METRICALLY HOMOGENEOUS SETS: CORRIGENDUM

BY
BRANKO GRÜNBAUM AND L. M. KELLY

ABSTRACT

A flaw in Lemma 2 is corrected and other parts of the paper changed accordingly so as to preserve all the theorems.

In reviewing our paper [1] Professor J. F. Rigby has observed that Lemma 2 is not valid as it stands.* The lemma can be repaired by adding the hypothesis $\Varangle A B C>120^{\circ}$, but then additional arguments are required to complete the discussion of Case V in the proof of Theorem 6. In the original text Lemmas 2 and 6 were designed to facilitate the exposition contained in the last two paragraphs of the arguments of that case. We find it advantageous to present modified versions of Lemmas 2 and 6, and to revamp correspondingly the argument in Case V of the proof of Theorem 6 .

We note also that the reference to Lemma 2 on page 191, line 31, should be* to Lemma 1, and that in various references throughout the paper "Comparison Lemma" is another term for Lemma 1.

Lemma 2'. Let the convex quadrilaterals $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, each labelled in cyclic order, satisfy

$$
\begin{aligned}
& A B=C D=B^{\prime} C^{\prime}=x, A^{\prime} B^{\prime}=C^{\prime} D^{\prime}=B C=y, A C=B D=A^{\prime} C^{\prime}=B^{\prime} D^{\prime}, \\
& A D=w, A^{\prime} D^{\prime}=w^{\prime}, \text { while } \Varangle A B C>120^{\circ} \text { and } y>x ; \text { then } w^{\prime}>w .
\end{aligned}
$$

Proof. Noting that $\alpha=180^{\circ}-\Varangle A B C<60^{\circ}$ we have

$$
\begin{aligned}
w & =2 x \cos \alpha+y, w^{\prime}=2 y \cos \alpha+x \\
w^{\prime}-w & =2 \cos \alpha(y-x)+(x-y)=(y-x)[2 \cos \alpha-1]>0
\end{aligned}
$$

[^0]Lemma 6'. If a homogeneous polygon contains consecutive vertices A, B, C, D, E with $A B=C D=a_{1}, B C=D E=a_{2}, A C=B D=a_{3}$ and $A D>a_{i}$, $i=1,2,3$, and if $\Varangle A B C \leqq 120^{\circ}$, then $A D$ is a diameter of the polygon.

Fig. 1
Proof. (See Fig. 1.) Let the perpendicular bisector of $A B$ meet $A D$ in M and $C D$ in N. Since $A D>B D, M$ is between A and D. We now claim that $a_{2} \geqq M D$ $\geqq N D$. In fact, $\Varangle A B M=\Varangle B A M \geqq 60^{\circ}$ and hence $\Varangle C B M \leqq 60^{\circ}$. Thus $\Varangle C B M+\Varangle B C D \leqq 180$ and $a_{2} \geqq M D$.

Furthermore, $\Varangle B A M \geqq 60^{\circ}$ implies that $\Varangle D M N \leqq 30^{\circ}$ which together with $\Varangle C D M \geqq 60^{\circ}$ leads to the conclusion that $D N M \geqq 30^{\circ}$. Thus $M D \geqq N D$.

It is now clear that E cannot be in the triangle $M D N$ and hence is in the open half plane, π^{+}, having line $M N$ as edge and containing point A. By the same argument π^{+}contains all the vertices of the polygon with the exception of B, C and D.

Since $B P>A P$ for all points P in π^{+}, the diameter from A must be $A D$.
The last two paragraphs of the argument for case V of Theorem 6 should be replaced by the following (compare Fig. 2): We may suppose $P_{0} P_{2}=P_{1} P_{3}=a_{3}$.

CASE 1. $\Varangle P_{0} P_{1} P_{2} \leqq 120^{\circ}$ or $\alpha=180^{\circ}-\Varangle P_{0} P_{1} P_{2} \geqq 60^{\circ}$.

Fig. 2

By the comparison lemma $P_{2} P_{5} \geqq x$. Lemma 6' implies that $P_{0} P_{3}$ is a diameter of the polygon and hence $P_{2} P_{5}=x, P_{2} P_{4}=P_{3} P_{5}=a_{3}$. It can now be inferred by induction that all second order diagonals are of equal length and the polygon is cyclic.

However it is a little bit more revealing to note that, since diametral segments must intersect, $P_{4} P_{1}=x$. Then from quadrilaterals $P_{0} P_{1} P_{2} P_{3}$ and $P_{2} P_{3} P_{4} P_{5}$ we conclude that $x=2 a_{1} \cos \alpha+a_{2}=2 a_{2} \cos \alpha+a_{1}$ and that $\alpha=60^{\circ}$. Now the polygonal angles at $P_{1}, P_{2}, P_{3}, P_{4}$ are all 120° and an easy calculation shows that $P_{0} P_{5}=a_{2}$. Thus the polygon is a quasiregular hexagon.

CASE 2. $\Varangle P_{0} P_{1} P_{2}>120^{\circ}$.
Lemmas 2^{\prime} and 1 show that $P_{2} P_{n}>x$. If $P_{2} P_{4}=x$ then $a_{1}+a_{2} \geqq x$ and from Lemma 3 it follows that $\Varangle P_{0} P_{1} P_{2}<120^{\circ}$. Since $P_{2} P_{5} \geqq x$ by the comparison lemma, $P_{2} P_{5}=x$. Thus $P_{2} P_{4}=P_{3} P_{5}=a_{3}$. As above it follows by induction that all second order diagonals are of length a_{3} and the polygon is cyclic.

Reference

1. B. Grünbaum and L. M. Kelly, Metrically homogeneous sets. Israel J. Math., 6 (1968), 183-197.

[^0]: * We are indebted to Professor Rigby for kindly bringing these facts to our attention. Received January 4, 1970

