METRICALLY HOMOGENEOUS SETS

BY
BRANKO GRUNBAUM AND L. M. KELLY

Abstract

A subset of a metric space is called metrically homogeneous if the set of distances from a chosen point of the subset to all the other points of the subset is independent of the chosen point. The main result of the paper is a complete characterization of the compact, metrically homogeneous subsets of the Euclidean plane.

1. Introduction. If \mathscr{S}_{1} and \mathscr{S}_{2} are two subsets of a distance space, $\rho\left(\mathscr{S}_{1}, \mathscr{S}_{2}\right)$ is the set of distances $\rho(x, y), x \in \mathscr{S}_{1}, y \in \mathscr{S}_{2}$. A set \mathscr{S} such that $\rho(P, \mathscr{P})$ $=\rho(Q, \mathscr{S})$ for any two points P and Q of \mathscr{S} is a metrically homogeneous set.

Since the problem of characterizing such sets is even more general than the difficult and important problem of determining those subsets of a space whose group of self-isometries is simply transitive, its solution in general settings should not be expected to be easy. We succeed here only in completely characterizing the compact metrically homogeneous subsets of the Euclidian spaces E_{2}; however, much of our preliminary analysis is valid in any strictly convex two dimensional real Banach space.

Curves of constant width and the vertex sets of regular polygons are quite clearly metrically homogeneous. A convex cyclic polygon with alternate sides equal is called quasi regular and its vertex set is still another example of a metrically homogeneous set in E_{2}. Indeed, if we insist that the set of distances emanating from each point have the same "repetitions" then the smooth curves of constant width together with the vertex sets of regular and quasi regular polygons are the only metrically strictly homogeneous sets in E_{2}.

However, if one of the vertices be omitted from the vertex set of an odd sided regular polygon, the residual set is metrically homogeneous and suggests the ultimate characterization theorem to the effect that such sets are either arcs of curves of constant width, vertex sets of quasi regular polygons or suitably truncated vertex sets of regular polygons.

Surprisingly, it follows from this characterization that each finite metrically homogeneous subset of the plane has a non-trivial group of isometries. Already in Euclidean 3-space there exist finite metrically homogeneous sets lacking this property.

The stimulus for this investigation was a question posed by J. Conway at the East Lansing conference on Combinatorial Geometry. The present form of the proof of case V of the main theorem is due in essence to Mr. William Webb, to whom we are grateful for several useful ideas.
2. Preliminaries and a few general theorems. Generally points will be denoted by capitals. $P Q$ is the distance from P to Q while $\overline{P Q}$ is the segment defined by P and Q.
B_{2} is a two dimensional Banach space over the reals with a strictly convex norm. The diameter of a set \mathscr{S} relative to a point $P \in \mathscr{S}$ is $\operatorname{lub}\{P X \mid X \in \mathscr{S}\}$. If the diameter of \mathscr{S} relative to each point of \mathscr{S} is constant and finite, the set is said to be of constant diameter. If $P Q$ is a diameter of $\mathscr{S}, \overline{P Q}$ is a diametral segment of \mathscr{S}. It is well known that in E_{2} a set of constant diameter is the boundary of a set of constant width, and conversely. In the sequel, d will always denote the diameter of the set considered.

The main result of the present section is the characterization of infinite compact metrically homogeneous sets in E_{2} (Theorem 4).

Theorem 1. Any two diametral segments of a set \mathscr{S} in B_{2} intersect.
Proof. Suppose $A B=d, D C=d$ and $A B C D$ are the vertices of a convex quadrilateral (see Fig. 1). Let the diagonals $\overline{A C}$ and $\overline{B D}$ intersect in E. Then

Fig. 1
$A E+E B>d, D E+E C>d$ hence $A C+D B>2 d$. Since $A C \leqq d$ and $D B \leqq d$, this is a contradiction.

If $A B C D$ is not convex then one of the points, say D, is in the triangle formed by the other three points (see Fig. 2). Let $\overline{D C}$ intersect $\overline{A B}$ in E and let F be a point collinear with C and D and such that $F E=(y / x) E C$. Then $F A=(y / x) a$ and from the triangle inequality we have $F A+A C>F C=F E+E C$, or $(y / x) a+b$

Fig. 2
$>(y / x) d+d$, hence $y(a-d)+b x>x d$ or $y(a-d)>x(d-b)$. This is a contradiction, and the proof of Theorem 1 is completed.

Theorem 2. If \mathscr{S} is a compact set of constant diameter in \boldsymbol{B}_{2} then $\mathscr{S}=$ ext conv \mathscr{S}.

Proof. Assuming the theorem false, there is a point $P \in \mathscr{S}$ which is in the relative interior of a segment $\overline{X Y} \subset \operatorname{conv} \mathscr{S}$.

Let $Q \in \mathscr{S}$ be diametral to P (i.e. such that $\overline{P Q}$ is a diameter of \mathscr{S}). The strict convexity of the norm in B_{2} implies that $2 P Q<Q X+Q Y$, thus $P Q<\max \{Q X, Q Y\}$. Since the diameter of $\operatorname{conv} \mathscr{S}$ is the same as the diameter of \mathscr{S}, this is a contradiction, and the theorem is proved.

We note that Theorem 2 implies the existence of a natural cyclic order for the points of any set of constant diameter (and in particular for any metrically homogeneous set). This observation will be used throughout the sequel.

The next result will also be used very frequently; we shall refer to it as the "monotonicity theorem".

Theorem 3. If P, Q, X, Y are different points of a set \mathscr{S} of constant diameter in B_{2}, such that $P Q$ is a diameter of $\mathscr{S}, \overline{Q X} \cap \overline{P Y} \neq \varnothing$ and $P Y<P Q$, then $P Y>P X$.

Proof. (Compare Fig. 3). Let Y^{*} be a point diametral to Y, and let $E=\overline{Y P} \cap \overline{Y^{*} X}$. (The point E exists by virtue of the axiom of Pasch, and convexity.) Since $Y E+E Y^{*}>Y^{*} Y=d$ and $Y^{*} E+E X=Y^{*} X \leqq d$, we have $Y E>E X$. Hence $P Y=E P+E Y>E P+E X>P X$, as claimed.

Fig. 3

A little more descriptively, the montonicity theorem asserts that as the point X moves on the boundary of conv \mathscr{S} away from P, the distance $P X$ is monotone strictly increasing till X encounters the first point diametral to $P . P X$ is then constant as X moves through the points diametral to P and then it is monotone strictly decreasing as X returns to P.

Heppes [1] has recently characterized curves of constant width by the property that each chord of the curve is maximal among the chords of at least one of the arcs determined by the chord. This is another way of viewing the monotonicity property.
Definition. The midpoint of an $\operatorname{arc} \mathscr{A}$ of a closed convex curve \mathscr{C} in B_{2}, with endpoints A and B, is the (unique) point M of \mathscr{A} such that $M A=M B$. If \mathscr{A} contains points P, Q, R such that $P Q=Q R=d$, the diameter of \mathscr{C}, then \mathscr{A} is a major arc of \mathscr{C}. Otherwise it is a minor arc. \mathscr{C} itself is included in the class of major arcs.
Theorem. 4. A compact metrically homogeneous subset \mathscr{S} of B_{2} is either a finite set or a major arc of a curve of constant diameter.

Proof. Recall that \mathscr{S} is a closed subset of the boundary \mathscr{C} of $\operatorname{conv} \mathscr{S}$ and assume that \mathscr{S} is infinite. Each point of \mathscr{S} is then an accumulation element of \mathscr{S}. Suppose $P \in \mathscr{C}-\mathscr{S}$ and let A and B be the end points of the maximal arc of \mathscr{C} in $\mathscr{C}-\mathscr{S}$ containing $P . A$ and B are, of course, in \mathscr{S}. We now propose to show that A and B are endpoints of a major arc of \mathscr{C} lying in \mathscr{S}.
To this end let $\varepsilon=\min \left\{\frac{A B}{2}, \frac{d}{2}\right\}$, where d is the diameter of \mathscr{S} and hence also of \mathscr{C}, and let $\mathscr{B}=\mathscr{B}(\varepsilon, A)$ be the sphere of radius ε centered at A. Let $\left\{X_{i}\right\}$ be a sequence such that $X_{i} \in \mathscr{S} \cap \mathscr{B}$ and $\lim X_{i}=A$. Now suppose that E is any point in $\mathscr{S} \cap \mathscr{B}$ and consider $Y_{i} \in \mathscr{S} \cap \mathscr{B}$ such that $Y_{i} X_{i}=E A$. It is clear that the sequence $\left\{Y_{i}\right\}$ tends to E from the same side as $\left\{X_{i}\right\}$ tends to A, i.e. $Y_{i} E A B$ holds in the cyclic order defined on \mathscr{C}. Now define Z_{i} as an element of \mathscr{S} such that $A Z_{i}=E X_{i}$. It follows easily that $\left\{Z_{i}\right\}$ tends to E from the other side, i.e. $E Z_{i} A B$ holds. Thus an arbitrary point of $\mathscr{S} \cap \mathscr{B}$ is a two-sided accumulation element of \mathscr{S}.
Let $\overparen{A B}$ be the are of \mathscr{C} which does not contain P and suppose Q is a point of $(\mathscr{C}-\mathscr{S}) \cap \mathscr{B} \cap \overparen{A B}$. At least one of the end points of the maximal arc of \mathscr{C} in $\mathscr{C}-\mathscr{S}$ which contains Q is in $\mathscr{S} \cap \mathscr{B}$, and is a one-sided accumulation element of \mathscr{S}, contradicting the above. Hence such Q does not exist, and A is the end point of an arc of \mathscr{C} lying in \mathscr{S}. Let \mathscr{A} be the component of \mathscr{S} containing A, with midpoint M, and suppose F its other end point. Then \mathscr{A} must be a major arc since otherwise there is clearly a point Z in $\mathscr{C}-\mathscr{S}$ such that for no point $X \in \mathscr{S}$ is $M X=M Z$, while there is a point $Y \in \mathscr{S}$ with $A Y=M Z$. This contradicts the homogeneity of \mathscr{S} and proves that \mathscr{A} is a major arc of \mathscr{C}.

If $F \neq B$ then there would be two disjoint major arcs of \mathscr{C} in \mathscr{S} which is clearly impossible. Hence $\mathscr{A}=\overparen{A B}$ and the proof of Theorem 4 is completed.

A finite metrically homogeneous set in B_{2} is the vertex set of a convex polygon and we seek to characterize such polygons; for brevity, we shall say that such a polygon is metrically homogeneous. Let $a_{1}<a_{2}<\cdots<a_{m}=d$ be the numbers in the distance set. If the vertices of a metrically homogeneous polygon, labelled in cyclic order, are $P_{0}, P_{1}, \cdots, P_{n}$ then it is easy to see that if $P_{i} P_{j}=a_{1}$ then P_{i} and P_{j} are adjacent.
3. Some lemmas. We list now a sequence of lemmas which will be needed in the proof of Theorem 5. Thus far our results have been valid in a strictly convex B_{2}. We cannot proceed much further without recourse to additional structure so we shift the locale at this point to E_{2}.

Lemma 1. If the convex quadrilaterals $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ satisfy $A B=A^{\prime} B^{\prime}, B C=B^{\prime} C^{\prime}, C D=C^{\prime} D^{\prime}, A C \geqq A^{\prime} C^{\prime}$ and $B D \geqq B^{\prime} D^{\prime}$, then $A D \geqq A^{\prime} D^{\prime}$ with equality if and only if $A C=A^{\prime} C^{\prime}$ and $B D=B^{\prime} D^{\prime}$.

Proof. Consider a third quadrilateral $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ with $A^{\prime \prime} B^{\prime \prime}=A B, B^{\prime \prime} C^{\prime \prime}=B C$, $C^{\prime \prime} D^{\prime \prime}=C D, \quad A^{\prime \prime} C^{\prime \prime}=A C$ and $B^{\prime \prime} D^{\prime \prime}=B^{\prime} D^{\prime}$. Then $\Varangle B C D \geqq \Varangle B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$, and $\Varangle A C B=\Varangle A^{\prime \prime} C^{\prime \prime} B^{\prime \prime}$. Thus $\Varangle A C D \leqq \Varangle A^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ and since $A C=A^{\prime \prime} C^{\prime \prime}$ and $D C=D^{\prime \prime} C^{\prime \prime}$, it follows that $A D \geqq A^{\prime \prime} D^{\prime \prime}$. A similar argument shows that $A^{\prime \prime} D^{\prime \prime} \geqq A^{\prime} D^{\prime}$ and hence $A D \geqq A^{\prime} D^{\prime}$. It is now easy to see that equality occurs only if $A C=A^{\prime} C^{\prime}$ and $B D=B^{\prime} D^{\prime}$.

Lemma 2. If the quadrilaterals $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ satisfy $A B=C D=p$ $=B^{\prime} C^{\prime}<A^{\prime} B^{\prime}=C^{\prime} D^{\prime}=q=B C, \quad A C=B D=r \leqq r^{\prime}=A^{\prime} C^{\prime}=B^{\prime} D^{\prime}, \quad A D=s$, $A^{\prime} D^{\prime}=s^{\prime}$, then $s^{\prime}>s$.

Proof. Again consider an auxilliary quadrilateral $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ with $A^{\prime \prime} B^{\prime \prime}=q$, $B^{\prime \prime} C^{\prime \prime}=p, C^{\prime \prime} D^{\prime \prime}=q, A^{\prime \prime} C^{\prime \prime}=B^{\prime \prime} D^{\prime}=r, A^{\prime \prime} D^{\prime \prime}=s^{\prime \prime}$. Quadrilaterals $A B C D$ and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ have congruent circumcircles and it is clear that the $\operatorname{arc} A B C D$ is less than or equal to the arc $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$. Thus $s^{\prime \prime}>s$ and, by Lemma $1, s^{\prime} \geqq s^{\prime \prime}$.

Lemma 3. If the quadrilateral $A B C D$ satisfies $A B=C D=p, B C=q$, $A D=s, A C=B D=r$ and $p+q>s$, then $\Varangle A B C<120^{\circ}$.

Proof. From the theorem of Ptolemy we have $p^{2}+q s=r^{2}$, thus $p^{2}+q(p+q)>r^{2}$. Hence $p^{2}+p q+q^{2}>p^{2}+q^{2}-2 p q \cos \Varangle A B C$, and therefore $\cos \Varangle A B C>-\frac{1}{2}$, i.e., $\Varangle A B C<120^{\circ}$.

Lemma 4. If the quadrilaterals $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ satisfy $A B=B C=C D$ $=a, A C=B D=b, A D=c, A^{\prime} B^{\prime}=B^{\prime} C^{\prime}=a, C^{\prime} D^{\prime}=b, A^{\prime} C^{\prime}=B^{\prime} D^{\prime}=d$ and $A^{\prime} D^{\prime}=c$, then $\Varangle B^{\prime} C^{\prime} D^{\prime}<90^{\circ}$.

Proof. Ptolemy's theorem implies that $a c+a^{2}=b^{2}$ and $a c+a b \geqq d^{2}$. Thus $\quad a b-a^{2} \geqq d^{2}-b^{2}=a^{2}+b^{2}-2 a b \cos \Varangle B^{\prime} C^{\prime} D^{\prime}-b^{2}$ and hence
$a b\left(1+2 \cos \Varangle B^{\prime} C^{\prime} D^{\prime}\right) \geqq 2 a^{2}$. Therefore $b\left(1+2 \cos \Varangle B^{\prime} C^{\prime} D^{\prime}\right) \geqq 2 a>b$, i.e. $\cos \Varangle B^{\prime} C^{\prime} D^{\prime}>0$ or $\Varangle B^{\prime} C^{\prime} D^{\prime}<90^{\circ}$.

Lemma 5. If quadrilaterals $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ satisfy $A B=C D=A^{\prime} B^{\prime}=$ $B^{\prime} C^{\prime}=a, \quad B C=C^{\prime} D^{\prime}=b, \quad A C=B D=B^{\prime} D^{\prime}=c \quad$ and $A D=A^{\prime} D^{\prime}=d$, then $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is cyclic.

Proof. Consider C^{*}, the reflection of C in the perpendicular bisector of $B D$. Quadrilateral $A B C D$ is certainly cyclic and C^{*} is on its circumcircle. But $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is congruent to $A B C^{*} D$, hence the assertion.

Lemma 6. No metrically homogeneous polygon in E_{2} contains consecutive vertices A, B, C, D, E with $A B=C D=p, B C=D E=q, A C=B D=r, A D=C E=s$ and $s>r>q \geqq p$.

Proof. (Compare Fig. 4). From Lemma 1 we conclude that $B E>A D=s$ and that the diameter d is greater than s. The diametral segment from A must

Fig. 4
intersect the perpendicular bisector of the segment $\overline{A B}$. From Lemma 3 it follows that $\Varangle A B C=\Varangle B C D<120^{\circ}$. Now a simple calculation shows that the perpendicular bisector of the segment $\overline{A B}$ intersects $\overline{A D}$ in X and the line $C D$ in Y such that $q>X D \geqq Y D$. It follows that the only points of the polygon on the opposite side of the line $M X$ from A are B, C, and D, and none of the segments $\overline{A D}, \overline{A C}$, or $\overline{A B}$, is diametral. This contradicts the homogeneity assumption, and thus completes the proof.

Lemma 7, No metrically homogeneous set \mathscr{S} in E_{2} contains points A_{1}, A_{2}, A_{3}, $A_{4}, A_{5}, A_{6}, A_{7}, A_{8}$, such that $A_{3} A_{5}=A_{1} A_{2}=A_{7} A_{8}=A_{4} A_{6}=a_{2}, A_{2} A_{3}=A_{3} A_{4}$ $=A_{4} A_{5}=A_{5} A_{6}=A_{6} A_{7}=a_{1}, \quad A_{1} A_{3}=A_{2} A_{4}=A_{5} A_{7}=A_{6} A_{8}=a_{3}$ and $A_{1} A_{4}$ $=A_{3} A_{6}=A_{5} A_{8}=a_{4}$.

Proof. (Compare Fig. 5). From Lemma 4 we have $\Varangle A_{1} A_{2} A_{3}=\Varangle A_{8} A_{7} A_{6}$ $<90^{\circ}$. Suppose $A_{1} A_{8}=a_{1} . A_{2} A_{7}$ is clearly greater than $A_{1} A_{8}$ and hence an

Fig, 5
examination of quadrilaterals $A_{1} A_{4} A_{5} A_{8}$ and $A_{2} A_{4} A_{5} A_{7}$ shows that $A_{2} A_{6}>A_{8} A_{4}$. Hence $A_{8} A_{4}<d$, thus $A_{8} A_{3}=d$. But then no diametral segment from A_{5} intersects $A_{8} A_{3}$, which is a contradiction. Hence there is a point A_{0} of \mathscr{S} such that $A_{0} A_{1}=a_{1}$ and $A_{0} \neq A_{i}$ for $i=1,2, \cdots, 8$. If $A_{0} A_{2}=a_{3}$ then $\Varangle A_{0} A_{1} A_{2}<90^{\circ}$ which is clearly impossible. An easy montonicity argument shows that $A_{0} A_{i} \neq a_{3}$ for $i=3,4,5,6$, 7, 8. Simlarly $A_{0} A_{i} \neq a_{2}, i=2,3, \cdots, 8$. Hence $A_{0} A_{p}=a_{3}$ and $A_{0} A_{q}=a_{2}$ for some $q>p>8$, and it is clear that $A_{p} A_{q} \geqq a_{1}$. Hence $\Varangle A_{0} A_{q} A_{p}<90^{\circ}$. A similar argument shows that $\Varangle A_{8} A_{s} A_{t}<90^{\circ}$ for suitable s, t; but then the polygon $\operatorname{conv} \mathscr{S}$ would contain four acute angles which is impossible. This completes the proof of Lemma 7.

Lemma 8. No metrically homogeneous set in E_{2} contains the eight point configuration $A_{1}, A_{2} \cdots A_{8}$ with

$$
\begin{aligned}
& A_{1} A_{2}=A_{3} A_{4}=A_{4} A_{5}=A_{5} A_{6}=A_{7} A_{8}=a_{1} \\
& A_{2} A_{3}=A_{6} A_{7}=A_{3} A_{5}=A_{4} A_{6}=a_{2} \\
& A_{1} A_{3}=A_{2} A_{4}=A_{5} A_{7}=A_{6} A_{8}=a_{3} \\
& A_{1} A_{4}=A_{8} A_{5}=a_{4} \leqq A_{3} A_{6} .
\end{aligned}
$$

Proof. (Compare Fig. 6). The perpendicular bisector of $\overline{A_{5} A_{6}}$ intersects $\overline{A_{5} A_{8}}$ in Y and the line $A_{7} A_{8}$ in X. A simple calculation shows that $A_{8} X$ and

Fig. 6
$A_{8} Y$ are both less than a_{2}. A point \bar{A}_{5}, diametral to A_{5}, must lie in the triangle $A_{8} X Y$ and hence $\bar{A}_{5} A_{8}=a_{1}$, i.e. \bar{A}_{5} is adjacent to A_{8}. Similarly for \bar{A}_{4}. Now, if $A_{5}=A_{1}$ it is clear that $A_{3} A_{7}>A_{5} A_{1}=d$, which is impossible. If $\bar{A}_{5}=A_{4}$ then $A_{5} A_{i}=a_{3}$ has no solution, contradicting the homogeneity. But then the diametral segments $\overline{A_{5}} \overline{A_{5}}$ and $\overline{A_{4} \bar{A}_{4}}$ are disjoint, which is again impossible. Hence in all cases we have a contradiction and the lemma is proved.
4. Characterization of finite, metrically homogeneous sets in E_{2}. The following theorems provide information on metrically homogeneous polygons, which leads to their complete characterization in Theorem 7.

Theorem 5. The length of a side of a metrically homogeneous polygon cannot exceed 2.

Proof. Suppose that the vertices of the polygon labelled in cyclic order, are $P_{0}, P_{1}, \cdots, P_{n}$ and that $P_{n} P_{0}=a_{k}>a_{2}$. Let $P_{0} P_{t}=d$ while $P_{0} P_{x}<d$ for $x<t$.

We propose now to show that for all $i \leqq t$
(1) $P_{0}, P_{1}, \cdots, P_{i}$ are concyclic;
(2) $P_{\alpha} P_{\beta}=a_{|x-\beta|}$ for $\alpha, \beta \leqq i,|\alpha-\beta| \leqq\left[\frac{i+1}{2}\right]$;
(3) $P_{n} P_{i} \geqq \min \left\{a_{i+k}, d\right\}$.

Suppose, in fact, that these conditions are met for $i \leqq m<t$. If $m=2 r$ consider the point P_{x} such that $P_{r} P_{x}=a_{r+1}$. It is clear from (2) that $x>2 r$.

If $d \leqq a_{r+2}$ then monotonicity and the fact that $P_{0} P_{r}=a_{r}$ while $P_{0} P_{t}=a_{r+2}$ imply that either $P_{0} P_{i}=d$ for some $i<t$, an impossibility, or that $2 r<t \leqq r+2$. This is possible only if $r<2$, i.e., $P_{0} P_{3}=d$ hence $a_{k}=a_{3}$. But it is easy to show that $a_{k}=d=a_{3}$ is an impossibility. Hence $d>a_{r+2}$. If $x>2 r+1$ then $P_{r} P_{y}=d$ for some $y, r<y<x$. This in turn implies that $P_{r} P_{n}<P_{r} P_{x}=a_{r+1}$. But this isimpossible since $P_{r} P_{n} \geqq \min \left\{a_{r+k}, d\right\} \geqq a_{r+2}$. So $x=2 r+1$. We now show that $P_{m+1} P_{m}, P_{m+1} P_{m-1}$, $\cdots, P_{m+1} P_{r}$ is a strictly monotone increasing sequence. This follows from the fact that $P_{m+1} P_{r}=a_{r+1} \neq d$ and diametral segments must intersect. Since $P_{m+1} P_{r}$ $=a_{r+1}$ it follows that $P_{m+1} P_{i}=a_{m+1-i}$, for $r \leqq i<m+1$.

It is immediate that $P_{0} P_{1} \cdots P_{m+1}$ are concyclic since the triangle $P_{m+1} P_{m} P_{m-1}$ is congruent to the triangle $P_{m-2} P_{m-1} P_{m}$. This implies that $P_{\alpha} P_{\beta}=a_{|\alpha-\beta|}$ for $\alpha, \beta \leqq m+1,|\alpha-\beta| \leqq\left[\frac{2 r+2}{2}\right]=r+1$. Finally $P_{n} P_{m+1} \geqq \min \left\{d, a_{k+m+1}\right\}$ since otherwise we would have $P_{n} P_{m}=d$ while no diametral segment from P_{m+1} meets the diametral segment $\overline{P_{n} P_{m}}$.

Now suppose that $m=2 r+1$ and let P_{x} be such that $P_{r} P_{x}=a_{r+2}$. From the previous case we know that $d>a_{r+2}$ and it follows that $P_{r} P_{n}>a_{r+2}$. Hence $x=n$. If $x>m+1$, there must be a y such that $P_{r} P_{y}=d$, where $r<y<x$. But this
means that $P_{r} P_{n}<a_{r+1}$, a contradiction. Hence $x=m+1$. Exactly as in the previous case we conclude that $P_{m+1} P_{i}=a_{m+1-i}$ for $r \leqq i<m+1, P_{0}, P_{1}, \cdots$, P_{m+1} are concyclic, and $P_{\alpha} P_{\beta}=\alpha_{|\alpha-\beta|}$ for $\alpha, \beta, \leqq m+1,|\alpha-\beta| \leqq\left[\frac{2 r+3}{2}\right]$ $=r+1<r+2$.
This completes the proof of Theorem 5.
Theorem 6. A metrically homogeneous polygon in E_{2} is cyclic.
Proof. The proof is somewhat detailed and is organized into six main cases, the first and most involved being that in which the polygon has a side of length 2 followed by at least five successive sides of length 1 , a five-plus run as we call it. The remaining cases are concerned in order with the four, three, two and oneruns respectively and that in which the polygon is equilateral. In each analysis the monotonicity lemma and various comparison lemmas allow us to obtain considerable information about the combinatorial structure of the polygon, while at strategic junctures a euclidean calculation or two, as represented by Lemmas 6-8, allow us to rule out unwanted structure and conclude that the polygon is not only cyclic but highly regular.

Case I. Let the vertices of the polygon be labelled $P_{0}, P_{1}, \cdots, P_{n}$ in cyclic order and suppose that $P_{0} P_{1}=P_{1} P_{2}=P_{2} P_{3}=P_{3} P_{4}=P_{4} P_{5}=a_{1}$ and $P_{n} P_{0}=a_{2}$. We also assume that $d>a_{3}$ and $n>5$. The excluded cases are dealt with separately.

It is immediate that $P_{1} P_{3}=a_{2}$. For suppose $P_{1} P_{x}=a_{2}$. If $x=n$ then the monotonicity lemma implies $d=a_{2}$, which contradicts the assumptions; hence $P_{1} P_{n}>a_{2}$. Supposing $x>3$, let i be such that $P_{1} P_{i}=d$. Then $i>x$ is impossible by the monotonicity lemma, since it would imply $a_{1}=P_{1} P_{2}<P_{1} P_{3}<P_{1} P_{x}=a_{2}$. But $x>i \geqq 3$ is also impossible, since it would imply $a_{2}=P_{1} P_{x} \geqq P_{1} P_{n} \geqq a_{3}$. Since $i \neq x$, we have exhausted all the cases, and established $P_{1} P_{3}=a_{2}$.

Subcase (i): $P_{0} P_{2}=a_{2}$. Consider P_{x} such that $P_{2} P_{x}=a_{3}$. If $x=n$ then, by monotonicity, $P_{n} P_{1}=d$. Since $d>a_{3}$, monotonicity implies $P_{n} P_{5}=0$, contradicting the assumption $n>5$. Hence $x<n$ and $P_{2} P_{n}>a_{3}$. Suppose $x>5$. Monotonicity again implies that $P_{2} P_{i}=d$ for some $i>x$, and thus $P_{2} P_{4}=a_{1}$. This is impossible, hence $x=4$ or $x=5$.

Suppose $x=5$, i.e., $P_{2} P_{5}=a_{3}$. Then (by monotonicity) $P_{2} P_{4}=P_{3} P_{5}=a_{2}$ and by congruence (Lemma 2) $P_{0} P_{3}=P_{2} P_{5}=P_{1} P_{4}=a_{3}$.

Now, if $P_{2} P_{n}=a_{4}$, we claim that $P_{1} P_{n}=a_{3}$. Indeed, if not, monotonicity would imply $P_{1} P_{n}=d>a_{3}$, and if $d>a_{4}$, no !diametral segment from P_{2} would intersect $\overline{P_{1} P_{n}}$. If $d=a_{4}$, then $P_{2} P_{6}=4$. Now, if $n \neq 6$, it follows that $P_{3} P_{n}=a_{4}$. Noting that the points $P_{0}, P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$ are concyclic, we see that P_{n} is the center of the circle through them (since $P_{n} P_{1}=P_{n} P_{2}=P_{n} P_{3}=a_{4}$), - a manifest impossibility since $P_{n} P_{0}=a_{2}$. On the other hand, if $n=6$ the same concyclicity argument implies $P_{6} P_{3}<a_{4}$; hence $P_{3} P_{6}=a_{3}, P_{4} P_{6}=a_{2}$, and $P_{5} P_{6}=a_{1}$.

Thus the points P_{0}, \cdots, P_{6} are all concyclic and are 7 of the 8 vertices of a regular octagon. But then $a_{4}=P_{1} P_{6}<P_{2} P_{6}=a_{4}$. The contradiction establishes our assertion that $P_{1} P_{n}=a_{3} ;$ by congruence we also have $P_{1} P_{5}=a_{4}$.

If, on the other hand, $P_{2} P_{n} \neq a_{4}$ then $P_{2} P_{n}>a_{4}$, and it follows that $P_{2} P_{6}=a_{4}$, $P_{3} P_{6}=a_{3}, P_{4} P_{6}=a_{2}, P_{5} P_{6}=1$. Then, by congruence, we have $P_{1} P_{5}=a_{4}$.
Therefore in any event, regardless of the assumption about $P_{2} P_{n}$, we have $P_{1} P_{5}=P_{0} P_{4}=a_{4}$.
Now, if the polygon fails to be cyclic, there exist three vertices P_{i}, P_{j}, P_{k} such that either $P_{i} P_{j}=P_{j} P_{k}=a_{1}$ and $P_{i} P_{k}>a_{2}$, or $P_{i} P_{j}=a_{1} . P_{j} P_{k}=a_{2}$ and $P_{i} P_{j}>a_{3}$.
In the first case any triangle $P_{x} P_{y} P_{z}$ such that $P_{x} P_{y}=P_{y} P_{z}=a_{1}$ and $P_{x} P_{z}=a_{2}$ has $\Varangle P_{x} P_{y} P_{z}<120^{\circ}$ by Lemma 1. Note now that the points $P_{0}, P_{1}, \cdots, P_{5}$ are concyclic and hence each of the circular arcs $\overparen{P_{0} P_{1}}, \overparen{P_{1} P_{2}}, \cdots, \overparen{P_{4} P_{5}}$ is at least 60°. This means that $P_{0} P_{5}=a_{1}$, which is easily seen to be impossible.
In the second case, if $P_{x} P_{y} P_{z}$ is such that $P_{x} P_{y}=a_{1}, P_{y} P_{z}=a_{2}$ and $P_{x} P_{z}=a_{3}$ then $\Varangle P_{x} P_{y} P_{z}<120^{\circ}$, again by Lemma 1. In this case we have the circular arcs $\overparen{P_{0} P_{1}}, \overparen{P}_{1} P_{2}, \cdots, \overparen{P_{4} P_{5}}$ are at least 40° and it follows that $P_{0} P_{6} \leqq a_{2}$. This, too, is easily seen to be impossible

This completes the proof in subcase (i).
Subcase (ii): $P_{0} P_{2} \neq a_{2}$. Let x be such that $P_{2} P_{x}=a_{2}$. If $x=n$ then $P_{2} P_{0}=d$, and no diametral segment from P_{n} would intersect $\widehat{P_{2} P_{0}}$; hence $x<n$. If $x>4$, then y such that $P_{2} P_{y}=d$ would satisfy $3<y<x$; it would follow that $P_{2} P_{n} \leqq a_{1}$, which is clearly impossible. Hence $x=4$, i.e., $P_{2} P_{4}=a_{2}$.
If $P_{0} P_{2}>a_{3}$, then $P_{2} P_{5}=a_{3}$. Indeed, let z be such that $P_{2} P_{z}=a_{3} ; z=0$ would imply that $P_{0} P_{2}=d$, and then the diametral segment from P_{3} would not intersect $\overline{P_{0} P_{2}}$. Hence $z \neq 0$. If $z>5$, it would follow that $P_{2} P_{y}=d$ for some y such that $4<y<z$; but then we would have $P_{2} P_{0}<a_{3}$, which is a contradiction. Therefore $z=5$, as claimed. Now $P_{3} P_{5}=a_{2}$; otherwise we would have $P_{5} P_{3}=d$ and this diametral segment would not intersect any diametral segment from P_{2}. Then $P_{1} P_{4}=a_{3}$ follows by congruence; thus $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$ are concyclic, and from the lemmas we infer that the arcs $\overparen{P_{1} P_{2}}, \overparen{P_{2} P_{3}}, \overparen{P_{3} P_{4}}, \overparen{P_{4} P_{5}}$ are at least 60° each; hence $P_{1} P_{5} \leqq a_{2}$, which is clearly impossible.

Therefore we may assume that $P_{0} P_{2}=a_{3}$. Let x be such that $P_{3} P_{x}=a_{3}$; then $x=0$ implies $d=a_{3}$, against our assumptions. If $x>6$ we would have $P_{3} P_{y}=d$ for some y with $4<y<x$; but then it would follow that $P_{3} P_{1} \leqq a_{1}$ which is impossible. Hence $x=5$ or $x=6$.

Suppose first that $x=6$; then $P_{5} P_{6}=a_{1}$, and it readily follows that $P_{3} P_{5}$ $=P_{4} P_{6}=a_{2}$. By congruence we have $P_{1} P_{4}=a_{3}$, and $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}$ are concyclic. The lemmas imply that the arcs $\overparen{P_{1} P_{2}}, \overparen{P_{2} P_{3}}, \cdots, \overparen{P_{5} P_{6}}$ are at least 60° each; hence $P_{6} P_{0}=a_{1}$, which is impossible.

Suppose therefore that $x=5$. Then $P_{1} P_{4}=a_{3}$ is impossible by Lemma 5 ,
hence we may assume that $P_{1} P_{4} \geqq a_{4}$. By the monotonicity lemma it follows that $P_{1} P_{n}=a_{3}$. The comparison lemma shows that if $P_{0} P_{3}>a_{4}$ then $P_{3} P_{6}=a_{4}$, and then that $P_{5} P_{6}>a_{1}$; hence $P_{5} P_{6}=a_{2}$. But then $P_{2} P_{x}=a_{4}$; indeed, if we had $P_{2} P_{x}=a_{4}$ for some x with $x<n$, it would follow that $P_{2} P_{n} \leqq a_{3}$, contradicting $P_{0} P_{2}=a_{3}$. Now, $P_{1} P_{4}>a_{4}$ is impossible, since it would imply $P_{1} P_{n-1}=a_{4}$, which contradicts Lemma 5. Hence we may assume $P_{1} P_{4}=a_{4}$. But then we have the configuration of Lemma 7, which is impossible in a metrically homogeneous polygon.

Hence $P_{0} P_{2} \neq a_{2}$ is impossible, and the proof in subcase (ii) is completed.
Turning now to the still remaining special cases, we first observe that if $n=5$ the only possible configuration is that of six vertices of a regular heptagon, which is clearly cyclic. If $n>5$ but $d=a_{3}$, then necessarily $P_{1} P_{3}=a_{2}, P_{1} P_{4}=a_{3}=P_{0} P_{3}$. If we had $P_{0} P_{2}=a_{3}$, it would follow that $P_{2} P_{4}=a_{2}$ contradicting the comparison lemma. Hence $P_{0} P_{2}=a_{2}$, and similarly $P_{2} P_{4}=a_{2}$. Then clearly $P_{2} P_{5}=a_{3}$, $P_{3} P_{5}=a_{2}$, and $P_{2} P_{n}=a_{3}$. By monotonicity, also $P_{n} P_{3}=a_{3}$. Therefore $P_{0}, P_{1}, \cdots, P_{5}$ are concyclic, and P_{n} is the center of the circle through them. But since $P_{n} P_{0}=a_{2} \neq a_{3}=P_{n} P_{1}$, this shows that $n>5$ and $d=a_{3}$ are incompatible.

This completes the proof of Theorem 6 in Case I.

Case II. We consider now a 4-run, satisfying $P_{0} P_{1}=P_{1} P_{2}=P_{2} P_{3}=P_{3} P_{4}=a_{1}$ and $P_{n} P_{0}=P_{4} P_{5}=a_{2}$. It is immediate that $P_{1} P_{3}=a_{2}$ and that at least one of $P_{0} P_{2}$ and $P_{2} P_{4}$ is a_{2}. Without loss of generality we shall assume that $P_{0} P_{2}=a_{2}$. If $d=a_{3}$, it follows at once that $P_{n} P_{1}=P_{3} P_{5}=a_{3}$. Since diametral segments must intersect, this would imply $n=5$ which is impossible (since $P_{n} P_{x}=a_{1}$ would have no solution). Thus we may assume $d>a_{3}$.

We consider first the possibility $P_{2} P_{4}>a_{2}$. By monotonicity we have $P_{2} P_{5} \geqq a_{4} \leqq P_{2} P_{n}$, hence $P_{2} P_{4}=a_{3}$. Now, $P_{3} P_{0}=a_{3}$ is impossible by Lemma 5 applied to $P_{0}, P_{1}, P_{2}, P_{3}, P_{4}$. Therefore $P_{3} P_{5}=a_{3}$. Since $P_{0} P_{3} \geqq a_{4}$, it follows from the comparison lemma that $P_{1} P_{4} \geqq a_{5}$; hence $P_{1} P_{n}=a_{3}$. Moreover, we must have $P_{1} P_{n-1}=a_{4}$, and so $P_{n-1} P_{0}=a_{3}$. The comparison lemma shows that $P_{2} P_{5}>P_{2} P_{n}$. Hence $P_{2} P_{n}=a_{4}$. Lemma 7 implies that the points P_{n-1}, P_{n}, P_{0}, P_{1}, P_{2} are concyclic; since $P_{0}, P_{1}, P_{2}, P_{3}$ are clearly concyclic or well, it follows that $P_{n-1}, P_{n}, P_{0}, P_{1}, P_{2}, P_{3}$ are on one circle. But this is impossible since the arc $\widehat{P_{0} P_{3}}=\overparen{P_{0} P_{1}}+\overparen{P_{1} P_{3}}$ should equal the arc $\widehat{P_{n} P_{1}}=\overparen{P_{n} P_{0}}+\overparen{P_{0} P_{1}}$, while $P_{0} P_{3} \geqq a_{4}>a_{3}=P_{1} P_{n}$. Thus the assumption $P_{2} P_{4}>a_{2}$ leads to a contradiction.

On the other hand $P_{2} P_{4}=a_{2}=P_{0} P_{2}$ is also impossible. Indeed, without loss of generality we may assume $P_{n} P_{2}=a_{3}$, and the monotonicity then implies $a_{2}<P_{n} P_{1}<a_{3}$.

This completes the proof in Case II.
Case III. Next we consider a 3-run, satisfying $P_{0} P_{1}=P_{1} P_{2}=P_{2} P_{3}=a_{1}$
and $P_{n} P_{0}=P_{3} P_{4}=a_{2}$. The case in which $d \leqq a_{3}$ is easily disposed of, so we assume $d \geqq a_{4}$. Clearly $P_{1} P_{3}=P_{2} P_{0}=a_{2}$, and either $P_{2} P_{4}=a_{3}$ or $P_{2} P_{n}=a_{3}$. But $P_{2} P_{n}=a_{3}$ would imply $P_{1} P_{n}=d$, and this diametral segment could not intersect any diametral segment from P_{2}. Hence $P_{2} P_{4}=a_{3}$, and similarly $P_{1} P_{n}=a_{3}$.

Assume now $P_{0} P_{3}=a_{3}$; then the points $P_{n}, P_{0}, P_{1}, P_{2}, P_{3}, P_{4}$ are concyclic. If the entire polygon is not cyclic, points P_{i}, P_{j}, P_{k} exist such that either $P_{i} P_{j}$ $=P_{j} P_{k}=a_{1}$ and $P_{i} P_{k}>a_{2}$, or $P_{i} P_{j}=a_{1}, P_{j} P_{k}=a_{2}$ and $P_{i} P_{k}>a_{3}$. In the first case, by Lemma 3 applied to the points $P_{0}, P_{1}, P_{2}, P_{3}$, we have $\Varangle P_{p} P_{1} P_{2}<120^{\circ}$. This implies that the arc $\overparen{P_{0} P_{1}}$ is more than 60°, and that the arc $\widehat{P_{n} P_{0} \cdots P_{5}}$ is greater than 360°, - which is impossible. In the second case, Lemma 3 applied to $P_{2} P_{3} P_{4} P_{5}$ implies $\Varangle P_{2} P_{3} P_{4}<120^{\circ}$, which in turn means that the arc $P_{2} P_{3}$ is greater than 40°, and that the arc $\widehat{P_{n} P_{0} \cdots P_{4}}$ is greater than 280°; hence $P_{n} P_{4}=a_{1}$, which is easily seen to be impossible. Thus, in the present case, the polygon is cyclic, as required.

Assume next that $P_{0} P_{3} \geqq a_{4}$; it follows at once that $P_{3} P_{5}=a_{3}=P_{0} P_{n-1}$ and that $n-1>5$. Also, $P_{0} P_{3}<P_{1} P_{n-1}=P_{2} P_{5}$, since otherwise the configuration of Lemma 8 would result. Thus $P_{2} P_{5}=P_{1} P_{n-1}>a_{4}$, and therefore $P_{2} P_{n}=a_{4}=P_{1} P_{4}$. If $d=a_{5}$ it would follow that $\overline{P_{2} P_{5}}$ and $\overline{P_{1} P_{n-1}}$ are disjoint diametral segments; hence $d>a_{5}$. Next we claim that $P_{2} P_{x}=a_{5}$ implies $x=5$; indeed, $P_{2} P_{n-1}=a_{5}$ would imply $P_{n-1} P_{1} \leqq a_{4}$, while $P_{2} P_{y}=a_{5}$ for some y with $5<y<n-1$ would imply $P_{2} P_{n-1} \leqq a_{4}$, both of which are impossible. Hence $P_{2} P_{5}=P_{1} P_{n-1}=a_{5}$, and therefore $P_{0} P_{3}=a_{4}$. Now, $P_{3} P_{i}=a_{5}$ implies $i=6$ or $i=7$; indeed, assuming $i>7$ we would have $P_{3} P_{j}=d$ for some j with $5<j<i$, hence $P_{2} P_{n-1} \leqq a_{5}$ which is impossible.

Suppose first that $i=7$, i.e., $P_{3} P_{7}=a_{5}$. It follows at once that $P_{5} P_{6}=P_{6} P_{7}$ $=a_{1}, P_{3} P_{6}=a_{4}, P_{4} P_{6}=P_{5} P_{7}=a_{2}$, hence $P_{3} P_{7}=P_{0} P_{4}=P_{n} P_{3}=a_{5}$. But the comparison lemma applied to the quadrilaterals $P_{2} P_{3} P_{4} P_{5}$ and $P_{0} P_{2} P_{3} P_{4}$ shows that $P_{0} P_{4}>P_{2} P_{5}$. Hence $i \neq 7$.

Now suppose $i=6$. Then, by the comparison lemma, $P_{5} P_{6}=a_{1}$. Points $P_{2}, P_{3}, P_{4}, P_{5}$ are concyclic, as are $P_{2}, P_{3}, P_{5}, P_{6}$; thus $P_{2}, P_{3}, P_{4}, P_{5}, P_{6}$ are concyclic, hence $P_{4} P_{6}<P_{3} P_{5}=a_{3}$, i.e., $P_{4} P_{6}=a_{2}$. Then it follows that P_{1} and P_{0} are concyclic with the previously mentioned points. But this is impossible since it would imply that $a_{4}=P_{0} P_{3}=P_{2} P_{4}=a_{3}$. Hence $P_{0} P_{3}>a_{3}$ is not possible, and the proof in case III is completed.

Case IV. The assumption of a 2-run $P_{0} P_{1}=P_{1} P_{2}=a_{1}, P_{n} P_{0}=P_{2} P_{3}=a_{2}$, is easily seen to be impossible, since $d>a_{2}$ and $P_{1} P_{x}=a_{2}$ has no solution.

Case V. We turn now to the case of 1 -runs, assuming $P_{0} P_{1}=P_{2} P_{3}=\cdots$ $=P_{n-2} P_{n-1}=a_{1}$ and $P_{1} P_{2}=P_{3} P_{4}=\cdots=P_{n} P_{0}=a_{2}$, and $n \geqq 5$.

We first show that a configuration Q, consisting of four points A, B, C, D with
$A B=C D=a_{1}, A C=B D=a_{3}$, must occur among the vertices of the polygon. Indeed, suppose that Q does not occur. Without loss of generality we may assume that $P_{0} P_{2}=a_{3}$, and then $P_{1} P_{3}=a_{4}$ (otherwise either $P_{n-1}, P_{n}, P_{0}, P_{1}$, or P_{0}, P_{1}, P_{2}, P_{3}, would be in configuration Q); hence $P_{3} P_{5}=a_{3}$. Now, $P_{4} P_{7}=a_{4}$ would yield Q (with points $P_{4}, P_{5}, P_{6}, P_{7}$), while $P_{4} P_{6}=a_{4}$ would imply $P_{4} P_{2}=a_{3}$ and Q would occur (with $P_{2}, P_{3}, P_{4}, P_{5}$). Therefore we necessarily have $P_{4} P_{2}=a_{4}$ and $P_{4} P_{6}=a_{3}$. Continuing (by induction) we see that $P_{1} P_{3}=P_{2} P_{4}=P_{5} P_{7}$ $=P_{6} P_{8}=\cdots=P_{n-2} P_{n}=P_{n-1} P_{0}=a_{4}$, and $P_{3} P_{5}=P_{4} P_{6}=P_{7} P_{9}=\cdots=P_{n} P_{1}$ $=P_{0} P_{2}=a_{3}$. It is immediate that the polygon is a (4k)-gon, and that P_{0}, P_{4}, P_{8}, \cdots, P_{n-3}, and $P_{1}, P_{5}, P_{9}, \cdots, P_{n-2}$, are vertices of congruent regular k-gons with a common center; hence the two sets of points are on a circle (with center 0 , and radius R). Similarly, $P_{2}, P_{6}, P_{10}, \cdots, P_{n-1}$, and $P_{3}, P_{7}, P_{11}, \cdots, P_{n}$, are vertices of congruent regular k-gons inscribed in a circle of center 0 and radius r. Since $P_{0} P_{4}>P_{2} P_{6}$ it follows that $R>r$.

We propose now to show that these two concentric but unequal circles circumscribe congruent triangles. This being obviously impossible, the existence of configuration Q will be established. We shall prove that the triangles $P_{0} P_{1} P_{4}$ and $P_{2} P_{3} P_{7}$ are congruent; to do this, we must ascertain some additional distances. Note, first, that if $d=a_{4}$ then $n \leqq 5$ and the impossibility is easily checked. Next, $P_{4} P_{1}>P_{4} P_{7}$ implies $P_{4} P_{7}=a_{5}=P_{6} P_{9}=P_{2} P_{5}=\cdots$, and $d>a_{5}$. Since $P_{4} P_{8}>P_{4} P_{1}$, it follows that $P_{4} P_{1}=a_{6}$ and $d>a_{6}$. The fact that $P_{4} P_{0}=P_{4} P_{8}$ means that both must equal a_{7}. Similarly $P_{6} P_{2}=P_{6} P_{10}=a_{6}$ since $P_{6} P_{3}<P_{1} P_{4}$ $=a_{6}$. Finally, $P_{6} P_{1}>P_{1} P_{5}=P_{0} P_{4}=a_{7}$, and since $P_{6} P_{2}<P_{1} P_{5}=a_{7}$, it follows that $P_{6} P_{11}=a_{7}=P_{2} P_{7}$. Hence the two triangles mentioned above are congruent, and we have proved that configuration Q must occur.

Therefore we may assume $P_{0} P_{2}=P_{1} P_{3}=a_{3}$. From the fact that $P_{0} P_{3}<P_{3} P_{6}$ we see $P_{3} P_{6}>a_{4}$. If $P_{3} P_{0} \neq a_{4}$ then $P_{0} P_{3} \geqq a_{5}$ and $P_{3} P_{5}=a_{4}$; also, $P_{2} P_{n}$ $\geqq P_{0} P_{3} \geqq a_{5}$, which implies $P_{2} P_{4}=a_{4}$. Similarly, $P_{1} P_{n-1} \geqq P_{0} P_{3} \geqq a_{5}$, hence $P_{1} P_{n}=a_{4}$. Now $P_{2} P_{x}=a_{5}$ has no solution since $P_{2} P_{5}>P_{3} P_{0} \geqq a_{5}$ and, by Lemmas 1 and 2, $P_{2} P_{n}>P_{3} P_{0} \geqq a_{5}$. Thus $P_{3} P_{0}$ necessarily equals a_{4}.

Now, by Lemma 6, $P_{2} P_{4}=a_{3}$ and, since $P_{2} P_{n}>P_{0} P_{3}=a_{4}$, we have $P_{2} P_{5}=a_{4}$ and $P_{3} P_{5}=a_{3}$. It follows by induction that all second order diagonals have length a_{3}, and thus the polygon is cyclic.

Case VI. There remains only the case in which $P_{0} P_{1}=P_{1} P_{2}=\cdots=P_{n} P_{0}$ $=a_{1}$. We may assume that $P_{0} P_{2}=P_{1} P_{3}=a_{2}$. If $P_{0} P_{3}=a_{3}$, then $P_{2} P_{4}=a_{2}$ (otherwise the configuration of Lemma 6 would occur). Now $P_{1} P_{4}=a_{3}$ by congruence, and it follows by induction that all second order diagonals have length a_{2}. Hence the polygon is cyclic, as required.

On the other hand, if $P_{0} P_{3} \neq a_{3}$ then $P_{0} P_{3} \geqq a_{4}$. But $P_{2} P_{5} \geqq P_{0} P_{3}$, and similarly $P_{2} P_{n} \geqq a_{4}$. Hence $P_{2} P_{4}=a_{3}, P_{3} P_{5}=a_{3}$, and $P_{1} P_{n}=a_{3}$. Then $P_{2} P_{x}=a_{4}$
has no solution, since $P_{2} P_{5}>P_{2} P_{n}>P_{0} P_{3} \geqq a_{4}$ by the comparison lemma. The contradiction reached completes the proof in Case VI.

Thus Theorem 6 is proved.
In order to characterize finite metrically homogeneous sets conveniently, we need the following:
Definition. If the set of vertices of a convex polygon P may be represented as $A-B$, where each of A and B is the set of all vertices of some regular polygon, $A \supset B$, card $A=2 k(m+1)$, and card $B=m$, then P is called an evenly truncated regular polygon of type (k, m).
Note that a quasi regular polygon can, but need not, be an evenly truncated regular polygon.

Now we are ready for the characterization theorem:
Theorem 7. A finite set in E_{2} is metrically homogeneous if and only if it is the vertex set of a regular, quasi regular, or evenly truncated regular polygon.

Proof. It is easily checked that the sets mentioned are metrically homogeneous. Suppose therefore that $P_{0}, P_{1}, \cdots, P_{n}$ are the vertices of a metrically homogeneous polygon P, labeled in the cyclic order. By Theorem 6, if all edges of P have length a_{1}, all the vertices of P are concyclic and thus P is regular. If among the edges of P of P there is no k-run with $k \geqq 2$, but some edge has length a_{2}, then all edges of P of length a_{1} belong to 1 -runs; since all the 1 -runs are congruent, and the points of each are concyclic, all vertices of P are concyclic and P is quasi regular. Thus we are left with the case in which P contains some k-run, $k \geqq 2$. By Theorem 6, each m-run, $m \geqq 1$, contains some three points P_{i}, P_{j}, P_{k} such that $P_{i} P_{j}=a_{1}$, $P_{j} P_{k}=a_{2}$, and $P_{i} P_{k}=a_{3}$. Since all the vertices of each m-run are concyclic, this implies that the radius of the circle is independent of m. Therefore all points of neighboring runs (which share an edge of length a_{2}) are concyclic, and thus all vertices of P belong to the same circle.
In order to complete the proof we shall show that each run is of odd length, and that all runs have the same length.
Indeed, assuming $P_{0} P_{1}=P_{1} P_{2}=\cdot \cdot=P_{2 k-1} P_{2 k}=a_{1}$ and $P_{n} P_{0}=P_{2 k} P_{2 k+1}$ $=a_{2}$, there is no solution x to $P_{k} P_{x}=P_{0} P_{k+1}=a_{k+1}$; hence P is not metrically homogeneous.
In order to show that all runs have same length, assume that $P_{n} P_{0}=a_{2}, P_{0} P_{1}=$ $=P_{1} P_{2}=\cdot \cdot=P_{2 k-2} P_{2 k-1}=a_{1}$, and $P_{2 k-1} P_{2 k}=P_{2 k+2 m-1} P_{2 k+2 m}=a_{2}$, with $k>m$. Then there is no x such that $P_{k+m} P_{x}=P_{0} P_{k+m+1}=a_{k+m+1}$, hence P is not metrically homogeneous.
This completes the proof of Theorem 7.
As an immediate consequences we have:

Corollary 1. A compact subset of E_{2} is strictly metrically homogeneous if and only if it is either a smooth curve of constant width, or else the vertex set of a regular or quasi regular polygon.

Corollary 2. Each finite metrically homogeneous subset of E_{2} has a nontrivial group of self-isometries.

Remark. The structure of metrically homogeneous subsets of E_{3} seems to be much more complicated. Even Corollary 2 fails in E_{3}; the simplest example known to us consists of 10 points, obtained by omitting from the 12 vertices of the Archimedean solid with 4 triangles and 4 hexagons as faces, two vertices which belong to the same hexagon but are neither neighbors nor diametrally opposite.

It is well possible that the characterization of finite strictly metrically homogeneous sets in E_{3} is not completely hopeless. In particular, it may be conjectured that the analogue of Corollary 2 is valid in E_{2} if restricted to strictly metrically homogeneous sets.

Reference

1. A. Heppes, Allandószélességü síkgörbék egy jellemzése. Matem. Lapok, 10 (1959), 133-135.

University of Washington, Seattle

AND
Michigan State University, East Lansing

