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10 BRANKO GRÜNBAUM

11

12 FF
13 ifty years ago Stanko Bilinski showed that Fedorov’s
14 enumeration of convex polyhedra having congruent
15 rhombi as faces is incomplete, although it had been
16 acceptedasvalid for theprevious 75 years. Thedodecahedron
17 he discoveredwill be used here to document errors by several
18 mathematical luminaries. It also prompted an examination of
19 the largely unexplored topic of analogous nonconvex poly-
20 hedra, which led to unexpected connections and problems.

21Background
22In 1885 Evgraf Stepanovich Fedorov published the results of sev-
23eral years of research under the title ‘‘Introduction to the Study of
24Figures’’ [9], in which he defined and studied a variety of concepts
25thatare relevant toour story.Thisbook-longwork is consideredby
26many tobeoneof themilestones ofmathematical crystallography.
27For a long time this was, essentially, inaccessible and unknown to
28Western researchers except for a summary [10] in German.1

1FL01 1The only somewhat detailed description of Fedorov’s work available in English (and in French) is in [31]. Fedorov’s book [9] was never translated to any Western

1FL02 language, and its results have been rather inadequately described in the Western literature. The lack of a translation is probably at least in part to blame for ignorance of

1FL03 its results, and an additional reason may be the fact that it is very difficult to read [31, p. 6].
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29 Several mathematically interesting concepts were intro-
30 duced in [9]. We shall formulate them in terms that are
31 customarily used today, even though Fedorov’s original
32 definitions were not exactly the same. First, a parallelohe-

33 dron is a polyhedron in 3-space that admits a tiling of the
34 space by translated copies of itself. Obvious examples of
35 parallelohedra are the cube and the Archimedean six-sided
36 prism. The analogous 2-dimensional objects are called
37 parallelogons; it is not hard to show that the only polygons
38 that are parallelogons are the centrally symmetric quad-
39 rangles and hexagons. It is clear that any prism with a
40 parallelogonal basis is a parallelohedron, but we shall
41 encounter many parallelohedra that are more complicated.
42 It is clear that any nonsingular affine image of a parallelo-
43 hedron is itself a parallelohedron.
44 Another new concept in [9] is that of zonohedra. A
45 zonohedron is a polyhedron such that all its faces are
46 centrally symmetric; there are several equivalent defini-
47 tions. All Archimedean prisms over even-sided bases are

48zonohedra, but again there are more interesting examples.
49A basic result about zonohedra is:
50Each convex zonohedron has a center.
51This result is often attributed to Aleksandrov [1] (see [5]),
52but in fact is contained in a more general theorem2 of
53Minkowski [27, p. 118, Lehrsatz IV]. Even earlier, this was
54Theorem 23 of Fedorov ([9, p. 271], [10, p. 689]), although
55Fedorov’s proof is rather convoluted and difficult to follow.
56We say that a polyhedron is monohedral (or is a
57monohedron) provided its faces are all mutually congruent.
58The term ‘‘isohedral’’—used by Fedorov [6] and Bilinski
59[2]—nowadays indicates the more restricted class of poly-
60hedra with the property that their symmetries act
61transitively on their faces.3 The polyhedra of Fedorov and
62Bilinski are not (in general) ‘‘isohedra’’ by definitions that
63are customary today. We call a polyhedron rhombic if all its
64faces are rhombi. It is an immediate consequence of Euler’s
65theorem on polyhedra that the only monohedral zonohe-
66dra are the rhombic ones.
67One of the results of Fedorov ([9, p. 267], [10, p. 689]) is
68contained in the claim:
69
70

71There are precisely four distinct types of monohedral
72convex zonohedra: the rhombic triacontahedron T, the
73rhombic icosahedron F, the rhombic dodecahedron K,
74and the infinite family of rhombohedra (rhombic hexa-
75hedra) H.
76

77

78

79‘‘Type’’ here is to be understood as indicating classes of
80polyhedra equivalent under similarities. The family of
81rhombohedra contains all polyhedra obtained from the
82cube by dilatation in any positive ratio in the direction of a
83body-diagonal.
84These polyhedra are illustrated in Figure 1; they are
85sometimes called isozonohedra. The polyhedra T and K go
86back at least to Kepler [23], whereas F was first described by
87Fedorov [9]. I do not know when the family H was first
88found — it probably was known in antiquity.
89An additional important result from Fedorov [9] is the
90following; notice the change to ‘‘combinatorial type’’ from
91the ‘‘affine type’’ that is inherent in the definition.
92
93

94Every convex parallelohedron is a zonohedron of one of
95the five combinatorial types shown in Figure 2. Con-
96versely, every convex zonohedron of one of the five
97combinatorial types in Figure 2 is a parallelohedron.4

.........................................................................
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2FL01 2Minkowski’s theorem establishes that a convex polyhedron with pairwise parallel faces of the same area has a center; the congruence of the faces in each pair follows,

2FL02 regardless of the existence of centers of faces (which is assumed for zonohedra).

3FL01 3The term ‘‘gleichflächig’’ (= with equal surfaces) was quite established at the time of Fedorov’s writing, but what it meant seems to have been more than the word

3FL02 implies. As explained in Edmund Hess’s second note [21] excoriating Fedorov [10] and [11], the interpretation as ‘‘congruent faces’’ (that is, monohedral) is mistaken.

3FL03 Indeed, by ‘‘gleichflächig’’ Hess means something much more restrictive. Hess formulates it in [21] very clumsily, but it amounts to symmetries acting transitively on the

3FL04 faces, that is, to isohedral. It is remarkable that even the definition given by Brückner (in his well-known book [4, p. 121], repeating the definition by Hess in [19] and

3FL05 several other places) states that ‘‘gleichflächig’’ is the same as ‘‘monohedral’’ but Brückner (like Hess) takes it to mean ‘‘isohedral.’’ Fedorov was aware of the various

3FL06 papers that use ‘‘gleichflächig,’’ and it is not clear why he used ‘‘isohedral’’ for ‘‘monohedral’’ polyhedra. In any case, this led Fedorov to claim that his results disprove

3FL07 the assertion of Hess [19] that every ‘‘gleichflächig’’ polyhedron admits an insphere. Fedorov’s claim is unjustified, but with the rather natural misunderstanding of

3FL08 ‘‘gleichflächig’’ he was justified to think that his rhombic icosahedron is a counterexample. This, and disputed priority claims, led to protests by Hess (in [20] and [21]),

3FL09 repeated by Brückner [4, p. 162], and a rejoinder by Fedorov [11]. Neither side pointed out that the misunderstanding arises from inadequately explained terminology;

3FL10 from a perspective of well over a century later, it seems that both Fedorov and Hess were very thin-skinned, inflexible, and stubborn.

4FL01 4In different publications Fedorov uses different notions of ‘‘type.’’ In several (e.g., [10, 12]) he has only four ‘‘types’’ of parallelohedra, since the rhombic dodecahedron

4FL02 and the elongated dodecahedron ((c) and (b) in Figure 2) are of the same type in these classifications. Since we are interested in combinatorial types, we accept

4FL03 Fedorov’s original enumeration illustrated in Figure 2.
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98

99 Fedorov’s proof is not easy to follow; a more accessible
100 proof of Fedorov’s result can be found in [2, Ch. 8].

101 Bilinski’s Rhombic Dodecahedron
102 Fedorov’s enumeration of monohedral rhombic isohedra
103 (called isozonohedra by Fedorov and Bilinski, and by Cox-
104 eter [7]) mentioned previously claimed that there are
105 precisely four distinct types (counting all rhombohedra as
106 one type). Considering the elementary character of such an
107 enumeration, it is rather surprising that it took three-quarters
108 of a century to find this to be mistaken.5 Bilinski [3] found
109 that there is an additional isozonohedron and proved:
110 Up to similarity, here are precisely five distinct convex
111 isozonohedra.
112 The rhombic monohedral dodecahedron found by
113 Bilinski shall be denoted B; it is not affinely equivalent to
114 Kepler’s dodecahedron (denoted K) although it is of the
115 same combinatorial type. Bilinski also proved that there are
116 no other isozonohedra. To ease the comparison of B and K,
117 both are shown in Figure 3.
118 Bilinski’s proof of the existence of the dodecahedron B
119 is essentially trivial, and this makes it even more mysterious

120how Fedorov could have missed it.6 The proof is based on
121two observations:
122123

124(i) All faces of every convex zonohedron are arranged in
125zones, that is, families of faces in which all members
126share parallel edges of the same length; and
127(ii) All edges of such a zone may be lengthened or
128shortened by the same factor while keeping the
129polyhedron zonohedral.

(a) (b)

(c) (d) (e)

Figure 2. Representatives of the five combinatorial types of

convex parallelohedra, as determined by Fedorov [9]. (a) is

the truncated octahedron (an Archimedean polyhedron); (b)

is an elongated dodecahedron (with regular faces, but not

Archimedean); (c) is Kepler’s rhombic dodecahedron K (a

Catalan polyhedron); (d) is the Archimedean 6-sided prism;

and (e) is the cube.

BK

Figure 3. The two convex rhombic monohedra (isozonohe-

dra): Kepler’s K and Bilinski’s B.

FT

HK

Figure 1. The four isozonohedra (convex rhombic monohe-

dra) enumerated by Fedorov. Kepler found the triacon-

tahedron T and the dodecahedron K, whereas Fedorov

discovered the icosahedron F. The infinite class H of rhombic

hexahedra seems to have been known much earlier.

5FL01 5This is a nice illustration of the claim that errors in mathematics do get discovered and corrected in due course. I can only hope that if there are any errors in the present

5FL02 work they will be discovered in my lifetime.

6FL01 6A possible explanation is in a tendency that can be observed in other enumerations as well: After some necessary criteria for enumeration of objects of a certain kind

6FL02 have been established, the enumeration is deemed complete by providing an example for each of the sets of criteria––without investigating whether there are more than

6FL03 one object per set of criteria. This failure of observing the possibility of a second rhombic dodecahedron (besides Kepler’s) is akin to the failure of so many people that

6FL04 were enumerating the Archimedean solids (polyhedra with regular faces and congruent vertices, i.e., congruent vertex stars) but missed the pseudorhombicubocta-

6FL05 hedron (sometimes called ‘‘Miller’s mistake’’); see the detailed account of this ‘‘enduring error’’ in [13].

� 2010 Springer Science+Business Media, LLC
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130 In particular, all such edges on one zone can be deleted
131 (shrunk to 0). Performing such a zone deletion—a process
132 mentioned by Fedorov—starting with Kepler’s rhombic
133 triacontahedron T yields (successively) Fedorov’s icosahe-
134 dronF,Bilinski’s dodecahedronB, and two rhombohedra, the
135 obtuse Ho and the acute Ha. This family of isozonohedra that
136 are descendants of the triacontahedron is shown in Figure 4.
137 The proof that there are no other isozonohedra is slightly
138 more complicated and is not of particular interest here.

139140 The family of ‘‘direct’’ descendants of Kepler’s rhombic
141 dodecahedron K is smaller; it contains only one rhombo-
142 hedron H*o (Fig. 5). However, one may wish to include in
143 the family a ‘‘cousin’’ H*a—consisting of the same rhombi
144 as H*o, but in an acute conformation.
145 One of the errors in the literature dealing with Bilinski’s
146 dodecahedron is the assertion by Coxeter [5, p. 148] that the
147 two rhombic dodecahedra—Kepler’s and Bilinski’s—are
148 affinely equivalent. To see the affine nonequivalence of the
149 two dodecahedra (easily deduced even from the drawings
150 in Fig. 3), consider the long (vertical) body-diagonal of
151 Bilinski’s dodecahedron (Fig. 3b). It is parallel to four of
152 the faces and in each face to one of the diagonals. In two
153 faces this is the short diagonal, in the other two the long
154 one. But in the Kepler dodecahedron the corresponding
155 diagonals are all of the same length. Since ratios of lengths

156of parallel segments are preserved under affinities, this
157establishes the nonequivalence.
158If one has a model of Bilinski’s dodecahedron in hand,
159one can look at one of the other diagonals connecting
160opposite 4-valent vertices, and see that no face diagonal is
161parallel to it. This is in contrast to the situation with Kepler’s
162dodecahedron.
163By the theorems of Fedorov mentioned previously, since
164Bilinski’s dodecahedron B is a zonohedron combinatorially
165equivalent to Kepler’s, it is a parallelohedron. This can be
166easily established directly, most simply by manipulating
167three or four models of B. It is strange that Bilinski does not
168mention the fact that B is a parallelohedron.
169In this context we must mention a serious error com-
170mitted by A. Schoenflies [30, pp. 467 and 470] and very
171clearly formulated by E. Steinitz. It is more subtle than
172Coxeter’s, who may have been misguided by the following
173statement of Steinitz [34, p. 130]:
174The aim [formulated previously in a different form] is to
175determine the various partitions of the space into con-

176gruent polyhedra in parallel positions. Since an affine
177image of such a partition is a partition of the same kind,
178affinely related partitions are not to be considered as
179different. Then there are only five convex partitions of
180this kind. [26y translation and comments in brackets].
181How did excellent mathematicians come to commit such
182errors? The confusion illustrates the delicate interactions
183among the concepts involved, considered by Fedorov,
184Dirichlet, Voronoi, and others. A correct version of Stei-
185nitz’s statement would be (see Delone [8]):
186Every convex parallelohedron P is affinely equivalent to a
187parallelohedron P0 such that a tiling by translates of P0

K

H*o H*a

Figure 5. Kepler’s rhombic dodecahedron K and its descen-

dant, rhombohedron H*o. The rhombohedron H*a is ‘‘related’’

to them since its faces are congruent to those of the other two

isozonohedra shown; however, it is not obtainable from K by

zone elimination.

T

Ho Ha

B

F

Figure 4. The triacontahedron and its descendants: Kepler’s

triacontahedron T, Fedorov’s icosahedron F, Bilinski’s

dodecahedron B, and the two hexahedra, the obtuse Ho and

the acute Ha. The first three are shown by .wrl illustrations in

[25] and other web pages.
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188 coincides with the tiling by the Dirichlet-Voronoi regions
189 of the points of a lattice L0. The lattice L0 is affinely related
190 to the lattice L associated with one of the five Fedorov
191 parallelohedra P00. But P0 need not be the image of P00

192 under that affinity. Affine transformations do not com-

193 mute with the formation of Dirichlet-Voronoi regions.

194 In particular, isozonohedra other than rhombohedra are
195 not mapped onto isozonohedra under affine transforma-
196 tions that are not similarities.
197 As an illustration of this situation, it is easy to see that
198 Bilinski’s dodecahedron B is affinely equivalent to a poly-
199 hedron B0 that has an insphere (a sphere that touches all its
200 faces). The centers of a tiling by translates of B0 form a
201 lattice L0 such that this tiling is formed by Dirichlet-Voronoi
202 regions of the points of L0. The lattice L0 has an affine image
203 L such that the tiling by Dirichlet-Voronoi regions of the
204 points of L is a tiling by copies of the Kepler dodecahedron
205 K. However, since the Dirichlet domain of a lattice is not
206 affinely associated with the lattice, there is no implication
207 that either B or B0 is affinely equivalent to K.
208 A simple illustration of the analogous situation in the
209 plane is possible with hexagonal parallelogons (as men-
210 tioned earlier, a parallelogon is a polygon that admits a
211 tiling of the plane by translated copies). As shown in
212 Figure 6, the tiling is by the Dirichlet regions of a lattice of
213 points. This lattice is affinely equivalent to the lattice
214 associated with regular hexagons, but the tiling is obviously
215 not affinely equivalent to the tiling by regular hexagons.
216 It is appropriate to mention here that for simple paral-
217 lelohedra (those in which all vertices have valence 3) that
218 tile face-to-face Voronoi proved [38] that each is the affine
219 image of a Dirichlet-Voronoi region. For various strength-
220 enings of this result see [26].

221 Nonconvex Parallelohedra
222 Bilinski’s completion of the enumeration of isozonohedra
223 needs no correction. However, it may be of interest to

224examine the situation if nonconvex rhombic monohedra
225are admitted; we shall modify the original definition and
226call them isozonohedra as well. Moreover, there are various
227reasons why one should investigate—more generally—
228nonconvex parallelohedra.
229It is of some interest to note that the characterization of
230plane parallelogons (convex or not) is completely trivial. A
231version is formulated as Exercise 1.2.3(i) of [16, p. 24]: A
232closed topological disk M is a parallelogon if and only if it is
233possible to partition the boundary of M into four or six arcs,
234with opposite arcs translates of each other. Two examples
235of such partitions are shown in Figure 7.
236Another reason for considering nonconvex parallelohe-
237dra is that there is no intrinsic justification for their exclusion,
238whereas—as we shall see—many interesting forms become
239possible, and some tantalizing problems arise. The crosses,
240semicrosses, and other clusters studied by Stein [32] and
241others provide examples of such questions and results.7 It
242also seems reasonable that the use of parallelohedra in
243applications need not be limited to convex ones.
244It is worth noting that by Fedorov’s Definition 24 (p. 285
245of [9], p. 691 of [10]) and earlier ones, a parallelohedron

246need not be convex, nor do its faces need to be centrally
247symmetric.
248Two nonconvex rhombic monohedra (in fact, isohedra)
249have been described in the nineteenth century; see Coxeter
250[7, pp. 102–103, 115–116]. Both are triacontahedra, and are
251self-intersecting. This illustrates the need for a precise
252description of the kinds of polyhedra we wish to consider
253here.
254Convex polyhedra discussed so far need little explana-
255tion, even though certain variants in the definition are
256possible. However, now we are concerned with wider
257classes of polyhedra regarding which there is no generally
258accepted definition.8 Unless the contrary is explicitly noted,
259in the present note we consider only polyhedra with sur-

260face homeomorphic to a sphere and adjacent faces not

261coplanar. We say they are of spherical type. There are
262infinitely many combinatorially different rhombic mono-

263hedra of this type—to obtain new ones it is enough to
264‘‘appropriately paste together’’ along common faces two or
265more smaller polyhedra. This will interest us a little bit later.
266The two triacontahedra mentioned above are not
267accepted in our discussion. However, a remarkable

Figure 6. An affine transform of the lattice of centers at left

leads to the lattice of the tiling by regular hexagons. The

Dirichlet domains of the points of the lattice are transformed

into the hexagons at right, which clearly are not affinely

equivalent to regular hexagons.

Figure 7. Planigons without center have boundary parti-

tioned into 4 or 6 arcs, such that the opposite arcs are

translates of each other.

7FL01 7Recent results on crosses and semicrosses can be found in [14].

8FL01 8Many different classes of nonconvex polyhedra have been defined in the literature. It would seem that the appropriate definition depends on the topic considered, and

8FL02 that a universally accepted definition is not to be expected.
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268 nonconvex rhombic hexecontahedron of the spherical type
269 was found by Unkelbach [37]; it is shown in Figure 8. Its
270 rhombi are the same as those in Kepler’s triacontahedron T.
271 It is one of almost a score of rhombic hexecontahedra
272 described in the draft of [15]; however, all except U are not
273 of the spherical type.
274 For a more detailed investigation of nonconvex isozono-
275 hedra,we first restrict attention to rhombic dodecahedra.We
276 start with the two convexones—Kepler’s K and Bilinski’s
277 B—and apply a modification we call indentation. An
278 indentation is carried out at a 3-valent vertex of an isozono-
279 hedron. It consists of the removal of the three incident faces
280 and their replacement by the three ‘‘inverted’’ faces—that is,
281 the triplet of faces that has the same outer boundary as the
282 original triplet, but fits on the other side of that boundary.
283 This is illustrated in Figure 9, where we start from Kepler’s
284 dodecahedron K shown in (a), and indent the nearest
285 3-valent vertex (b). It is clear that this results in a nonconvex
286 polyhedron. Since all 3-valent vertices of Kepler’s dodeca-
287 hedron are equivalent, there is only one kind of indentation
288 possible. On the other hand, Bilinski’s dodecahedron B in
289 Figure 10(a) has twodistinct kinds of 3-valent vertices, so the
290 indentation construction leads to two distinct polyhedra; see
291 parts (b) and (c) of Figure 10.
292 Returning to Figure 9, we may try to indent one of the
293 3-valent vertices in (b). However, none of the indentations
294 produces a polyhedron of spherical type. The minimal
295 departure from this type occurs on indenting the vertex
296 opposite to the one indented first; in this case the two
297 indented triplets of faces meet at the center of the original
298 dodecahedron (see Fig. 9c). We may eliminate this coin-
299 cidence by stretching the polyhedron along the zone
300 determined by the family of parallel edges that do not
301 intrude into the two indented triplets. This yields a paral-
302 lelogram-faced dodecahedron that is of spherical type (but
303 not a rhombic monohedron); see Figure 9(d). A related
304 polyhedron is shown in a different perspective as
305 Figure 121 in Fedorov’s book [9].

306It is of significant interest that all the isozonohedra in
307Figures 9 and 10—even the ones we do not quite accept,
308shown in Figures 9(c) and 10(e)—are parallelohedra. This
309can most easily be established by manipulating a few
310models; however, graphical or other computational verifi-
311cation is also readily possible.
312To summarize the situation concerning dodecahedral
313rhombic monohedra, we have the following polyhedra of
314spherical type:
315Two convex dodecahedra (Kepler’s and Bilinski’s);
316Three simply indented dodecahedra (one from Kepler’s
317polyhedron, two from Bilinski’s);
318One doubly indented dodecahedron (from Bilinski’s
319polyhedron).
320We turn now to the two larger isozonohedra, Fedorov
321icosahedron F and Kepler’s triacontahedron T. Since each
322has 3-valent vertices, it is possible to indent them, and since
323the 3-valent vertices of each are all equivalent under sym-
324metries, a unique indented polyhedron results in each case
325(Fig. 11).
326The icosahedron F admits several nonequivalent double
327indentations (see Fig. 12); two are of special interest, and

Figure 8. Unkelbach’s hexecontahedron. It has pairs of dis-

joint, coplanar but not adjacent faces, which are parts of the

faces of the great stellated triacontahedron. All its vertices are

distinct, and all edges are in planes of mirror symmetry.

(b)(a)

(d)(c)

Figure 9. Indentations of the Kepler rhombic dodecahedron

K, shown in (a). In (b) is presented the indentation at the vertex

nearest to the observer; this is the only indentation arising from

(a). A double indentation of the dodecahedron in (a), which is

a single indentation of (b), is shown in (c); it fails to be a

polyhedron of the spherical type, since two distinct vertices

coincide at the center; hence it is not admitted. By stretching

one of the zones, as in (d), an admissible polyhedron is

obtained—but it is not a rhombic monohedron.
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328 we shall denote them by D1 and D2. There are many other
329 multiple—up to sixfold—indentations; their precise num-
330 ber has not been determined. An eightfold indentation of
331 the triacontahedron T is shown in [39, p. 196]; it admits
332 several additional indentations.
333 The double indentations D1 and D2 of F shown in
334 Figure 12 are quite surprising and deserve special mention:
335 They areparallelohedra! Again, the simplestway to verify this
336 is by using a few models and investigating how they fit. This
337 contrastswith the singly indented icosahedron,which is not a
338 parallelohedron. None of the other isozonohedra obtainable
339 by indentation of F or T seems to be parallelohedra.
340 A different construction of isozonohedra is through the
341 union of two or more given ones along whole faces, but
342 without coplanar adjacent faces; clearly this means that all
343 those participating in the union must belong to the same
344 family of rhombic monohedra—either the family of the
345 triacontahedron, or of Kepler’s dodecahedron, or of rhom-
346 bohedra (with equal rhombi) not in either of these families.

347Besides a brief notice of this possibility by Fedorov, the only
348other reference is to the union of two rhombohedra men-
349tioned by Kappraff [22, p. 381].9

350For an example of this last construction, by attaching two
351rhombohedra in allowablewaysone canobtain threedistinct
352decahedra, one of which is shown in Figure 13. Each is
353chiral, that is, comes in two mirror-image forms. This con-
354struction can be extended to arbitrarily long chains of
355rhombohedra; from n rhombohedra there results a parallel-
356ohedron with 4n + 2 faces; see Figure 13 for n = 3. For
357another example, from three acute and one obtuse rhom-
358bohedra of the triacontahedron family, that share an edge,
359one can form a decahexahedron E. It is chiral, but it has an
360axis of 2-fold rotational symmetry. By suitable unions of one
361of these decahexahedron with a chain of n rhombohedra
362(n C 2), one can obtain isozonohedra with 4n+ 16 faces. All
363isozonohedra mentioned in this paragraph happen to be
364parallelohedra aswell.Hence there are rhombicmonohedral
365parallelohedra for all even k C 6 except for k = 8.
366The isozonohedra just described show that there exist
367rhombic monohedral parallelohedra with arbitrarily long
368zones. However, there is a related open problem:
369Given an even integer k C 4, is there a rhombic
370monohedral parallelohedron such that every zone has
371exactly k faces?
372The cube has k = 4, the rhombic dodecahedra K and B
373have k = 6, and the doubly indented icosahedra D1 and D2

(b)(a)

(c) (d)

Figure 11. (a) Icosahedron F and (b) its indentation; (c)

Triacontahedron T and (d) its indentation.

(a)

(c)(b)

(e)(d)

Figure 10. Indentations of the Bilinski dodecahedron shown

in (a). The two different indentations are illustrated in (b) and

(c), the former at an ‘‘obtuse’’ 3-valent vertex, the latter at an

‘‘acute’’ vertex. The double indentation of (a), resulting from a

single indentation of (b), is presented in (d); (e) shows an

additional indentation of (c) which, however, is not a

polyhedron in the sense adopted here, since two faces overlap

in the gray rhombus.

9FL01 9In carrying out this construction we need to remember that adjacent faces may not be coplanar. This excludes the ‘‘semicrosses’’ of Stein [32] and other authors,

9FL02 although it admits the (1,3) cross. For more information see [33].
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374 are examples with k = 8. No information is available for any
375 k C 10.
376 Although the number of examples of nonconvex isoz-
377 onohedra and parallelohedra could be increased indefi-
378 nitely, in the next section we shall propose a possible
379 explanation of which isozonohedra are parallelohedra.10

380 Remarks
381

382 (i) The parallelohedra discussed previously lack a center of
383 symmetry, which was traditionally taken as present in
384 parallelohedra and more generally—in zonohedra.
385 Convex zonohedra have been studied extensively; they

386have many interesting properties, among them central
387symmetry.11 However, the assumption of central sym-
388metry (of the faces, and hence of the polyhedra)
389amounts to putting the cart before the horse if one
390wishes to study parallelohedra—that is, polyhedra that
391tile space by translated copies.
392

393In fact, the one and only immediate consequence of the
394assumed property of polyhedra that allow tilings by trans-
395lated copies is that their faces come in pairs that are
396translationally equivalent. For example, the octagonal
397prism in Figure 14 is not centrally symmetric, and its bases
398have no center of symmetry either. But even so, it clearly is a
399parallelohedron. The dodecahedra in Figures 9(b) and
40010(b),(c) have no center of symmetry although their faces are
401rhombi and have a center of symmetry each. On the other
402hand, the doubly indented polyhedron is Figure 10(d)
403has a center. As mentioned before, each of these is a
404parallelohedron.
405We wish to claim that central symmetry is a red herring
406as far as parallelohedra are concerned. The reason that the
407requirement of central symmetry may appear to be natural
408is that studies of parallelohedra have practically without
409exception been restricted to convex ones. Now, for convex
410polyhedra the pairing of parallel faces by translation
411implies that they have equal area, whence by a theorem of
412Minkowski (see Footnote 2) the polyhedron has a center,
413which implies that the paired faces coincide with their
414image by reflection in a point—that is, are necessarily
415centrally symmetric, and therefore are zonohedra. But this
416argument is not valid for nonconvex parallelohedra, hence
417such polyhedra need not have a center of symmetry.
418In his first short description of nonconvex parallelohe-
419dra, Fedorov writes (§83 in [9, p. 306]):
420The preceding deduction of simple [that is, centrally
421symmetric polyhedra with pairwise parallel and equal
422faces] convex parallelohedra is equally applicable to
423simple concave [that is, non-convex] ones, and hence we

(a) F

(c) D
2

(b) D
1

(a) (b) 

Figure 12. (a) The Fedorov rhombic icosahedron F; (b) A

double indentation of the F yields a nonconvex rhombic

icosahedron D1 of the spherical type that is a parallelohe-

dron; (c) A different double indentation D2 is also a

parallelohedron.

Figure 13. Isozonohedra with 10 and 14 faces.

Figure 14. A nonconvex parallelohedron without a center of

symmetry.

10FL01 10Crystallographers are interested in parallelohedra far more general than the ones considered here: The objects they study in most cases are not polyhedra in the sense

10FL02 understood here, but object combinatorially like polyhedra but with ‘‘faces’’ that need not be planar. The interested reader should consult [29] and [24] for more precise

10FL03 explanations and details.

11FL01 11It is worth mentioning that Fedorov did not require any central symmetry in the definition of zonohedra ([9, p. 256], [10, p. 688]). However, he switched without

11FL02 explanation to considering only zonohedra with centrally symmetric faces. As pointed out by Taylor [36], this has become the accepted definition.
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424 bring here only illustrations.We do not show the concave
425 tetraparallelohedron [the hexagonal prism] since this is
426 simply a prism with a concave par-hexagon as basis.
427 Fig. 121 presents the ordinary, and Fig. 122 the elongated
428 concave hexaparallelohedron [the rhombic dodecahe-
429 dron and the elongated dodecahedron]; Fig. 123 shows
430 the concave heptaparallelohedron [the truncated octa-
431 hedron]. Obviously, there exists no concave triparallel-
432 ohedron [cube]. (My translation and bracketed remarks)
433 Fedorov’s parallelohedron in Figure 121 of [9] is isomor-
434 phic to the polyhedron shown in our Figure 9(d). A mono-
435 hedral rhombic dodecahedron combinatorially equivalent to
436 it is shown in our Figure 10(d) and is derived from the Bi-
437 linski dodecahedron.
438 However, Fedorov does not provide any proof for his
439 assertion, and in fact it is not valid in general. For example,
440 his Figure 123 does not showapolyhedron of spherical type,
441 since one of the edges is common to four faces. This can be
442 remedied by lengthening the short horizontal edges, but
443 shows the need for care in carrying out the construction.
444 (ii) The study of nonconvex parallelohedra necessitates
445 the revision of various well-established facts concerning
446 convex parallelohedra. For example, one of the crucial
447 insights in the enumeration of parallelohedra (and parallel-
448 otopes in higher dimensions) is the property that every zone
449 has either four or six faces. This is not true for nonconvex
450 parallelohedra. For example, the double indentation D1 of
451 Fedorov’s F shown in Figure 12(b) is a parallelohedron—
452 even though all zones of D1 have 8 faces.
453 For another example, in some cases changing of the
454 lengths of edges of a zone has limitations if the spherical
455 type is to be preserved.
456 At present, there seems to be no clear understanding of
457 the requirements on a polyhedron of spherical type to be a
458 parallelohedron. As mentioned earlier, the three indented
459 polyhedra in Figures 9(b) and 10(b),(c) are parallelohedra;
460 They can be stacked like six-sided prisms. In fact, with a
461 grain of salt added, starting with suitably chosen six-sided
462 prisms, they may be considered as examples of Fedorov’s
463 second construction of nonconvex polyhedra [9, p. 306]:
464 If we replace one or several faces of a parallelohedron,
465 or parts of these, by some arbitrary surfaces supported
466 on these same broken lines, in such a way that a closed
467 surface is obtained, and observing that precisely the
468 same [translated] replacement is made in parallel posi-
469 tion on the faces that correspond to the first ones or their
470 parts, then, obviously the new figure will be a parallel-
471 ohedron, though without a center….
472 It seems clear that Fedorov did not consider this con-
473 struction important or interesting, since he did not provide
474 even a single illustration. But it does lead to parallelohedra
475 with some or all faces triangular, in contrast to the convex
476 case; an example is shown in Figure 15. A more elaborate
477 example of a nonconvex parallelohedron with some trian-
478 gular faces, that does not admit a lattice tiling, is described by
479 Szabo [35].
480 Another difference between convex and nonconvex
481 parallelohedra is that the convex ones can be decomposed
482 into rhombohedra; this is of interest in various contexts—
483 see, for example, Hart [18] and Ogawa [28]. In general, such

484decomposition is not possible for nonconvex parallelohe-
485dra. For example, the doubly indented dodecahedron in
486Figure 10(d) is not a union of rhombohedra.
487(iii) Examination of the various isozonohedra that are—
488or are not—parallelohedra, together with the observation
489that questions of central symmetry appear irrelevant in this
490context, lead to the following conjecture:

491Conjecture 492

493Let P be a sphere-like polyhedron, with no pairs of

494coplanar faces. If the boundary of P can be partitioned

495into pairs of non-overlapping ‘‘patches’’ {S1, T1}; {S2, T2};

496…; {Sr, Tr}, each patch a union of contiguous faces, such

497that the members in each pair {Si, Ti} are translates of

498each other, and the complex of ‘‘patches’’ is topologically

499equivalent as a cell complex to one of the parallelohedra

500in Figure 2, then P is a parallelohedron. Conversely, if

501no such partition is possible then P is not a

502parallelohedron.

503As illustrations of the conjecture, we can list the fol-
504lowing examples:

505(a) The three singly indented dodecahedra in Figures 9 and
50610 satisfy the conditions, with the patches S1, T1 formed
507by the triplet of indented faces and their opposites, and
508the other pairs formed by pairs of opposite faces. Then
509this cell complex is topologically equivalent to the cell
510complex of the faces of the six-sided prism (Fig. 2d). As
511we know, these dodecahedra are parallelohedra. Note
512that the fact that they are combinatorially equivalent to
513the convex dodecahedra K and B is irrelevant, since the
514complex of pairs of faces of the indented polyhedra is
515not isomorphic to that of the un-indented ones: Some
516pairs {Si, Ti} of parallel faces are separated by only a
517single other face whereas in K and B they are separated
518by two other faces.
519(b) The doubly indented dodecahedron in Figure 10(d)
520complies with the requirements of the conjecture in a
521different way: Each pair {Si, Ti} consists of just a pair of
522parallel faces; the complex so generated is isomorphic
523to the one arising from Kepler’s K.
524(c) The doubly indented icosahedron D1 of Fedorov’s F,
525shown in Figure 12(b), provides additional support for
526the conjecture. Two of the pairs—say {S1, T1} and {S2,
527T2}—are formed by the indented triplets and their

Figure 15. A monohedral parallelohedron with triangles as

faces.
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528 opposites. The other pairs {Si, Ti} are the remaining four
529 pairs of parallel faces. The complex they form is
530 isomorphic to the face complex of the elongated
531 dodecahedron shown in Figure 2(b). The same situa-
532 tion prevails with the doubly indented icosahedron D2

533 of Figure 12(c). Other double indentations of the
534 icosahedron F, as well as the single indentation of F,
535 fail to satisfy the assumptions of the conjecture and are
536 not parallelohedra.
537 (d) No indentation of the rhombic triacontahedron satisfies
538 the assumptions of the conjecture, and in fact none is a
539 parallelohedron.
540 (e) The decahexahedron E mentioned previously has a
541 decomposition into pairs {Si, Ti} that is isomorphic to
542 the complex of the faces of the cube. The same
543 situation prevails with regard to the chains of rhombo-
544 hedra mentioned previously.
545

546

547

548 (iv) The present article leaves open all questions regard-
549 ing parallelohedra that are not rhombic monohedra. In
550 particular, it would be of considerable interest to generalize
551 the above conjecture to these parallelohedra. Such an
552 extension would also have to cover the results on ‘‘clusters’’
553 of cubes such as the crosses and semicrosses investigated by
554 S. K. Stein and others [32, 33, 14]. One can also raise the
555 question of what are analogues for suitably defined ‘‘clus-
556 ters’’ of rhombohedra, or other parallelohedra.
557 (v) There just possibly may be a prehistory to the Bilinski
558 dodecahedron. As was noted by George Hart [17, 18], a net
559 for a rhombic dodecahedron was published by John Lodge
560 Cowley [6] in the mid-eighteenth century; see Figure 16. The
561 rhombi in this net appearmore similar to those of the Bilinski
562 dodecahedron than to the rhombi of Kepler’s. However,

563these rhombi do not have the correct shape and cannot be
564folded to form any polyhedron with planar faces. (Since the
565angles of the rhombi are, as close as can be measured, 60�
566and 120�, the obtuse angles of the shaded rhombuswould be
567incident with two other 120� angles—which is impossible.)
568An Internet discussion about the net mentioned the possi-
569bility that the engraver misunderstood the author’s
570instructions; however, it is not clear what the author actually
571had in mind, since no text describes the polyhedron.
572The later edition of [4] mentioned by Hart [10] was not
573available to me.
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617[13] B. Grünbaum, An enduring error. Elemente der Math. 64 (2009),

61889–101.

Figure 16. Cowley’s net for a rhombic dodecahedron.

THE MATHEMATICAL INTELLIGENCER

Journal : Large 283 Dispatch : 1-2-2010 Pages : 11

Article No. : 9138
h LE h TYPESET

MS Code : TMIN-224 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F
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