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1.5 SYMMETRY 
 
 By a symmetry of an object we generally mean a mapping of the object onto it-

self that preserves some relevant features of the object.  For configurations, by symmetry 

we shall understand that the incidence relations are preserved, but will also impose other 

requirements that will depend on the kind of configuration considered and on other as-

pects of the discussion. 

 More specifically, for combinatorial configurations a symmetry is just an inci-

dence preserving one-to-one mapping (permutation) of the elements of the configuration 

onto themselves.  We find it convenient to distinguish between automorphisms, that is 

symmetries that map marks to marks and blocks to blocks, and dualities, that map marks 

to blocks and vice versa.  By an automorphism of a geometric or topological configura-

tion we shall understand an automorphism of the underlying combinatorial configuration.  

 For topological configurations a symmetry is a homeomorphism of the plane onto 

itself that maps the configuration onto itself.  However, in different contexts, this defini-

tion should be understood in one of three ways, depending on the plane we are consider-

ing.  This can be either the Euclidean plane E2, or the extended Euclidean plane E2+, or 

the projective plane P2.  Although the projective plane is homeomorphic with the ex-

tended Euclidean plane, when considering symmetries of E2+ we require that the line-at-

infinity be mapped onto itself.  It follows that the symmetries of a topological configura-

tion in E2+ can be a proper subset of the symmetries of such a configuration in P2. 

 Analogously, symmetries of geometric configurations in E2 are isometries of the 

plane that map the configuration onto itself.  For geometric configurations in E2+ we need 

an isometry of E2 that maps the finite part of the configuration onto itself and permutes 

the points-at-infinity. 

 For both topological and geometric configurations it is sometimes useful to in-

clude dualities among their symmetries.  In particular, for geometric configurations a 

special type of duality is called polarity or reciprocation, since it arises by the polarity 

(also called reciprocation by some) in a circle. 

 As is obvious, in each of the interpretations of the term "symmetry", all symme-

tries of a configuration form a group, the symmetry group of the configuration (in the 

appropriate sense).  Quite often it is convenient to consider only a subgroup of the sym-
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metry group of a configuration.  In such a case we shall say that the group in question is a 

group of symmetries of the configuration. 

 We shall soon see examples of these various interpretations of "symmetry". But 

first we should discuss two aspects of symmetries of geometric configurations (that apply 

in some cases to the other kinds of configurations as well) that lead to classifications of 

the appropriate configurations. 

 Our first concern is the collection of orbits of the configuration under the symme-

try group of the configuration.  If a configuration has h1 orbits of points and h2 orbits of 

lines we shall occasionally say that it is of orbit type [h1, h2] or [h1, h2]-orbital.  We 

note that no geometric or topological (nk) configuration with  k ≥ 3  can have a single or-

bit of points, or a single orbit of lines; in contrast, there are many such combinatorial 

configurations of this type, and even of [1,1] orbit type.  More generally, if a geometric 

[q,k]-configuration (that is, a (pq, nk) configuration) is [h1, h2]-orbital, then  h1 ≥ [(k+1)/2] 

and h2 ≥ [(q+1)/2].  This is a consequence of the fact that no isometric symmetry can map 

the middle one of three collinear points onto one of the other points of the triplet, and 

analogously for lines.  In case equality holds in both inequalities we shall say that the 

configuration is astral.  Most interesting seem to be [h1, h2]-orbital configurations with 

h = h1 = h2; in that case we shall simplify the language by calling the configuration  

h-orbital or, more often, h-astral.  If the values of h1, h2 or h are not relevany or not 

known, we shall speak of multiastral configurations. (More on this terminology at the 

end of the present section.) 

 In many situations we shall be dealing with configurations in which all orbits 

have the same number of elements; however, some cases in which this condition is not 

fulfilled do have interesting features, and lead to various questions.  In any case, this is 

not a requirement included in the definition. 

 The other aspect of symmetry considerations for a geometric configuration is the 

determination of its symmetry group.  From the well-known classification of isometries 

of the Euclidean plane it follows that the symmetry group of a geometric or topological 

configuration is either a cyclic group cr or a dihedral group dr, where  r  is a positive 

integer.  The group cr consists of rotations about a center through integer multiples of 
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2p/r, the zero multiple being the identity.  The group dr consists of the same rotations as 

its subgroup cr, together with  r  mirrors, that is lines of reflective isometry. 

 For example, the configuration in Figure 1.5.1(a) has symmetry group d10, the one 

in (b) has symmetry group d5.  Other illustrations are given in Figure 1.5.2 and 1.5.3. 

 Although configurations with non-trivial symmetry group occurred in the litera-

ture from time to time, it is the recent –– last twenty years or so –– systematic concern 

with very symmetric configurations that led to the revival of interest in the whole topic of 

configurations.  We shall investigate symmetric configurations of various kinds in several 

of the following sections. 

 
(a)        (b) 

Figure 1.5.1.  Geometric configurations (304) of orbit type [3,3] (that is, 3-astral) and 

(254) of orbit type [3,4]; the orbits are color-coded.  The configuration in (a) has symme-

try group d10 and all (point and line) orbits of size 10.  The configuration in (b) has sym-

metry group d5, two orbits of size 10 and one of size 5 for points, and one orbit of size 10 

and three of size 5 for lines. 
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Figure 1.5.2. Two geometric configurations (143) of the orbit type [2,2], and with symme-
try group c7. Both are astral. 
 

 
Figure 1.5.3. A geometric configuration (183) of the orbit type [2,2] with symmetry group 

d6 in the extended Euclidean plane. This configuration cannot be represented with high 

symmetry in the Euclidean plane, but it is astral in the extended Euclidean plane E2+. 

 

 As an example of the use of the different notions of symmetry we reproduce as 

Figure 1.5.4 once more Figure 1.3.3, and show its Levi graph in Figure 1.5.5.  Although 

the symmetry group of this configuration is c5, the symmetries of its Levi graph show that 

the automorphism group of this configuration is c10, and the group of automorphisms and 

selfdualities is d10. 
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Figure 1.5.4.  This (103) configuration has symmetry group c5, and orbit type [2,2]; hence 
it is astral. 
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Figure 1.5.5.  The Levi graph of the (103) configuration shown in Figure 1.5.4.   

 

 One urgent note of caution.   

 As is the case in many rapidly developing fields, the terminology of configura-

tions with varying degrees of symmetry is still unsettled. One could almost claim that 

each author introduces separate concepts, and often even changes them from paper to pa-

per.  This has certainly been the case with the present writer –– naturally, on each occa-

sion there was some good reason for the terms introduced and used. 

 The astral, h-astral and [h1, h2]-astral terminology we shall use in this book is a 

development of the various similar concepts introduced in [G39], [G40], and [G46].  It 
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should be stressed that although astral configurations are visually attractive and theoreti-

cally most easily investigated, for many kinds of configurations they are not the smallest 

possible. 

 In [B20] M. Boben and T. Pisanski introduced a related terminology, dealing with 

polycyclic configurations in the Euclidean plane.  They call a configuration C  k-cyclic 

provided there exists an automorphism  α  of order  k  of the underlying abstract configu-

ration such that all orbits of points and lines of  C  under  α  have the same size  k  (that 

is, number of elements in each is k).  In this terminology the configuration in Figure 

1.5.1(a) is 10-cyclic (with three orbits of points, and three orbits of lines), while the con-

figuration in Figure 1.5.1(b) is 5-cyclic (with five orbits each of points and lines).  The 

two configurations in Figure 1.5.2 are 7-cyclic. 

 Another related concept is that of celestial configurations, considered by L. 

Berman in [B7].  We shall discuss it in Chapter 3. 

 

Exercises and problems 1.5. 

 

1. Decide whether the two (143) configurations in Figure 1.5.2 are isomorphic. 

2. Find the symmetry group of each of the configurations (123) in Figure 1.3.8. 

3. Consider the different realizations of the Pappus configuration (93)1 in Figure 

1.5.6.  Maps between the different realizations establish automorphisms of the underlying 

combinatorial configuration. Find permutation representations for each of these map-

pings. Which of them correspond to geometric (isometric) symmetries? 

4. Show that all points of the combinatorial configuration underlying the Pappus 

configuration (93)1 form a single orbit (under automorphisms).  What about the lines? 

What about the other two configurations (93) (see Figure 1.1.6)? 

5. Show that there exist combinatorial configurations such that all the points are in 

one orbit (under automorphisms) but the lines belong to more than one orbit. 
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Figure 1.5.6.  Four realizations of the Pappus configuration (93)1. 


