whether there 
are any selfpolar ones among them. 
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(a)     (b) 

Figure 2.10.6.  (a) A version of the Pappus configuration (93), with a selfduality indicated 

by upper- and lower-case letters.  (b) An RLG corresponding to the selfduality in (a). 

 
(a)     (b) 

Figure 2.10.7.  (a) A version of the Desargues configuration (103).  (b) An RLG of (a).  

 

10. (Refresh your memories of elementary geometry.) Given a pair of astral configu-

ration for which it is claimed that they are polar to each other with respect to a circle – 

how do you find the circle that justifies the assertion?  Practice your solution on the 

selfpolar configurations in Figures 2.10.3,  2.10.4  and  2.10.5. 

 


