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1. Introduction 

The aim of the present note is to generalize to quantities we call Grassmann angles 

the results of Perles-Shephard [6] and Shephard [9] concerning angles and deficiencies of 

convex polytopes. 

We shall define, for each d-polytope (=d-dimensional convex polytope) P~ and for 

each m, 1 ~<m ~<d - 1, a (d-m)-dimensional  vector 7m(P d) = (7~(Pd), ..., 7'~_l-m(Pd)) related 

to the shape of pd at  its different faces. I t  will turn out tha t  the Grassmann angle s u m s  

7~(P ~) satisfy equations similar to those of Euler and Dehn-Sommerville,  and that  they 

satisfy certain inequalities. For m = 1, m =2,  or m = d -  1, the Grassmann angles are related 

to the usually considered angles, deficiencies, or exterior angles, and our results therefore 

specialize to known facts concerning those entities. 

As a preliminary stage we investigate the corresponding Grassmann angles for convex 

polyhedral cones; the results obtained contain as special case the theorem of Sommerville 

[10] relating (for even d) the volume of a spherical d-polytope to its angles, as well as 

a result of Fs  [2]. 

The main tool used, which was similarly applied in special cases already in Fs  [2], 

Perles-Shephard [6], and Shephard [9], is the invariant measure on the Grassmann mani- 

fold of all m-fiats through the origin of the Euclidean d-space E d. The measure-theoretic 

approach permits to restrict the consideration to m-fiats which are in "general position" 

with respect to the polytope or cone considered, thus eliminating the necessity to "take 

into account various "singular situations". 

We start  by  investigating the Grassmann angles of convex cones (Section 2); in 

Section 3 we consider the Grassmann angles of polytopes, while the concluding Section 4 

is devoted to some additional remarks and problems. 

We shall freely use the standard results on convex polytopes; facts for which no 

references are given may  be found in [4]; an account of the older results on angle-sums 

and their history is also given in [4]. 
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2. Grassmann angles  o f  cones  

Throughout t h e  paper we shall denote b y  G m'd (where 1 ~<m ~<d-  1) the Grassmann 

manifold consisting of all the m-flats (=m-dimensional  subspaces) through the origin 0 

of the Euclidean d-space E a. I t  is well known (see, for example, Petkantschin [8], Had- 

wiger [5], Bourbaki [1, p. 118] that  there exists a (unique) invariant measure /x=jum.a 

on G m'a such that  #(G re'd) = 1. 

We shall denote by C ~ any k-cone (=k-dimensional polyhedral convex cone) in E a 

such that  0 is an apex of C k. As is well known, the set of all apices of C k forms a linear 

subspace of E d, which is a face of C k and is contained in every proper face of C ~. I f  this 

subspace is ?'-dimensional we shall sometimes denote the cone C ~ by (Ck'S). Throughout 

the paper, we shall assume that  j < k. 

For a give n k-cone C ~ in E d we shall denote by  G~'a=G~'d(C k) the subset of G m'a 

consisting of all the m-flats which are in general position with respect to C k. More precisely, 

this means that  MZEG'~ 'a if and only if for each /-face C i of C z 

dim (C~N M m) = m a x  {0, i + m - d } .  

Simple considerations of dimensions show that/~(G~ n' d)= 1. 

For each C k in E ~, it is convenient to use the complementary characteristic functions 

and Z, defined for MzE G~' a by  

{: if MmNCk={0}  
~(M m,C k ) = I - Z ( M  m,C k)= if M mNC ~4{0}. 

The Grassmann angles ~,m'a(Ck) are defined by 

~m'a(C~)= fam. gN(Mm, C~)d~= fo~.aN(Mm, C~)d/~. 

At times i t  is more convenient to use the complementary angles defined by 

fl~.a(c~) = 1 - ~,m'a(C~) = f G~. a X(M'~ C~)d~t" 

In  order to illustrate the significance of the Grassmann angles in some special cases, 

let C a = C a'j be a d-cone in E a, with face of apices C j. The angle q(C ~, C a) spanned by C a 

a t  C j i s  defined as  the fraction of the unit sphere S a-1 belonging to C a (see [4, p, 297]), 

while for ] = 0  the external angle ~v(C ~ C a) of C d at its apex C o is defined as the fraction of 

S a-~ covered by  outward normals to hyperplanes supporting C a at  C o (see [4, p. 308]). 

I t ' i s  immediate that  
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~1,~ (od,j) = 1 - - r l"~(O d'j) = 29(VJ, C d) 

~'a-l"d(c~'~ = 1 --~a l'~(Ca'~ = 2yJ(C ~ cd). 

We note  first some ra ther  obvious facts  concerning the Grassmann  angles. 

(2.1) For all m, It, d, 0~<~,m'd(Ck)~<l. 

I f  m § k < d  then  u(M m, C k) = 0  implies M ~  G~ n' d; hence 

(2.2) I/m§ then ym'a(Ck)=1. 

I f  m + ] >~ d then  u(M m, C k J) = 1 implies M m ~ G~ n' ~; hence 

(2.3) I/m§ then ~m'd(Ck)=0. 

I t  follows tha t  the  only interesting cases are those for which m + k > ~ d + l  and  

m+j<~d-1, t ha t  is 
d § l-k<~m <~d-1-]. 

F r o m  now on we shall assume t h a t  this inequal i ty  is satisfied; then,  in part icular ,  

? '+2 ~<k. 

Wi th  these assumptions,  (2.1) m a y  be s t rengthened to 

(2.4) I / l < ~ m < d - ] - I  then 0<~,~ 'd(CdS)<l .  

Proo/. The assumpt ions  imply  t ha t  each of the  sets 

(M'~eGo'n'~]z(M m, Cd'J)=O} and  (M"eG~'~]~(M "~, Cd'J ) )=l}  

is n o n - e m p t y  and  open in G~ 'd, hence the inequalities are obvious. 

Our nex t  a im is to indicate how the computa t ion  of all the Grassmann  angles m a y  

be reduced to the  computa t ion  of angles of the  type  ~m'd(Cd'~ We shall first  establish 

(2.5) Let d + l  - k  <~d-1 -];  then ~m'd(Ck'J)=y~+k-d'k(Ck'J). 

Proo/. Let  E k =  aff C k be the subspace of E d spanned by  C k. I f  M~E G~' d then  M m§ = 

M ~ N E ~ belongs to G~ +k-d,k; moreover ,  whenever  M ~ E G~' d and  M ~+k-d'k E G~ +k-a, k are in 

this relat ion then  u(M m, C ~'~) =u(M "~+~-~, C~,~). B y  the invar iance of the  measures  involved 

it  follows tha t  

m,d k,.~ __ = ~ ulMm+~ d ~rn+k-d,  (C ) -  (G m~o.~u(Mm,C~'~)d# ,]G~ +~-~'~ ' 'C~'~)d#= ~(C~'~)' 

and the proof  of (2.5) is completed.  
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To formulate  the next  step in the reduct ion procedure,  let (LP) ~ denote the ( d - p ) - f l a t  

through 0 orthogonal  to the p-f iat  I2'  in E a. For  a d-cone C a= C a'j with face of apices 

C ~ let Ca-J=C a fl (CJ)~; then Ca-~ is a pointed (d , j ) - cone ,  and  we have 

(2.6) Let 1 < ~ m ~ d - j - 1 ;  then 7m'd(C d'j) =Tm'd-~(~-J).  

We could establish (2.6) by  a proof similar to t ha t  of (2.5). Instead,  we shall prove 

the more  interesting result  (2.7), f rom which (2.6) m a y  be deduced b y  applying (2.7) to 

C a'j  and then once more to the polar cone of C ~J, considered as a subset of E d-j. 

Let  C aJ be a d-cone in E d, and let (CaJ)*=C a-j '~ be the pointed (d-? ' ) -cone polar 

to C ~'j in Ed; t ha t  is, ~a-J,0 is the set of all points  of E d lying on outward  normals to hyper-  

planes support ing C aJ at  0. Wi th  this nota t ion  we have 

(2.7) Let 1 < ~ m ~ d - j - 1 ;  then 7m'a(CeJ)+ye-m'a(C a-j'~ =1.  

Proo/. The correspondence between M m E Gm" a and M a- m = (Mm)Z E G a- m. a is well known 

to be an  isometry between q m'a and G a-m'a. Also, it is easily verified tha t  for M m E G~" a(CaJ) 

and  (M~)X=Ma-mEG~-"'a(C a-j'o) one and only one of the relations M ~ fl C~'J= (0) and 

M a-j N ~d- j .0=  {0) holds. Therefore, for each such M m we have 

u(M =, C a. j )+  u((Mm)~, ~a-~. o)= 1. 

The proof is completed by  integrat ing this relation over G~ n' e, using the isometry between 

G m, a and G ~- m. e mentioned above. 

For  the formulat ion of the subsequent results it is convenient  to introduce the follow- 

ing notation.  Let  C d'j be a d-cone in E d, and  let j~<k,.<d and 1 <~m<~d-]- l ;  we define 

fl~(C~.J) = Z ~m'~(o~'~), 
C~.J 

the summat ion  being over all k-faces C k" j of C e' J. 

We shall next  establish 

THEOREM 2.8. For l < ~ m < . d - j - 1 ,  

d 
~. (-- 1)tfl~+|-d(C a'j) = (-- 1)m+d-lfl~(Od'J). 

t = d - m + l  

Proo[. Let  MmEG~ "a satisfy z (M ~, Cd'i)=l; then  D~=MmN C a is a pointed m-cone 

in M m. For  1 <~i<~m, e a c h / - f a c e  of D m is the intersection of M m with a (d -m+i ) - faee  

C a- m+ ~ of C a' J, such tha t  z ( M  m, C a- m+ ~) = 1; moreover,  M m meets (in points different f rom 0) 
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only those ( d - m  § of C a' j for which this relation holds. Therefore, for each such 

M m and for 1 ~ i ~< m, we have 

/~(Dm)=/,(MmNCa)= Y Z(Mm, Cd-m+,), 
cd-m+f 

the summation being over all the ( d - m  +/)-faces C a-m+~ of C d' J. Since the numbers ]i(D m) 

of / - faces  of D m satisfy Euler 's equation 

( -  1)'+'[i(D m) = 1, 
t=l 

we have for all such M m 

1= ~ (-1)'+l/,(D m)= ~ ( - 1 )  '+1 ~ X(M re,Ca-m+'). 
i=l t=l ca-rn+t 

On the other hand, if M m E G~" ~ satisfies z (M m, C a. J) =0,  then z(M",  C k) =0 for each k-face 

C k of C a, J, ~" < k ~< d. Hence, for each M m E G~' d we have 

Z(M ~, Ca,j) = ~ ( _  1)t+l ~ Z(M m, ca-m+1). 
t=l ca-m +t 

An integration over G'(~ ,a and an application of (2.5) complete the proof of Theorem 2.8. 

In  case m = 1 Theorem 2.8 is obviously trivial. However, in case m =2  Theorem 2.8 

reduces to the non-trivial assertion fi~_l(C d'j) =2  ~ ( C  a'j) which is equivalent to 

r2.a(C a, ~) =~(C j, Ca); 

the last expression denotes the de/iciency of the cone C a at  its face of apices C j (see Shep- 

hard [9]). 

A pointed d-cone C a.~ is called simple provided it is the cone spanned from the origin 

0 by  a simple (d-1) -poly tope  p~- i  such tha t  O ~ a f f P  ~-1. More generally, a d-cone C ~'j 

with face of apices C j is called simple provided C d'j N (CJ) z is a (pointed) simple ( d - j ) -  

cone. Using the same method as in the proof of Theorem 2.8, but  applying the Dehn-  

Sommerville equations instead of Euler 's to the simple cones D m, we obtain 

THEOREM 2.9. For l <~k<.m < ~ d - ~ - I  and/or  each simple d-cone C a'j we have 

/~k-m+k(~d'J) : ~ ( - - l ) t+ l  ( : :  i~Ot ,C d.j, 
t=l k/pd- m+|k )" 

Additional results on the Grassmann angles of cones are discussed on pp. 301 and 302. 
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3. Grassmann angles of polytopes 

Let  K a be a d-dimensional polyhedral  set in E a, let K j be a j-face o f K  a, 0~<j<d ,  

and let z Erelint K j. We define the d-cone C a, s by  

C a. 1 = cone ~ ( _ z + Kd); 

it clearly has a j-dimensional face of apices CS= aff ( -  z + KJ). We shall extend to the pair  

(K a, K s) the functions u, Z, 7 re'a, etc. by  setting, for MmEG 'n'a, 

z (M ~, K d, K s) =z(M m, C a , t), 

etc. 

The subset Gr~'a=G~'d(K a) of G m'a is defined as the intersection of all the (finitely 

many)  sets G~'a(Cd.S), for K j ranging over all the proper faces of Kd; note that/~(G~' d )_  1. 

We find it convenient  to define u(M m, K k, K j) and ~m, d(K~ ' K s) even if K s is not  a 

face of Kk; in this case we define both  expressions to be 0. 

Let  K a be a d-polyhedral  set in E d, and let K ~ be any  face of K a. For  each M m E G~' a 

we denote by  Kk(M m) the polyhedral  set obtained by  projecting K k or thogonal ly  into the 

(d - m)-flat (Mm) z. If  k ~< d - m then Kk(M m) is k-dimensional because M a E G~' a implies 

tha t  the mapping of K k onto Kk(M m) is one-to-one. 

An easy application of the separation theorem for convex sets shows tha t  (for 

O<~k<~d-m-1) KZ(M m) is a proper face (hence a proper  k-face) of Ka(M m) if and only 

if ~(M m, K ~, K ~) = 1. Therefore we have 

(3.1) F o r O < ~ k < ~ d - m - 1  

/~(Kd(Mm)) = ~ ~(M m, K a, K~), 
i 

the summation being over all the k-/aces K~ o / K  d. 

In  order to simplify the notat ion,  we define 

Y'~(Ka) = Z r m' a( Kd, K~), 

the summat ion  being ex tended  over all the k-faces K~ of K a. (Note tha t  this definition is 

essentially different f rom the definition of fie in Section 2.) 

The main lemma m a y  now be s ta ted as follows: 

(3.2) I/the/-vector o/Ka(M m) satisfies an equation 

d r n - 1  
Z ,~/~=~ (*) 

k = O  

/or ectch M m E G~' a, then 
d - m - 1  

2 ~),~(g~) =,~. 
k~O 



G R A S S M A N N  A N G L E S  O F  C O N V E X  P O L Y T O P E S  299 

Proo/. Multiplying the equat ion (*) by  )~k, adding for k = 0 . . . . .  d -  m -  1 , ' and  inte- 

grat ing over G~' a, we have 

fG~,d).d f ~ m 1 
k = l  

d m - 1  

~G d - m - 1  
2~/k(Kd(Mm))dl~= g,d k:o ~ ~ 2 k u ( i m ' K d ' K ~ ) d # ,  

d - m - 1  
. m iKe~ 5 5; tkrm'd(ge,  g~)  = 5 k rk ,  ," 

k = 0  i k = 0  

I n  particular,  if K a is a d-polytope, we may  use Euler ' s  equat ion for the ( d - m ) -  

polytope Ka(M ~) to  obtain 

T H E O ~ E M 3.3. For each d-polytope K ~ anal/or 1 <~ m <~ d - 1, 

d - m - 1  
( 1)Jy?(K ~)= 1 -  ( -  1) d ~. 

j = 0  

Using the Dehn-Sommervi l le  equations we similarly have 

T H E o R ]~ M 3.4. For each (d - m - 1)-simplicial d-polytope K ~ a n d / o r  0 <~ k ~ d - m - 1, 

d m 1 

2 
( i +  1~ 

( -  1)J kk + 1] Y~n(K~)= ( -  1)d lr~(Ka)" 

Analogous results hold for (d - m - 1)-cubical polytopes. 

A very  similar approach is applicable in the case of d-cones. For  reasons of simplicity 

we shall illustrate the modification needed to derive the analogue of Theorem (3.3) for a 

pointed d-cone K a with apex K ~ For  a given m, l<~m<~d-1,  and for each M~EG'~ 'd 

such tha t  ~(M ~, K d, K ~ = 1 we have, as in (3.1), 

and the Euler equat ion 

/k(Ka(Mm)) = ~ u (M m, K a, K~) 
i 

d m 1 
(-- 1)k+l/k(Ka(Mm)) = 1 § ( -  1) d-m 

k=l  

for the pointed ( d - m ) - c o n e  Ka(Mm). However,  if x(M m, K d, K ~  then K~(M ~) = E  d-~, 

and/k(Ka(Mm)) = 0  for each k. Combining the two cases we see tha t  for each M'nEG~ 'a 

d m 1 
~. (-- 1)~+i/k(Kd(Mm)) = (1 + (-- 1 ) a - m ) ~ ( i  m, K d, K~ 

k=l  

An integrat ion over G~' d yields therefore 
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THEOREM 3.5. For each pointed d-cone K ~ and/or 1 <~m<.d-1, 

d - r a - I  

( -- 1)Z+ly~(K a) = (1 + ( -  1)a-m)y~(Ka). 
k=l 

Similar results may  be derived for d-cones K a with a j-dimensional face of apices, 

j > 0 ;  relations analogous to Theorem 3.4 hold for appropriately defined simplicial or 

cubical cones. Relations of these types may  also be obtained for arbi t rary polyhedral sets, 

at  the expense of involving their lineality and characteristic cone ([4, Sections 2.5 and 8.5]). 

For m = 1 Theorem 3.5 specializes to a result equivalent to Sommerville's theorem 

on angle-sums of spherical polytopes (Sommervflle [10], [11, p. 159], Perles-Shephard [6]), 

which is a generalization of the fact that  the area of a spherical polygon is proportional 

to its "excess". Similarly, for m =2  Theorem 3.5 specializes to Theorem 3.7 of Shephard [9]. 

Let  now K a be again a d-polytope, let K1 a-~ ..... Kn a-~ be representatives of all the 

combinatorial types occurring among the (d - m)-polytopes Ka(M ~) for M m E G~ n' a, and let 

B~c G~' a be the set of all those M~E G~ n'a for which Ka(M m) is combinatorially equivalent 

to K~ -m. Then each B, is an open set in G~ 'a, hence/~(Bi)>0;  obviously we also have 

~=l/Z(Bt) = 1. Therefore, integrating over G~ "a the equation of Lemma (3.1), and denoting 

by  7m(K a) the (d -m) -vee to r  

m K d y~(K a) =(7~(Kd), y?(K a) ..... ~- . , -~(  )), 

we have 

THEOREM 3.6. For each d-polytope K a and/or 1 ~ m  <~d-1, 

7m(K d) E relint cony {/(K~-m)]i = 1 ..... n}. 

4. Remarks 

(a) The two approaches (section and projection) used above being dual to each other, 

it is not surprising that  the results obtained by them (such as (2.8) and (3.5)) are also duals 

of each other; the link between them is Lemma (2.7). 

(b) For m = 1 and m = 2, our results essentially coincide with those of Perles-Shephard 

[6] and Shephard [9]. The same papers contain also various consequences of these results. 

For very ingenious applications of their results to some combinatorial problems concerning 

higher-dimensional polytopes see Perles-Shephard [7]. 

(c) Lemma (2.5) may  be seen to imply (in case d = 3 ,  m = 2 ,  k = 2 ,  j = 0 )  the result of 

Lemma 1 of Fs  [2]. For applications of Fs  lemma to polyhedral cones in E 3 see 

Frostman [3]. 
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(d) For  a d-polytope K ~ let :K d denote  the set  of all polytopes  affinely equivalent  to 

K ~, and  let 

r~(:~ ~) = {r~(K) I K e :~}. 

For  m = I ,  Theorem 3.6 m a y  be s t rengthened (Per les -Shephard  [6]) to the  assert ion 

c o n y  ~l(~d) =re l in t  cony {/(K~-I)]i = 1 . . . . .  n}. 

I t  m a y  be conjectured t h a t  

(i) For  m = 1 and  each d-polytope K d, 

71(:~ d) =re l in t  cony {l(K~:l)[i = 1 . . . . .  n}; 

(ii) For  each m with  2<~m<~d-2 and for each d-polytope K ~, 

d im aff 7m(:~ ~) = d i m  aft {l(K~-l)li = 1 . . . . .  n}; 

(iii) For  each m with 2 ~< m ~< d - 2 there exists a d-polytope K d such t ha t  

cony ~,m(~d)4relint cony {/(K~-l)li = 1 ..... n}. 

(e) Let  ~d, m denote the fami ly  of all d-polytopes K ~ with the p rope r ty  t h a t  all Ka(Mm), 

for MInE G~' a(Ka), are of the  same combinator ia l  type.  As easily seen (Per les-Shephard  [6], 

Shephard  [8] for m = l ,  2) Theorem 3.6 implies t ha t  for polytopes  K E ~)~,m the vectors  

7re(K) are affine invar iants  of K.  I t  is not  hard  to see t ha t  zonotopes (i.e., vec tor -sums 

of segments),  as well as direct sums of (segments and) regular  polygons belong to ~)~.m 

for  each m. However ,  ~)~' m has not  been character ized even in the simplest  non-tr ivial  case 

(d=3 ,  m = l ) .  

(f) I n  connection with applicat ions of Theorem 3.6 (Per les -Shephard  [7]) the following 

conjecture is of some interest.  For  each d-polytope K there  exists a K '  combinator ia l ly  

equivalent  to K and having the proper ty :  For  every  K"  combinator ia l ly  equivalent  to K,  

and  for every  M" E G'~'a(K"), there  exists an M' E G~"~(K ') such t h a t  K"(M")is combina-  

torial ly equivalent  to K'(M'). This conjecture is also open even in the seemingly tr ivial  

case d = 3, m = 1. 

(g) I t  would be interest ing to invest igate  whether  the  var ious Grassmann  angles 

(and their  sums) sat isfy (non-linear?) inequalities which are not  tr ivial  consequences of 

(2.4), (3.6), and  the  var ious equat ions found above.  
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