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ABSTRACT 

A flaw in Lemma 2 is corrected and other parts of the paper changed accord- 
ingly so as to preserve all the theorems. 

In  reviewing our paper  [1]  Professor J. F. Rigby has observed that  L e m m a  2 is 
not  valid as it stands.* The lemma can be repaired by adding the hypothesis  

A B C  > 120 °, but  then addit ional  arguments  are required to  complete the 

discussion of  Case V in the p r o o f  o f  Theorem 6. In the original text Lemmas  2 

and 6 were designed to facilitate the exposit ion contained in the last two paragraphs  

of  the arguments  of  that  case. We find it advantageous  to present modified versions 

of  Lemmas  2 and 6, and to revamp correspondingly the a rgument  in Case V of  the 

p r o o f  o f  Theorem 6. 
We note also that  the reference to Lemma 2 on page 191, line 31, should be* 

to  L e m m a  1, and that  in various references th roughou t  the paper " C o m p a r i s o n  
L e m m a "  is another  term for Lemma 1. 

LEMMA 2'.  L e t  the convex  q u a d r i l a t e r a l s  A B C D  and  A ' B ' C ' D ' ,  each 

labe l l ed  in cyc l i c  order ,  sa t i s f y  

A B  = CD = B ' C '  = x ,  A ' B '  = C ' D '  = B C  = y,  A C  = B D  = A ' C ' =  B ' D ' ,  

A D  = w, A ' D '  = w' ,  while ~ A B C  > 120 ° a n d  y > x ;  then  w '  > w. 

PROOF. Not ing  that  ~ = 180 ° - K A B C  < 60 ° we have 

w = 2xcosc~ + y, w' = 2 y c o s ~  + x 

w' - w = 2 cos 0~ (y - x) + (x - y)  = (y - x) I2 cos 0~ - 1] > 0. 

* We are indebted to Professor Rigby for kindly bringing these facts to our attention. 
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LEMMA 6'. I f  a homogeneous  po lygon  contains  consecutive vertices 

A ,  B,  C, D, E wi th  A B  = CD = a l ,  BC = DE = a2, A C  = BD = a 3 and AD > az, 

i = 1,2, 3, and i f  4: A B C  < 120 °, then A D  is a d iame te r  o f  the polygon.  

B a 2 , C 
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Fig. 1 

PRoof. (See Fig. 1.) Let the perpendicular bisector of  A B  meet AD in M and 
CD in N. Since AD > BD, M is between A and D. We now claim that a2 > M D  

>_ND. In fact, 4 : A B M =  4 : B A M > _ 6 0  ° and hence 4:CBM<=60 ° . Thus 
4: C B M  + 4: BCD <= 180 and a2 -> MD.  

Furthermore,  4: B A M  >= 60 ° implies that  4: D M N  <= 30 ° which together with 
4: C D M  >= 60 ° leads to the conclusion that D N M  > 30 °. Thus M D  > ND.  

It  is now clear that E cannot be in the triangle M D N  and hence is in the open 
half  plane, r~ + , having line M N  as edge and containing point A. By the same 
argument ~r + contains all the vertices of the polygon with the exception of B, C 
and D. 

Since B P  > A P  for all points P in ~r +, the diameter f rom A must be AD.  • 

The last two paragraphs of the argument for case V of Theorem 6 should be 
replaced by the following (compare Fig. 2): We may suppose PoP2 = P1P 3 = a3. 

CASE 1. 4 :PoPIP2 <= 120 ° or a = 180 ° - 4: PoP1P 2 > 60 °. 

P, o2 
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Fig. 2 
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By the comparison lemma P2P5 > x. Lemma 6' implies that PoP3 is a diameter 
of the polygon and hence P2P 5 = x, P2P4 = P3P s = a3. It  can now be inferred by 
induction that all second order diagonals are of equal length and the polygon is 
cyclic. 

However it is a little bit more revealing to note that, since diametral segments 
must intersect, P4P1 = x. Then f rom quadrilaterals PoPIP2P3 and PzPaP4P5 

we conclude that x = 2a~ cos0c + a 2 = 2a2 cosg  + a~ and that ~ = 60 °. Now the 
polygonal angles at P1, P2, P3, P4 are all 120 ° and an easy calculation shows that 
PoP5 = a2. Thus the polygon is a quasiregular hexagon. 

CASE 2. ~ PoPIP2 > 120 °. 
Lemmas 2' and 1 show that P2Pn > x. I f  P2P4 = x then a~ + a2 >_- x and f rom 

Lemma 3 it follows that -~ PoP1Pz < 120 °. Since P2P5 > x by the comparison 
lemma, P2Ps = x. Thus P2P4 = P3P5 = a 3. As above it follows by induction that 
all second order diagonals are of length aa and the polygon is cyclic. 
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