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PREASSIGNING THE SHAPE OF A FACE

DAVID BARNETTE AND BRANKO GRUNBAUM

THEOREM. Let G be a 3-connected planar graph, F a
nonseparating w-circuit of G with nodes Alf - , An (in a cyclic
order of F), and let F' be a convex %-gon with vertices
A'i, '", An (in cyclic order). Then there exists a 3-polytope
P which realizes G, such that F' is a face of P and that the
vertex A'i of P corresponds to the node Ai of G for i = 1,2, , w.

A remarkable theorem of Steinitz (see [2, p. 77], [3, p. 192], [1,
p. 235]) asserts that a graph G is realizable by a 3-polytope (i.e.,
isomorphic to the graph of the vertices and edges of a 3-dimensional
convex poly tope P) if and only if G is planar and 3-connected. More-
over, this realization is unique up to combinatorial equivalence of the
3-poly topes, the boundaries of the 2-faces of each poly tope realizing
G being determined by nonseparating circuits in G. (The regions of
the plane determined in any imbedding of G in the plane by the
nonseparating circuits of G will be called faces of (?.)

Combinatorially equivalent polytopes may—intuitively speaking—
have various shapes. Among the different problems concerning the
freedom of choice of 3-polytopes realizing a given graph G, one may
ask whether the shape of one w-gonal 2-face F of P can be required
to be any preassigned (convex) w-gon F' (see [1, p. 244]). The solution
of this problem is trivially affirmative if F is a triangle or a quadrangle,
since in this case there exists an affine, respectively permissible for P
protective transformation of any realization P of G carrying F onto
any predetermined F'. However, the problem ceases to be trivial already
for a pentagonal face F.

It is the aim of the present note to establish the affirmative solution
of the above problem for any face F. More precisely, we shall prove
the theorem enunciated at the outset. By the remark made above,
we shall without loss of generality assume that n JΞ> 5.

The proof of the theorem consists mainly of a repetition of the
proof of Steinitz's theorem as given in [1, pp. 236-242], with modifi-
cations resulting from the desire to interfere with F as little as
possible and, if such interference is unavoidable, to conduct it under
special precautions. Since a repetition of the whole argument would
lead to a needless duplication, we shall restrict ourselves to a summary
of the proof of Steinitz's theorem, indicating the main ideas and the
necessary changes in the argumentation. We shall use the terminology
and notation employed in [1].

The proof of Steinitz's theorem proceeds by induction on the
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number of edges of G, and two cases have to be considered. In
each case, the graph G is "reduced" to a 3-connected planar graph
G* by a change of such a nature that from each realization of G*
by a 3-polytope P* a realization of G by a 3-polytope P may be
constructed. The "reductions" needed for the proof are indicated in
Figure 1.

Case 1. The graph contains a nonseparating circuit with three
edges (i.e., a triangular face, or triangle) one node of which has
valence 3. Then one of the reductions ηιy η2, ηz may be applied, yielding
a G* with 1, 2, or 3 edges less than G. In the proof of Steinitz's
theorem, there is nothing to be added in this case, since induction
takes over. In the proof of our theorem one has to require that G*
be realized by a 3-polytope P* having Ff as a face, unless the circuit
F contains one of the edges—marked by one, two, or three stars in
Figure 1—of the triangle in question. In those exceptional cases the
circuit F* of G* (corresponding to the circuit F of G, and having
also n edges in cases denoted by one star, n — 1 edges in cases denoted
by two stars, and n + 1 edges in cases denoted by three stars) has
to correspond in P* to a face F*' with vertices Af, A?', different
from F'. The construction of the polygon F*' from F' is indicated

FIGURE 1
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FIGURE 2
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F' and F*'

FIGURE 3

in Figures 2 and 3 for the first two cases; in case of the edge denoted
by three stars, F*f may be any (n + l)-gon obtained as the convex
hull of Ff and a point A*f

+ί near the edge A'nA[. (Note that in the
case represented in Figure 3 it may be necessary to start not with
F' itself but—in order to guarantee the existence of F*'—with a
suitable projective transformation of Ff. However, this does not impair
the construction since a suitable inverse projective transformation of
the polytope realizing G will restore Fr as a face of P\)
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This completes the proof in Case 1.

Case 2. Now we assume that G contains no triangle possessing
at least one 3-valent node. Since in any case Euler's relation implies
that G contains either a triangle, or a 3-valent vertex, it follows that
now one of the reductions ω0 or ηQ may be applied to G. However,
those reductions do not reduce the number of edges and may thus be
deemed useless. The depth of Steinitz's proof lies in establishing that
by a judicious choice of a finite sequence of ω0 or η0 reductions (not ex-
ceeding in total number the number of edges of (?) one may transform
G into a graph G which is covered by Case 1. In order to prove our
theorem we shall show that there is enough freedom in the choice of
the ω0 and/or η0 reductions to reach G without interfering (in any of the
stages) with the circuit F of G (or the corresponding circuits in the
intermediate stages). The derived realization of G and of all the
intermediate graphs will still h&ve F' as the preassigned polygon.

Before proving those assertions, we have to introduce a number of
notions. For each 3-connected planar graph G, we define a graph
I(G) as follows. The vertices of I(G) correspond to edges of G; two
vertices of I{G) are connected by an edge if and only if the corre-
sponding edges of G have a common node and belong to the same
nonseparating circuit. (In Figure 4, a graph G is shown by heavy
lines, while I(G) is indicated by thin lines.) It is easily seen that
I(G) if planar and 3-connected. Note that I(G) is 4-valent, and that
each w-gonal region of I(G) corresponds either to an w-gonal region
of G or to an w-valent vertex of G. A "geodesic arc" in I(G) is a
path in I{G) in which each two adjacent edges separate the other two
edges of I(G) issuing from their common node. A "lens" of I(G) is

FIGURE 4
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a region of plane having as boundary two geodesic arcs of /((?), such
that at their common endpoints (the "poles" of the lens) the remaining
two edges of I(G) do not belong to the lens. (For example, each of
the shaded regions in Figure 4 is a lens, one with poles A and B,
the other with poles C and D; the second lens is clearly the simplest
possible type, consisting of only two triangles; we shall denote it by Lo.)

An important role is played by "irreducible lenses", that is, lenses
which do not contain any proper sublenses. The relevant facts about
irreducible lenses are (see [1, pp. 239-242]):

(1) Each region of the plane which has a boundary consisting
either of a (closed) geodesic arc, or of two geodesic arcs, contains an
irreducible lens. This implies, among other consequences, the existence
of irreducible lenses in each I(G).

( 2 ) Each irreducible lens contains at least two triangles incident
to the boundary of the lens; unless the lens is Lo, they have no edge
in common.

(3) If an irreducible lens L Φ Lo of I(G) is given, and if an ωQ

or 7]0 reduction is performed on a 3-valent node or on a triangle of G
corresponding to a triangle of L having an edge in the boundary
of L, the resulting graph G* has the following property: There is
a lens (and hence, by (1), an irreducible lens L*) of /(G*) having
fewer faces than L, such that its faces correspond to some of the
faces of L.

Combining (1), (2) and (3) the proof of Steinitz's theorem is com-
pleted by starting from any region bounded by one or two geodesic
arcs, finding an irreducible lens L in it, and applying a suitable co0

or η0 reduction. Since L contains only finitely many faces, by repeated
application of (3) we necessarily reach a graph G containing a lens
of type Lo But the presence of such a lens in I(G) means that G
contains a triangle with a trivalent node; hence to G the Case 1 is
applicable. (In the proof of Steinitz's theorem L is chosen to contain
the least number of faces among all lenses of I(G), hence there is
no necessity to use the italicized part of (3); however, this part of
(3) is evident from the proof of the first part [1, p. 242].)

In view of the above, in order to complete the proof of our
theorem it is sufficient to exhibit, for each G which is not covered
by Case 1, a region R bounded by one or two geodesic arcs of I(G)
and such that at most one of the triangles of R corresponds to a node
of G belonging to F. Indeed, this property will be inherited by any
irreducible lens L contained in R, and hence L will contain at least
one other triangle such that the 3-valent node, or triangle, of G
corresponding to it is disjoint from F. Thus an appropriate reduction
ω0 or ΎJQ will be applicable without interference with F, and F* may
be chosen as the preassigned face of a 3-polytope realizing the reduced
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graph.
But the existence of a region R of the type required is easy to

establish. Proceeding on any geodesic arc (starting with an edge of
I(G) having both endpoints on edges of F) we note that if C intersects
itself prior to its return to F, or if it self-intersects while reentering
F, that region enclosed by C which does not contain F may be taken
as R. (Compare the schematic drawing in Figure 5.) Hence we are
left only with the case in which each geodesic arc is free of self-
intersections outside F. Among all the (simple) geodesic arcs of I(G)
having endpoints at edges of F, we choose one bridging the smallest
possible number of edges of F and denote it by C The possible
situations are schematically indicated in Figure 6. In the first three
cases the minimality of C prevents D from returning to F before
meeting C again, and thus parts of C and D will determine a region
R of the type required. In the fourth case D is any geodesic arc
crossing C at a relatively interior point, and D either meets C before
meeting F, or it meets C and F at the same vertex, again producing
a region of the type required.

This completes the proof in Case 2, and with it the proof of the
theorem.

REMARK 1. As an easy corollary of the theorem we have:
If P is a 3-polytope and if C is a simple closed circuit of edges

of P such that no facet of P meets two edges of C, there exists a
polytope P' combinatorially equivalent to P such that the circuit of
Pf corresponding to C is in a plane.

2. By an obvious application of duality, if follows from the
theorem that the shape of one vertex-figure of a 3-polytope may be
arbitrarily prescribed. Probably, more elements of a 3-polytope may
be arbitrarily prescribed; however, it is easy to see that it is not
always possible to preassign the shape of two faces having a common
edge. (For example, the two quadrilaterals of Figure 7 may not
appear in any 3-sided prism.) It would be interesting to investigate
the following

FIGURE 7

CONJECTURE. For any family {Flf , Fn) of disjoint faces of a
3-polytope P, and for any family {Fί, , Fjί} of polygons, F[ being
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of the same type as Fiy there exists a 3-polytope P' combinatorially
equivalent to P, such that every face of Pf corresponding to one of
the faces Fi is protectively equivalent to Fl.

3* It would be very interesting to determine to what extent the
theorem holds in higher dimensions. The only known result in this
direction seems to be M.A. Perles' example of an 8-dimensional polytope
P with 12 vertices such that the shape of one of its 7-dimensional
faces (with 10 vertices) may not be arbitrarily chosen within its
combinatorial type ([1, p. 96, Exercise 3]). It may be conjectured that
a similar failure of the theorem occurs already in four dimensions.
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