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1.4 TOOLS FOR THE STUDY OF CONFIGURATIONS

There are many different ways to relate configurations of points and lines to other
mathematical objects; these are often useful in investigating configurations. In Section
1.3 we encountered one example of such a tool — the underlying set-configuration and
its configuration table. A related concept, which is helpful in the context of more general
combinatorial structures as well, is the incidence matrix of the configuration. Specifi-
cally for configurations, incidence matrices seem to have been introduced by Levi [L3],
and we shall usually call them "Levi incidence matrices". Levi makes the rows of a ma-
trix correspond to the points of the configuration, and the columns to the lines (or vice
versa). An incidence between a point and a line is indicated by a marking of the corre-
sponding element of the matrix. This can be done by assigning to such matrix elements
the value 1, and to the others 0, or by some other specification. Levi's own preference is
to use an array of small squares, and an X marked in each square that represents an inci-
dence. As an illustration, consider the set-configuration we shall encounter in Section
2.2, and denote there by (103)4. A configuration table is shown in Table 1.4.1, and a
Levi incidence matrix in Figure 1.4.1(a). By a suitable permutation of the rows and
columns of that matrix, we obtain the Levi incidence matrix in Figure 1.4.1(b). This
latter form demonstrates one of the uses of incidence matrices: It shows at a glance
that the configuration in question is selfdual, since the matrix is symmetric with re-

spect to the main diagonal.

a b c de f g h i j
1 11823 23 435
2 4 6 9 46 576 7
35701889900

Table 1.4.1. A configuration table for a configuration discussed in Section 2.2, and de-
noted there by (10;),. The notation is adapted from Schroeter [S8]. Two versions of
the Levi incidence matrix of this configuration are shown in Figure 1.4.1, and its con-
figuration graph in Figure 1.4.2. A realization with pseudolines appears in Figure

1.2.2.

Comment:
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alblc|d]e|f]g|hli]]j c|lbli]jle|flalh]|g|d

1 XX 3 X|X[X

2 X X X 2 X X X

31X X X 8 X[ X X

4 X X X 9 X[ X| X

5 X X X 4 XX X

6 X X X 6 (X X X

7 X X X 1 [X[X X

8 XXX 7 (X X X

9 X XX 3 X X X

0 X X| X 0 XX X
(a) (b)

Figure 1.4.1. Two versions of the Levi incidence matrix of the configuration table in
Table 1.4.1. In (a) the matrix is formed in the obvious way, while the rearranged
form in (b) illustrates the selfduality of the configuration. Part (b) is adapted from
Laufer [L1].

Several graphs have been attached to configurations; it is probably simplest to de-
scribe them in terms of geometric configurations, although the concepts apply to topo-
logical and combinatorial configurations (with appropriate changes in wording), and even

to more general combinatorial systems.

The earliest of these graphs was proposed by K. Menger in a course on projective
geometry at Notre Dame University in 1945. It seems that he never published on the
topic; the first publication discussing it is a paper (doctoral thesis under Menger's super-
vision) of M. P. van Straten [V3] in 1949. The name "Menger graph" appears to have
been introduced by Coxeter in [C5] and [C6]; it has been used in other works as well, for
example in van Maldeghem [V2]. It will also appear later in this book, in Section 5.1.
The Menger graph M(C) of a configuration C is the graph with vertices corresponding
to those of C; an edge of M(C) connects two of its vertices if and only if the correspond-
ing points of the configuration are collinear on a line of the configuration. There seem to
have been only few uses of this kind of graph. One mention of the Menger graph of a
configuration is in the paper by Di Paola and Gropp [D6], in connection with their defini-
tion of the "configuration graph" of a configuration. It will also appear later in this book,

in Section 5.1. For a configuration C, the configuration graph is the graph with the same
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vertices as C, and with an edge connecting two vertices of the graph if and only if the
corresponding points are not on any line of C; Gropp [G32] calls it the "Martinetti
graph", Mendelsohn ef al. [M5] call it the deficiency graph. We shall use the latter term.
Obviously, in graph theoretic terminology the deficiency graph of a configuration is the
complement of its Menger graph. As we shall see in Section 1.7 and in Chapter 2, con-
structs related to deficiency graphs have been used in some of the earliest papers on con-
figurations, under the name "Restfigur" ("remainder figure") in enumerations of configu-
rations (n3) for small values of n. We shall enlarge on these remainder figures below. An

interesting recent application is also given in Section 1.7.

The major shortcoming of both the Menger and the deficiency graphs is that they
do not uniquely determine the configuration. This was noted already in [M5] and [D6].
The simplest example of distinct configurations having the same configuration graphs is
that of the two (103) configurations which we shall denote (in Section 2.2) by (103); and
(103)4; this is illustrated in Figure 1.4.2. In [MS5, p. 96] a family of such pairs is indicated.

Of far greater importance is the third graph associated with a configuration, its
"Levi graph". This concept was introduced by Levi in [L4], and the name was first used
by Coxeter in [C6]; see also van Maldeghem [V2]. The Levi graph L(C) of a configura-
tion C is the bipartite graph, with "black" points corresponding to the points of C and

(a) (b)
Figure 1.4.2. The configuration graph of the configuration (103)4 specified by the con-

figuration table given in Table 1.4.1 and by the Levi incidence matrices in Figure 1.4.1 is
shown in (a). In (b) is the isomorphic configuration graph of the Desargues configura-

tion, denoted by (103); in Section 2.2, and using the label shown there.
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Figure 1.4.3. The Levi graph L(C) of the topological configuration C = (103)s. The
color-reversing mirror symmetry of the graph shows that the configuration (10s), is self-

dual, under the correspondence implied by the symmetry.

"white" points to the lines of C; two points of the Levi graph determine an edge if and
only if one represents a point and the other a line incident with that point. As an illustra-
tion we show in Figure 1.4.3 the Levi graph L(C) of the (combinatorial and topological)

configuration (103)s.

The importance of Levi graphs derives from their one-to-one correspondence with
combinatorial configurations. More specifically, we have the following widely used re-
sult:

A bipartite graph G is the Levi graph L(C) of a [q,k]-configuration C if and
only if:

¢ All black vertices are g-valent, all white vertices are k-valent;
* G has girth at least 6, that is, all circuits in G have length at least 6. In particular,

G has no loops or digons.

The correspondence between G =L(C) and C is one-to-one, up to isomorphism in each

class of objects.

Various graph-theoretic concepts can be transferred to configurations by the use

of Levi graphs. For example, we say that a configuration is connected or c-connected
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for some integer c if and only if its Levi graph is connected resp. c-connected. Translated
into the terminology of configurations, connectedness means that any two elements can
be included in a multilateral path; a configuration C is c-connected if on selecting any
c—1 elements of C, any pair of the remaining elements can be connected by a multilateral

path that does not use any of the selected elements.

A not entirely trivial result, easily provable using Levi graphs, is that any k-
connected configuration of is 2-connected. We shall see this in Section 5.1, together with

a discussion of some related questions.

As mentioned earlier, a concept related to configuration graphs are the "remainder

figures". We shall put it in a more general setting, and we define:

Definition 1.4.1. Given a configuration C and a point P of C, the com-
plementary graph of C at P consists of the points of C that are not collinear with P
on any line of C, and the segments connecting pairs of these points. The complemen-
tary graph complex of C is the family consisting of complementary graphs of C at all
its points P. It is usually more convenient to take, instead of the family, the union of the

members of the family.

1 2 3 4 5 6 7 8

2 3 4 5 6 7 8 1

4 5 6 7 8 1 2 3
Table 1.4.2. The configuration table of a set configuration (8;3).

For example, for the configuration (8;) given by the configuration table in Table
1.4.2, the complementary graph at each point is a singleton vertex, and the complemen-
tary graph complex consists of eight isolated vertices. Analogously, the complementary
graph complex of the combinatorial configuration (144) shown in Table 1.4.3 consists of
14 isolated vertices. For each of the combinatorial configurations (9;) (see Figure 1.1.5)
and (154) (see section 3.1) the complementary graph complex consists of one or more cir-
cuits that cover all the vertices of these configurations; more about these cases in Sections

2.2 and 3.1. It should be noted that in general, the isomorphism of the complementary
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graph complexes of two configurations does not imply the isomorphism of the configura-

tions; this is illustrated in Section 2.3.

A A A A B B B C C C D D D E
B F G H G H E H E F E F G F
c L N P L M P L M N L Q M G
D M R Q Q N R R Q P N R P H
Table 1.4.3. A configuration table (adapted from [M8]) of a combinatorial configuration

(144).

Each given geometric configuration C determines an arrangement A(C) of the
Euclidean or projective plane. By this is meant the 2-complex consisting of the intersec-
tion points of the lines of C (vertices of A(C)), of the open segments (edges of A(C)) of
each line constituting the complement of the points of the line, and the 2-dimensional
open convex polygons (cells of A(C)) that constitute the connected components of the
complement of the union of the lines. For example, in Figure 1.4.4 we show another
drawing of the (103) configuration C from Figure 1.3.3, in which we made visible all the
intersection points of its lines; the points that are not configuration points are shown by
hollow circles. It is easy to count that, in the Euclidean plane, A(C) has 25 points, 70
edges (twenty unbounded), and 46 cells (20 unbounded). If considered in the projective
plane (that is, the extended Euclidean plane), then it has 60 edges and 36 cells. In either
case, one can apply the appropriate Euler relation, or other results that have been estab-
lished for arrangements to deduce properties of configurations. The concept of arrange-
ment associated with a configuration can be applied to topological configurations as well.

This will be useful in Sections 2.1 and 3.2.
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Figure 1.4.4. The arrangement associated with the (103) configuration from Figure 1.3.3.
* * * * * * *

Other tools have been found very useful in some questions concerning configura-
tions are of a more algebraic character. They have been explained and applied in several
widely quoted and studied works, in particular those by Bokowski and Sturmfels [B25]
and Bokowski [B21]. We shall not have any occasion to use them here, so we advise the
reader interested in seeing how this approach works to consult with the literature.

Another topic we are not going into in this book are programs for computers and
computer graphics. Many of the enumeration results (especially those of a purely combi-
natorial character) have been obtained by using computers. We shall mention a number of
such cases, but do not find it appropriate to enter into details beyond giving credit and
references to the original works.

Much of the work presented in this book could not have been done at all without
the use of widely available software. My main tools were the various consecutive ver-
sions of Mathematica®, Geometer's Sketchpad®, and ClarisDraw®, as implemented on
several generations of Apple® computers. Other computer-related programs and graph-
ics were generated by various collaborators in the joint papers we shall mention in due

course, and I sometimes adapted them to the formats used here.

Exercises and problems 1.4.
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1. Find a "configuration" table for the prefiguration in Figure 1.3.3, and a Levi inci-
dence matrix for it. Find a version of the incidence matrix that exhibits the selfduality of

the prefiguration.

2. Consider the graph determined by the vertices and (finite) segments in Figure

1.4.4. Does it admit a Hamiltonian circuit?

3. For each mark of the set-configuration (144) in Table 1.4.3 find its complementary

graph. Does the complementary graph complex determine any configuration?



