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1.3 BASIC CONCEPTS AND DEFINITIONS 

In this section we shall clarify the fundamental concepts involved in the study of 

configurations.  We shall start with very general definitions that will enable us to special-

ize and particularize the concepts as we find appropriate.  Considerable care is required in 

distinguishing the various related concepts; neglect to do so led to many of the problems 

we mentioned in the historical account in Section 1.2.  The reader who finds the plethora 

of words confusing, should skip the details and return to this section  when the text uses 

terms that need explanation.  This author's position in connection with the abundance of 

terms is that Johann Wolfgang Goethe had it all wrong when (in "Faust", lines 1995-

1996) he has Mephistopheles say: 

"Denn eben wo Begriffe fehlen, 

Da stellt ein Wort zur rechten Zeit sich ein"1 

On the contrary; words are needed (even if they have to be invented) when con-

cepts appear that need to be distinguished from other concepts.  So, here we go. 

A configuration  C  is a family of “points” (sometimes called vertices) and a fam-

ily of “lines” such that, for positive integers p, q, n, k each of the p “points” that consti-

tute the family is “incident” with precisely q of the n “lines”, while each of these “lines” 

is “incident”  with precisely k of the “points”.  The use of quotation marks is meant to 

indicate that these objects can be of any nature whatsoever, as soon as the “incidence” 

relation satisfies what can be considered the natural conditions:  

• It is a symmetric (that is, mutual) relation; 

• An “incidence” can involve only a “point” and a “line”, never two “points” or two 

“lines”; and 

• Two “points” (or “lines”) can be incident with at most one “line” (“point”).  

 Moreover, it is assumed throughout the book that use of the word configuration 

implies that there is a “point” and a “line” that are not “incident” with each other.  The 

totality of "points" and "lines" of a configuration will be called its elements. 

                                                
1 Freely translated: "Where concepts are missing, a word soon appears." 
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A configuration C with parameters  p, q, n, k  will in general be denoted by 

(pq, nk).  The concept of  (pq, nk) configurations and the notation for it were introduced 

by de Vries [D5] in 1888.  If the particular values of p and n are not important, we shall 

say that we have a [q,k]-configuration.  If q = k we shall simplify the notation by dis-

pensing with the brackets and write k-configuration. In the terminology of a parallel 

universe, what we call a [q,k]-configuration is known as a "geometry of order (q-1, k-1)", 

see, for example, van Maldeghem [V2].  Note that a [q,k]-configuration is called a "slim 

geometry" in the terminology of that universe, and a 3-configuration is a "bislim geome-

try".   

By counting the total number of incidences in a configuration (pq, nk), it follows 

that a necessary condition for the existence of a configuration with parameters p, q, n, k  

is the equation  pq = nk. 

There are additional necessary conditions.  Each “point” of (pq, nk) is “incident” 

with q “lines”, each of which is “incident” with k–1 other “points”. Hence there are at 

least  p ≥ q(k–1) + 1  “points”.  A similar argument shows that  n ≥ k(q–1) + 1.  To avoid 

trivialities we shall generally assume that q ≥ 2 and k ≥ 2, which implies that p ≥ 3 and 

n ≥ 3.  (Exceptions will be signaled explicitly.) Although these necessary conditions are 

in many cases sufficient for the existence of some configuration (pq, nk), we shall see in 

the following sections that this is not always the case. 

Much of the time we are interested in configurations (pq, nk) with p = n (and 

therefore q = k).  As already mentioned, it is customary to simplify the notation for such 

configurations, and designate them as  (nk)  configurations, or k-configurations. The 

(nk) notation (or, more precisely, the very similar  nk  notation) was introduced by Reye 

[R2] in 1882; it is convenient in many contexts, but in cases the number of points and 

lines is not known or is nor relevant, it seems illogical to insert the letter  n  that has no 

meaning in such a situation; hence the alternative “k-configuration”  notation.   

In the literature, k-configurations are often called “symmetric”; but this term is 

highly unsuitable since the configurations in question may fail to have any symmetry 
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whatsoever, geometric or combinatorial. (The ill-advised use of "symmetric" in this con-

text seems to go back to erroneous understandings in some late 19th century writings on 

configurations, and possibly to its use in the theory of BIBDs – balanced incomplete 

block designs; the latter are totally irrelevant to the theory of configurations. More about 

this in Section 1.5.) The main objection to the use of "symmetric" in this meaning is that, 

as we shall see throughout the text, configurations exhibiting certain genuine symmetries 

– combinatorial or geometric -- are very important.  With much justification it may be 

claimed that configurations with geometric symmetries have been the motivating factor in 

the recent great expansion of knowledge about configurations.  Hence bestowing the de-

scriptor "symmetric" to configurations that may be totally devoid of symmetries is down-

right misleading.  In the present book we shall say that k-configurations are balanced; it 

is hoped that this term will become the accepted designation for k-configurations.  (The 

use of "balanced" in the BIBD theory is not compromised by this use for configurations, 

just as the use of "symmetric" for BIBDs raises no problems for configurations.) 

We shall be concerned with configurations at three levels of generality.  In the 

most restricted sense, “points” and “lines” are interpreted as being the points and lines in 

some space in which these concepts are defined, so as to satisfy the first two groups of 

Hilbert’s axioms. (For these axioms see, for example, Hilbert [H3], Noronha [N1], Sibley 

[S14], Stahl [S16].)  In particular, this interpretation includes the traditional Euclidean 

plane and higher-dimensional Euclidean spaces, as well as the real projective plane and 

higher-dimensional projective spaces.  Unless specifically stated otherwise, we shall con-

sider configurations at this level of generality to be in the real Euclidean plane, or in the 

real projective plane, and call such configurations geometric.  In Appendix A the neces-

sary facts about the Euclidean and projective planes are collected.  The usual way of pre-

senting geometric configurations is by diagrams, in which “points” are represented by 

solid dots and “lines” by straight lines.  Naturally, it must be true (and possible to verify) 

that the presumed lines are straight and that the incidences actually occur; some diagrams 

can be misleading, as illustrated by Figure 1.2.2.  More details on this topic will be found 

in Section 2.2.  For general discussions of the topic of drawing configurations see [G21], 

[G26]. 
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In the most general sense we shall consider combinatorial (or abstract) configu-

rations; we shall use the term set-configurations as well.  In this setting “points” are in-

terpreted as any symbols (usually letters or integers), and “lines” are families of such 

symbols; “incidence” means that “point” is an element of a “line”.  It follows that combi-

natorial configurations are special kinds of general incidence structures.  Occasionally, in 

order to simplify and clarify the language, we shall for "points" use the name marks, and 

for "lines" we shall use blocks.  The main property of geometric configurations that is 

preserved in the generalization to set-configurations (and that characterizes such configu-

rations) is that two marks are incident with at most one block, and two blocks with at 

most one mark.  The usual way of presenting set-configurations is by configuration ta-

bles.  In such a table the marks of each block are listed in a column that represents the 

block.  If necessary or convenient, a label for the block may be indicated at the head of 

each column, but in other cases this may not be needed. An example of a set-

configuration (163, 124) is shown in Table 1.3.1 (with block labels); in Table 1.3.3 we 

dispensed with the block labels.  Sometimes a combinatorial configuration (pq, nk) is pre-

sented simply as a family of n  k-tuples formed from  p  marks, with appropriate restric-

tions.  In [G11] and other papers, H. Gropp faults Hilbert and Cohn-Vossen [H4] and 

Coxeter [C6] for being interested in structures "realized in real geometry" and not in the 

"more modern 'schematical' configurations".  This seems to the present author to be quite 

inappropriate, especially since in most of his papers Gropp does not warn the reader that 

his use of "point" and "line" is meant in purely combinatorial sense. 

 

a b c d e f g h i j k l 

A A A H B B B I C C J D 

H N G N H N I P O J O K 

I O L P G M J M M K P L 

C D E K F E D L F E G F 

Table 1.3.1.  A configuration table for a set-configuration (163, 124). 
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It is immediate from the definitions that every geometric configuration gives rise 

to a set-configuration: Just label the points of the geometric configuration, and use these 

labels as marks to construct a configuration table.  As can be checked very easily, the set- 

configuration in Table 1.3.1 corresponds in this way to the (163, 124) geometric configu-

ration in Figure 1.3.1.  However, as we shall illustrate in Section 2.1, the converse is not 

valid: there are set-configurations that do not correspond to any geometric configuration. 

The relationship between the configurations in Table 1.3.1 and Figure 1.3.1 is 

sometimes formulated by saying that the former underlies the latter, and that Figure 1.3.1 

is a geometric realization of the set-configuration in Table 1.3.1. 

A remarkable result goes back to Steinitz [S17], in the classical period of the the-

ory of configurations.  In one formulation, it states that every combinatorial 

k-configuration can be presented in an orderly configuration table.  A configuration table 

is orderly if each point (mark) appears in each row of the table once and only once.  We 

shall discuss this result and some of its ramifications in Section 2.5. 
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Figure 1.3.1.  A geometric configuration (163, 124), with points labeled in such a way as 

to yield the configuration table in Table 1.3.1. 
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If the points and lines of two configurations C’ and C” admit labels such that a 1-

to-1 correspondence τ of points to points (and lines to lines) preserves incidences, we 

shall say that C’ and C” are isomorphic (or combinatorially equivalent, or of the same 

combinatorial type); sometime we shall also wish to make explicit the correspondence 

τ.  With appropriate interpretation, this terminology applies to set-configurations as well. 

For example, the set-configuration in Table 1.3.1 is isomorphic to the geometric configu-

ration in Figure 1.3.1 with τ the identity transformation ι of the labels.  If an incidence-

preserving correspondence maps points to lines (and vice versa), it is said to be a duality, 

and the configurations are said to be dual to each other.2  A configuration table of the 

configuration dual to the one in Table 1.3.1 is shown in Table 1.3.2 and in Figure 1.3.2 is 

a geometric configuration dual to the one in Figure 1.3.1. 

Here again a warning seems necessary.  Some authors (for example, van 

Maldeghem [V2]) use the word "realization" in a different meaning.  In particular, they 

allow (geometric) realizations of set-configurations to have additional incidences, not 

among the ones in the underlying set-configurations. Put differently, they use "realiza-

tion" for a different concept, which we shall encounter below under the designation "rep-

resentation".  Thus, for us, a geometric realization of a set-configuration is isomorphic to 

it, while a representation that is not a realization is not isomorphic to it. 

Some configurations are isomorphic to configurations dual to them. In such cases 

we call the configuration selfdual.  In other words, a configuration C is selfdual if there is 

an incidence-preserving correspondence  τ  that maps the points of C onto its lines and 

vice versa; such correspondence  τ  is called a selfduality, and it is obvious that in this 

case the inverse  τ-1  is a selfduality as well.  In many cases (but not always)  τ2  is the 

identity map  ι.  An example of a selfdual configuration with  τ2 = ι  is shown in Figure 

1.3.3.  We shall discuss this topic in much more detail in Sections 2.10 and 5.8. 

                                                
2  It is unfortunate that Coxeter [C6] uses "dual configurations" to mean any pair 

consisting of a (pq,nk) configuration and a (nk,pq) configuration; in this terminology any 

(nk) configuration is selfdual. This error has been copied by Evans [E1*]. 
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There is often a need to consider families of points and lines (or marks and 

blocks) that fail –– by a "few" incidences –– to be configurations in the sense we use 

here.  We say that such a family is a prefiguration.  We shall often encounter two types 

of prefigurations, although other types occur at times. 

 

A B C D E F G H I J K L M N O P 

a e a b c e c a a g d c f b b d 

b f i g f i e d g j j h h d i h 

c g j l j l k e h k l l i f k k 

Table 1.3.2.  A configuration table of the dual of the configuration in Table 1.3.1 and in 

Figure 1.3.1. 
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Figure 1.3.2.  A geometric configuration that is a realization of the set-configuration in 

Table 1.3.2.  It is dual to the configuration in Figure 1.3.1.  The arrows indicate “points-

at-infinity”, and the “line-at-infinity”, indicated by the infinity symbol, is also part of the 

configuration. Explanations of this kind of diagrams in the projective (or extended 

Euclidean) plane are given in Appendix A. 
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Figure 1.3.3. An example of a selfdual configuration (103).  The selfduality mapping τ 
interchanges the upper- and lower-case letters.  Hence clearly  τ2 = ι, the identity. 

A superfiguration (pq, nk) is a family of “points” and “lines” with ”incidences” 

as in the definition of configurations, such that each of the p “points” is “incident” with 

at least q of the n “lines”, and each “line” is “incident” with at least k of the “points”.  If 

the number of incidences exceeding that in a [q,k]-configuration is s, we shall sometime 

say that it is an #s-superfiguration.  An example of a remarkable (and quite useful – see 

Section 2.11) superfiguration is shown in Figure 1.3.4; it is a #2-superfiguration of a 

3-configuration, since there is one line incident with four points and one point incident 

with four lines.  (This is taken from [G36]; it also appears in [B25] and [M18], and 

probably in other places as well.)  Superfigurations often arise through "accidental" inci-

dences in configurations that have realizations depending on variable parameters.   

 In another way of looking at this situation is that sometimes it is necessary or 

convenient to consider certain superfigurations as representing combinatorial configura-

tions. As already mentioned, by a representation we mean a family of points and lines 

such that all the combinatorial incidences are satisfied but some points may be on lines 

with which they are not incident in the combinatorial configuration, or some pairs of dis-

tinct points (or lines) of the combinatorial configuration may be represented by single 

points (or lines).  A typical example of such a superfiguration is shown in Figure 1.3.5, 
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which is a representation of the set-configuration specified in Table 1.3.3.  The point 1 in 

Figure 1.3.5 lies on the line 089 but is not incident with it according to Table 1.3.3. 

 

 1 1 1 2 2 3 3 0 0 0 

 2 4 6 4 7 5 6 4 5 8 

 3 5 7 8 9 9 8 6 7 9 

Table 1.3.3.  A configuration table of a set-configuration (103). We shall encounter this 
configuration again in Section 2.2. 
 

 

Figure 1.3.4.  An example of a geometric #2-superfiguration (93), in which one point is 

incident with four lines, and one line is incident with four points. 
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Figure 1.3.5.  A #2-superfiguration that is a representation (but not a realization) of the 

set-configuration specified by the configuration table in Table 1.3.3. 
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In the same vein we call subfiguration (or #s-subfiguration) a family that is 

short by a number of incidences (specifically,  s  incidences) to be a  [q,k]-configuration.  

An illustration of this concept is provided in Figure 1.3.6.  Other examples will become 

very important in Section 2.5. 

P

L

 
Figure 1.3.6.  A subfiguration of a (73) configuration.  If the line L were incident with the 

point  P, this would be a configuration.  However, as we shall see in Section 2.1, there 

exists no geometric configuration (73), although a set-configuration of this type is possi-

ble. 

* * * * * 

 Intermediate in generality between set-configurations and geometric configura-

tions are topological configurations, also known as configurations of pseudolines. A 

family of simple curves in the (projective or Euclidean) plane is a family of pseudolines 

provided each curve differs from a straight line in at most one segment of the Euclidean 

(or projective) line, and any two curves have at most one point in common, at which they 

cross each other. We shall discuss pseudolines in more detail in several of the following 

sections.  The definition implies that any two points are incident with at most one pseu-

doline.   

 Configurations of pseudolines are defined in complete analogy to configurations 

of lines, with pseudolines taking the place of “lines”.  As an example of a topological 

configuration we may take Kantor’s presumed configuration shown in Figure 1.2.2, 

which – as we mentioned in Section 1.2 and will prove in Section 2.2 –– is not realizable 

as a configuration of lines.  Other examples are shown in Figure 1.3.7.  Clearly, any 

geometric configuration can be understood as a topological configuration, and each of the 

latter has an underlying set-configuration.  It is easily seen that each topological configu-
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ration is isomorphic to a configuration in which each pseudoline consists of a finite num-

ber of (straight) segments (including rays, considered as segments).  For a detailed dis-

cussion of the various concepts of pseudolines that appear in the literature see [E4]. Sev-

eral problems of combinatorial geometry that involve pseudolines are discussed in [G37]. 

It is clear that if a set-configuration is geometrically representable by a 

superfiguration C, it is also realizable by a topological configuration. The pseudolines 

may be "bent" to avoid offending incidences.  However, not every superfiguration can be 

realized by a topological configuration. For example, the superfiguration in Figure 1.3.4 

is not a representation of any set-configuration, and cannot be realized by a topological 

configuration. 

 

     
Figure 1.3.7.  A (224) and a (304) configurations of pseudolines.  Note how small is the 

departure from straight lines in these examples. It may be conjectured that these configu-

rations are not isomorphic to any geometric configuration; however, this has not been es-

tablished. 

* * * * * 

The terminology of the theory of configurations is very unsettled.  Different writ-

ers, and "schools" use terms that are often quite unrelated to each other, and sometimes 

even carry a different meaning while using the same words.  An example of the former is 

the use of terms like slim and bislim geometries to indicate what we call configurations.  
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On the other hand, some writers discuss at length "configurations" without bothering to 

mention that they have combinatorial – and not geometric – configurations in mind.  

This was to some extent excusable in the nineteenth century, when the essential differ-

ence between the concepts had not yet been recognized. A hundred year later this is ex-

emplary carelessness, or at the least, total disregard for traditional terminology and the 

work of earlier authors.  Still other writers state that configurations are "partial linear 

spaces with constant and equal point rank and line rank"; despite the use of explicit geo-

metric terms (including "n-gons") the configurations they consider are only combinatorial 

(see, for example, [P2], [K1]). 

The internet also abounds with vague, misleading, or wrong entries.  This applies, 

in particular, to the frequently consulted Wikipedia (see [W3], as modified 9 November 

2007) and Mathworld (see [W1], quoted from version dated November 30, 2007). In the 

latter one find, among other inaccurate assertions, that the (73) and (83) configurations are 

realizable with a "point at infinity". 

* * * * * 

It is easy to see that every realization of a set-configuration by points and lines in 

any Euclidean or projective space (of any dimension) can lead by suitable projection to a 

geometric configuration in the Euclidean plane. However, the converse question –– can a 

given geometric configuration be realized in a higher-dimensional space in such a way 

that it is not contained in a subspace –– has a negative answer in some cases. For exam-

ple, each of the three configurations (93) in Figure 1.1.6 is easily seen to be contained in 

the plane spanned by some three of its points.  With this example in view, it is meaning-

ful to define the dimension of a configuration as the largest dimension of a space that is 

spanned by the configuration.  We shall discuss this topic in Section 5.6. 

In many questions about configurations one is concerned with what in the litera-

ture is often called "polygons".  However, this is a misnomer since in most cases it is not 

segments that are relevant as "sides" of the "polygons"; instead, the intention is to deal 

with the lines of the configuration.  We shall call multilateral any sequence of points and 

lines of a configuration that can be written as P0, L0, P1, L1, … , Pr-1, Lr-1, Pr = P0, with 

each Li incident with Pi and Pi+1 (all subscripts understood  mod r).  For example, in the 
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prefiguration shown in Figure 1.3.5, the sequence of points 1, 2, 8, 0, 4, 5, 7, 9, 3, 6, 1 

(and the lines determined by adjacent pairs) determines a multilateral that involves all 

points and all lines.  A  multilateral path satisfies the same conditions except the coinci-

dence of the first and last elements.  A Hamiltonian multilateral passes through all 

points and uses all lines, each precisely once; hence the example just given is a Hamilto-

nian multilateral.  We shall encounter multilaterals in several sections, and in particular 

Section 5.2 is devoted to Hamiltonian multilaterals. 

 
Exercises and problem 1.3. 

1. Show that the superfiguration in Figure 1.3.4 is selfdual.  Find a selfduality map  τ  

such that  τ2 = ι. 

2. Decide whether any of the (123) configurations in Figure 1.3.8 are isomorphic.  

(As a practical matter, to show that two configurations are isomorphic it is sufficient to 

find an isomorphism. To show that they are not isomorphic, it is often simplest to find a 

property that is invariant under all isomorphisms but regarding which the two configura-

tions behave differently. Neither is all that simple to actually carry out, even for rather 

small configurations.) 

 
Figure 1.3.8.  Four configurations (123).  Are any isomorphic? 
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3. What is the smallest  n  required for the existence of a combinatorial configuration 

(n4) ?  Can you find a configuration table for it?  Can you decide whether it is unique (up 

to isomorphism) ? 

4. Do the topological configurations in Figure 1.3.7 admit Hamiltonian multilater-

als?  What about the configurations in Figure 1.3.8? 

5. Determine the dimension of each of the configurations in Figure 1.3.8, and of the 

configuration in Figure 1.3.3. 


