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1.7 DERIVED FIGURES AND OTHER TOOLS. 

 Testing whether a  given  mapping between the elements of two configurations 

(pq, nk) is an isomorphism is straightforward, though tedious and somewhat time-

consuming; its complexity is polynomial in  p  (and  n)  for given  q  and k.  However, 

deciding whether there exists an isomorphism is much harder if only brute force is used.  

That is why, since the beginning of the study of configurations in the nineteenth century, 

variants of the idea of derived figures have been found useful in finding isomorphisms 

between configurations or establishing that they are not isomorphic.  The method is, in 

essence, a sort of "preprocessing" and is particularly timesaving if many configurations 

are to be considered simultaneously, or if they are known to have only few transitivity or 

symmetry classes.  It is also very helpful if one aims at determining the automorphism 

group of a configuration. 

 The idea underlying "derived figures" is to associate with each point (or line) of a 

given configuration  C  a small "figure", determined by the point (or line) and the inci-

dences in  C.  The associated ("derived") figure should be easy to determine, and it 

should be easy to see whether two such figures isomorphic.  The vagueness of the above 

description should not bother you too much: it is not supposed to be an algorithm, just a 

heuristic approach which has been found convenient, and which can best be explained by 

examples. 

 Consider the  (103)  configuration indicated in Figure 1.7.1(a), which we shall call  

(103)9  as in Section 2.2.  We would like to determine whether it is isomorphic to the De-

sargues  (103)  configuration shown in Figure 1.7.1(b).  We would also like to determine 

its automorphism group, the transitivity classes of its elements, and the possible symme-

try groups that isomorphic configurations can have. 

 We start by observing that since in any  (103)  configuration  C  each point lies on 

three lines which together contain six other points of  C,  for each point of  C  there are 

three points of  C  to which it is not connected by any line of  C.  (For example, the point  

2  in Figure 1.7.1(a)  is connected by no line of the configuration to any of  5, 7, 8.)  One 

kind of "derived figure" associates to each point of  C  the set of the three points  of  C  
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that are not connected to it, together with any lines of  C  that contain two of these points 

or all three of them.  (In the literature, this is often called the "remainder figure", or 

“Restfigur” in the German literature.)  Clearly, the derived figure could be any of the five 

schematically indicated in Figure 1.7.2.  It is easily checked that for the configuration  

(103)9  of Figure 1.7.1(a) the derived figure is of type (iv) at points  0, 1, 4, 7,  and is of 

type (iii) for the other six points.  Thus the points of  (103)9  form at least two transitivity 

classes; since the points of the Desargues configuration form one transitivity class, these 

two configurations cannot be isomorphic. The same conclusion can be reached without 

appealing to the automorphisms group of the Desargues configuration: We note that the 

derived figure at each vertex of the Desargues configuration is of type (v) -- and even a 

single such derived figure shows the impossibility of an isomorphism to  (103)9.   

 A closer examination of the derived figures of  (103)9  shows that the points  3 

and  8,  which lie on lines determined by  0, 1, 4, 7, cannot be in the same transitivity 

class as  2, 5, 6, 9;  hence there are at least three transitivity classes.  Each of the sets  

{0, 1, 4, 7},  {2, 5, 6, 9},  {3, 8}  is either an equivalence class of points of  (103)9  or a 

union of such classes.  We shall try to determine which is the case.  We start by looking 

for a permutation of the vertices that maps  0  to  1.  Since they determine a line,  1  must 

be mapped onto  0  (since no line connects  1  to  4  or  7).  Hence the permutation we are 

trying to find has the cycle  (0, 1), and also the singleton cycle (8).  The points  4  and  7  

are either invariant, or else interchanged.  In the former case, we would have  9  invariant 

as well; but then the line through  1  and  9  would be mapped on the line through  0  and  

9  -- which is not a line of the configuration.  On the other hand, if we assume that the 

permutation contains the cycle  (4, 7)  then we find, successively, that it must contain the 

cycles  (3),  (2,5)  and  (6, 9)  as well.  Hence the only candidate for an automorphism 

that maps  0  to  1  is the permutation s = (0, 1) (2, 5) (3) (4, 7) (6, 9) (8).  A check reveals 

that  s  is indeed an automorphism of  (103)9.  A similar analysis shows that there is no 

automorphism that maps  0  to  4,  or  2  to  6,  or  3  to  8.  Hence the decomposition  
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Figure 1.7.1. Two configurations (103). 

of the vertices of  (103)9  into transitivity classes is  {0, 1} {2, 5} {3} {4, 7} {6, 9} {8}.  

Moreover, the automorphism group consists of two elements, the identity and  s.  Thus a 

labeling of the points of  (103)9,  more rational than the one in Figure 1.7.1(a), is as 

shown in Figure 1.7.3; now  s  interchanges the starred and double-starred versions of 

each letter, while keeping those without stars invariant.  Concerning the symmetry groups 

of geometric configurations isomorphic to  (103)9  we can say that they either have the 

trivial symmetry group  c1  as in Figure 1.7.3,  or else  d1  or  c2.  However, since two of 

the points of the configuration remain invariant under  s,  it cannot have symmetry group  

c2.  By an elementary but slightly longer argument it can be shown that  d1  is impossible 

as well; hence no geometric realization has any nontrivial symmetry. 

(i) (ii) (iii)

(iv) (v)  
Figure 1.7.2. The possible "derived figures" for points of configurations (103). 
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Figure 1.7.3.  A revised labeling of the configuration (103)9, making visible its automor-

phism group. 

 As an illustration of a second variant of the method of derived figures we investi-

gate the four (243, 184) configurations shown in Figure 1.7.4.   

 We shall call them  C1,  C2,  C3  and  C4.  In this case we shall associate a "de-

rived figure" with every line  L  of the configuration, by taking the 9 lines of the configu-

ration that do not meet  L  in a point of the configuration, as well as the points of the con-

figuration incident with these 9 lines.  Since the configurations in Figure 1.7.4 have only 

two symmetry classes of lines, it is easy to determine all the derived figures; the isomor-

phism types that occur are schematically  indicated in Figure 1.7.5.  (Since we are inter-

ested only in isomorphisms, the relative positions of the points and lines are not relevant; 

only the incidences that occur in the configuration matter.)  The results are: 

 C1  has  6  derived figures of type (i), and  12  of type  (ii), and so does  C4; 

 C2  has  6  derived figures of type (iii), and  12  of type  (iv); 

 C3  has  18  derived figures of type (v); note that these are isomorphic to the ones 

of type (iii). 
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Figure 1.7.4.  Four configurations (243, 184). 

 It follows that the lines of  C1  form two transitivity classes, and so do the lines of  

C2  and those of  C4.  As far as the derived figures are concerned, the lines of  C3  could 

all belong to the same transitivity class.  They, in fact, do so, as is shown, for example, by 

the permutation  t = (1) (2, 18) (3, 11, 9, 5) (4, 14, 10, 17) (6, 13) (7) (8, 15) (12, 16). 

 It also follows that  C2  and  C3  are isomorphic neither to each other nor to either 

of  C1  and  C4.  However, as far as the derived figures are concerned,  C1  and  C4  could  
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Figure 1.7.5.  Derived figures that are possible for the configurations (243, 184) in Figure 

1.7.4. 

be isomorphic.  The labeling of these configurations in Figure 1.7.4, which was obtained 

with the help of the derived figures, is easily checked to represent an isomorphism be-

tween the two configurations. 

 As the next example we consider the three  (93)  configurations in Figure 1.1.6, 

and again find the derived figures for the various points.  (We will consider these three 

configurations again in Section 2.2. There we will use a slightly different method.) It is 

clear that for all points, in all three configurations, the derived figure consists of two 
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points.  In  (93)1  none of these pairs is incident with a line of the configuration; in  (93)2  

each such pair of points is incident with a line of the configuration, while in  (93)3  in six 

of the pairs the two points are incident with a line of the configuration and in the three 

remaining pairs this is not the case.  Therefore no two of the configurations in Figure 

1.1.6 are isomorphic.  Moreover, the points in  (93)3  form (at least) two transitivity 

classes, while it is possible that in each of  (93)1  and  (93)2  they are in a single transitiv-

ity class.  This is indeed the situation, as is easy to verify and as we will see in Section 

2.2.  (Note that  (93)1  is the Pappus configuration, which we encountered in Section 1.1.) 

 So far all the derived figures we considered were of a “local” type, related to fea-

tures of the configuration that depended on the relations of each individual point with the 

other elements of the configuration.  We shall now consider a “global” derived figure, 

which was used in several works of H. Gropp.   

 In Section 1.4 we briefly mentioned the Menger graph of a configuration.  Its 

nodes are all the vertices of the configuration, and edges connect pairs of nodes that cor-

respond to vertices incident with a line of the configuration.  As easy to see, this graph is 

almost always rather unwieldy, and has had very little use.  However, in many instances 

its complement, that is, the graph on the same nodes, but with edges connecting pre-

cisely those pairs which are not endpoints of an edge in the Menger graph.  This graph 

has been called by Gropp the configuration graph; in Section 1.4 following [M5] we 

called it the deficiency graph.  The deficiency graphs of the three (93) configurations in 

Figures 1.1.6 and 2.2.1 are shown in Figure 2.2.2 and used in Section 2.2 to distinguish 

between the three possible configurations (93). 

 The deficiency graph can be used to quickly decide whether the vertices of the 

(124, 163) configuration in Figure 1.7.6 form one transitivity class. We consider its defi-

ciency graph shown in Figure 1.7.7.  The nodes P, Q, X are not in any 3-circuit, while the 

nine other nodes are in such circuits. Together with the obvious d3 symmetry of the geo-

metric realization in Figure 1.7.6, this means that P, Q, X are in one orbit, and that the 

other vertices form either one orbit, or they are in two orbits.  It is easy to verify that the 
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permutation (NMO)(RTV)((SWU)(P)(Q)(X), together with the geometric symmetries, 

establishes the single transitivity class of the nine points. 
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Figure 1.7.6. A (124, 163) configuration. 
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Figure 1.7.7. The deficiency graph of the (124, 163) configuration in Figure 1.7.6. 
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 Another example of the use of deficiency graphs is given in DiPaola-Gropp [D6], 

where combinatorial configurations (214) are studied.  Using various combinatorial tech-

niques they produce 200 non-isomorphic configurations of this kind, 12 of which are 

selfdual.  They are recognized as non-isomorphic by the use of their deficiency graphs –– 

except that one pair of non-isomorphic configurations has the same graph.  They do not 

list the other configurations, but present configuration tables for these two (and their con-

figuration graphs).  They also do not make any statements regarding geometric realizabil-

ity.  I was curious whether the selfdual geometric configuration (214) from [G50] (shown 

in Figure 1.7.8) is isomorphic to one of these – and using the given configuration graph 

of the DiPaola-Gropp paper, it is easy to verify that our configuration is not isomorphic to 

either of these. In Table 1.7.1 we show a corrected copy of their tables.  Since the vertices 

of our (214) form one orbit under automorphisms, in order to show that it is not isomor-

phic to the DiPaola-Gropp configurations it is enough to compare one of its remainder 

figures with any one of the latter.  The remainder figure of the vertex A in Figure 1.7.8 is 

shown in Figure 1.7.10(a). The remainder figure of node 1 of the first graph in Figure 

1.7.9 is shown in Figure 1.7.10(b); since it has a 5-valent vertex, the geometric configura-

tion is not isomorphic to either of the two combinatorial ones. 
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Figure 1.7.8.  A geometric configuration (214) from [G50]. 



  Page 1.7.10 

Configuration 749   Graph (749) 
1 2 3 22 (1,5) (1,6) (1,7) (1,8) 
1 4 13 24 (1,11) (1,12) (1,17) (1,23) 
1 9 16 18 (2,4) (2,6) (2,8) (2,9) 
1 10 14 15 (2,10) (2,12) (2,18) (2,23) 
2 5 14 24 (3,4) (3,5) (3,7) (3,9) 
2 7 16 17 (3,10) (3,11) (3,16) (3,23) 
2 11 13 15 (4,8) (4,9) (4,14) (4,15) 
3 6 15 24 (4,16) (4,18) (5,7) (5,9) 
3 8 17 18 (5,13) (5,15) (4,16) (5,17) 
3 12 13 14 (6,7) (6,8) (6,13) (6,14) 
4 5 6 23 (6,17) (6,18) (7,11) (7,12) 
4 7 10 22 (7,14) (7,15) (8,10) (8,12) 
4 11 12 17 (8,13) (8,15) (9,10) (9,11) 
5 8 11 22 (9,13) (9,14) (10,13) (10,17) 
5 10 12 18 (10,21) (10,23) (11,14) (11,18) 
6 9 12 22 (11,21) (11,23) (12,15) (12,16) 
6 10 11 16 (12,21) (12,23) (13,16) (13,17) 
7 8 9 24 (13,22) (14,17) (14,18) (14,22) 
7 13 18 23 (15,15) (15,18) (15,22) (16,22) 
8 14 16 23 (16,24) (17,22) (17,23) (18,22) 
9 15 17 23 (18,24) (22,23) (22,24) (23,24) 

Configuration 799  Graph (799) 
1 2 3 22 (1,5) (1,6) (1,8) (1,9) 
1 4 13 24 (1,10) (1,12) (1,16) (1,23) 
1 7 17 18 (2,4) (2,6) (2,7) (2,9) 
1 11 14 15 (2,10) (2,11) (2,17) (2,23) 
2 5 14 24 (3,4) (3,5) (3,7) (3,8) 
2 8 16 18 (3,11) (3,12) (3,18) (3,23) 
2 12 13 15 (4,8) (4,9) (4,14) (4,15) 
3 6 15 24 (4,17) (4,18) (5,7) (5,9) 
3 9 16 17 (5,13) (5,15) (5,16) (5,18) 
3 10 13 14 (6,7) (6,8) (6,13) (6,14) 
4 5 6 23 (6,16) (6,17) (7,11) (7,12) 
4 7 10 22 (7,13) (7,14) (8,10) (8,12) 
4 11 12 16 (8,14) (8,15) (9,10) (9,11) 
5 8 11 22 (9,13) (9,15) (10,15) (10,16) 
5 10 12 17 (10,23) (10,24) (11,13) (11,17) 
6 9 12 22 (11,23) (11,24) (12,14) (12,18) 
6 10 11 18 (12,23) (12,24) (13,16) (13,18) 
7 8 9 24 (13,22) (14,16) (14,17) (14,22) 
7 15 16 23 (15,17) (15,18) (15,22) (16,22) 
8 13 17 23 (16,24) (17,22) (17,24) (18,22) 
9 14 18 23 (18,24) (22,23) (22,24) (23,24) 
Table 1.7.1. The configuration tables of two non-isomorphic combinatorial configura-
tions (214) and their isomorphic configuration graphs (from [D6]).  The isomorphism is 
established by the permutation mapping Graph (749) onto Graph (799):   
(1,13,2,14,3,15)(4,8,6,7,5,9)(10,17,11,18,12,16)(22,23). The peculiar names of the marks 
(19,20,21 not used) are from [D6]. The two red entries are not correct in the original. 
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Figure 1.7.9. (a) The remainder figure of vertex A in Figure 1.7.8. All other vertex fig-

ures are isomorphic to this. (b)  The remainder figure of vertex 1 in the configuration 

(749) of Table 1.7.1. 

 

Exercises. 

1.7.1. For the  (163, 124)  configuration of Figure 1.7.4(c) consider the derived figures 

of lines of each of the two symmetry classes.  Find an automorphism that maps one line 

in one symmetry class to a line in the other class, and use that to show that all the lines 

belong to a single transitivity class.  Show that all points belong to a single transitivity 

class, and that, in fact, all flags are in one transitivity class. 

1.7.2. Use derived figures of lines to show that the two  (203, 154)  configurations in 

Figures 4.3.3 and 4.3.4 are not isomorphic.  Show also that in each of these configura-

tions the lines (as well as the points) form two transitivity classes.  How many transitivity 

classes of flags are there? 

1.7.3 For the configuration we denote (103)3 in Section 2.2, conduct an analysis of its 

automorphisms and symmetries analogous to the one we did above for (103)9. 
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1.7.4. In continuation of our discussion concerning the configuration (124, 163) shown 

in Figure 1.7.6, decide how many orbits of lines are there under the group of automor-

phisms. 

1.7.5 Investigate the orbits, automorphisms and symmetries of the configuration 

(124, 163) shown in Figure 4.3.7(b). 

1.7.6 Are any of the three configurations in Figure 4.3.7 isomorphic? 

1.7.7. Show that the vertices of the (214) configuration in Figure 1.7.8 are in a single 

orbit under automorphisms. 

1.7.8 Find the automorphisms of the configuration denoted (749) in Table 1.7.1. 


