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RESEARCH PROBLEMS

EpIiTED BY VicTOR KLEE

In this Department the Monthly presents easily stated research problems dealing with notions
ordinarily encountered in undergraduate mathematics. Each problem should be accompanied
by relevant references (if any are known to the author) and by a brief description of known
partial results. Matcrial should be sent to Victor Klee, Department of Mathematics, University
of Washington, Seattle, WA 98105.

A PROBLEM IN GRAPH COLORING

BrANKO GRUNBAUM, Michigan State University
(Presently: Univ. of Washington, Seattle)

A graph is said to be colorable by k colors if its set of nodes can be partitioned
into k disjoint subsets such that no edges connect nodes in the same subset, and
is said to be k-chromatic if it is colorable by & colors but not by k—1 colors. In
recent years considerable attention has been devoted to the following problem:
Given positive integers k and #, with 2= 3 and # = 3, do there exist graphs which
are k-chromatic while containing no circuits of length <»?

The following results have been obtained: Zykov [1949] and Mycielski
[1955] proved the existence of k-chromatic graphs of arbitrarily large & having
no circuits of length =#=3. Descartes [1954] and Kelly-Kelly [1954] ob-
tained the same result for =35, and NeSet¥il [1966] for n="7. Erdss [1959]
established by probabilistic methods the existence for arbitrary k and #, while
Lovisz [1968] gave direct constructions for such graphs. The graphs con-
structed in all those papers are “very large” and, in particular, contain nodes of
valence large in comparison to k.

It is of some interest to note that the existence of k-chromatic graphs with
no circuits of length =# was recently (Taylor [1969]) used to answer in the
negative a question in model theory posed by Mycielski [1964].

On the other hand, a result of Brooks [1941] asserts: If all nodes of a con-
nected graph G have valence at most k, where k=3, then either G is k-colorable or
else G is the complete graph with k-1 nodes.

Some years ago (see Erdos [1964]) observations like the above led me to
formulate the following conjecture:

CoONJECTURE. If k=3 and n=3 are integers, there exist k-chromatic, k-valent
graphs G(k, n) that contain no circuits of length <n.

The progress in settling the conjecture seems to have been very slow. Graphs
G(3, #) are easy to construct, for example from circuits with an odd number of
edges and from 3-valent graphs with girth =# (concerning such graphs see, for
example, Sachs [1964]). Recently Chvatal [1970] constructed a 12-node graph
G(4, 3). In the following lines I shall describe a 25-node graph G=G(4, 4) 1
found in 1963. As far as I know, no other cases of the conjecture have been
decided.
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The graph G (see Figure 1) may be described as follows: Out of the 25 nodes
of G, 20 nodes and the edges connecting them form the net of a regular dodeca-
hedron (heavy edges in Figure 1). It is well known that there are 10 quad-
ruples of vertices of the dodecahedron which are the vertices of a regular tetra-
hedron. These ten quadruples fall into two sets of five quadruples each, the
quadruples of each set covering simply the vertices of the dodecahedron. One
such set is represented in the heavily drawn part of G by nodes bearing the same
designation. The graph G is obtained by taking five additional nodes (the “outer”
ones in Figure 1) and joining each of them to the four nodes in one of the quad-
ruples. Thus constructed, G is obviously 4-valent, and contains no circuit with
less than 5 edges. It is also easily checked that the action of the group of auto-
morphisms of G on the five outer nodes coincides with that of the alternating

group.
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In order to show that G is not 3-colorable, assume that a 3-coloring of G is
given; then there are two possibilities to be considered for the outer five nodes:

(i) some three of them have the same color;

(ii) two nodes have one color, two another, the last node having the third
color.

In case (i) we may, without loss of generality, assume that the three nodes in
question are those marked by two circles in Figure 2; then the nodes in the paths
indicated by heavy edges are colored by the remaining two colors. But then for
at least one of the edges indicated by dotted lines, both nodes incident to the
edge must have the same color, that of the outer three nodes.

In case (ii) we may assume, again without loss of generality, that the outer
nodes are colored by 1, 2, 3 as indicated in Figure 3. Then, if the node indicated
by two circles is colored 2, we arrive at a contradiction by following the arrow
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leading from it to the left, there being no color available for the node indicated
by the black disc. If, on the other hand, the two-circle node is colored 1 we reach
a contradiction by following the arrow to the right.

Thus G is not 3-colorable, and we established thatitis a graph of type G(4, 4).

The author is indebted to Professor R. A. Duke for many helpful suggestions.
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CLASSROOM NOTES

EDpITED BY DAVID DRASIN

Manuscripts for this Department should be sent to David Drasin, Division of Mathematical
Sciences, Purdue University, Lafayette, IN 47907.

ON THE SIMILARITY OF PARTIALLY ORDERED SETS
ALEXANDER ABIAN, Iowa State University

It is well known and easy to prove [1] that for linearly ordered sets (R, <)
and (S, =<'), if there exists a one-to-one mapping ¢ from R onto .S which pre-
serves order (i.e., x =y implies p(x) ='p()), then (R, =) is similar to (S, =£’)
since the converse mapping p_; of p also preserves order.

It is a curious fact that in the case of partially ordered sets (P, <) and
(Q, £), even a stronger hypothesis does not imply that (P, <) is similar to
(Q, ="). For instance, as shown in the example below (suggested by Daryl R.
Fischer), if there exists a one-to-one mapping f from P onto Q such that f pre-
serves order and if there exists a one-to-one mapping g from Q onto P such that g
also preserves order, then it is not necessary that P be similar to Q, i.e., it is not
necessary that there exist a one-to-one mapping # from P onto Q such that both
k and its converse k_; preserve order.

Example 1. Let (P, =) and (Q, <’) be partially ordered sets represented in
the diagram below, where p; <p;if and only if there exists an upward connecting
line from p; to p;. Similarly, ¢;<’q; if and only if there exists an upward connect-
ing line from g¢; to g;. Otherwise, the distinct elements are not comparable.
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