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This paper is concerned with the problem of determining all regular-
faced polyhedra, i.e., those convex polyhedra in Euclidean 3-space which
have as faces only regular polygons (not necessarily all of the same kind).
Examples of such polyhedra are the 5 Platonic (regular) solids, the 13
Archimedean (semi-regular) polyhedra, and the infinite families of regular
prisms and antiprisms. Each of these solids is uniform, i.e., its faces are
regular and its symmetry group is transitive on the vertices; it was
shown by Kepler [4, pp. 114-127] that these are the only convex uniform
polyhedra.

A face angle at a vertex V of a polyhedron is the angle at V of one of
the faces meeting at V. The following properties of a convex polyhedron
are well known: (a) Each face angle at a vertex is less than the sum of
the remaining face angles at that vertex, (b) The sum of all the face
angles at a vertex is less than 360°; the difference is called the deficiency
at the vertex, (c) The sum of the deficiencies at all the vertices is 720°.

By means of these properties, Johnson [2] and Zalgaller [5] inde-
pendently proved that if a regular-faced polyhedron has a face of 42 or
more sides, it is either a prism or an antiprism. With an upper bound
on the number of sides to a face and hence on the number of vertices of
a regular-faced polyhedron that is not a prism or an antiprism, there
follows

THEOREM 1. The number of nonuniform regular-faced polyhedra is
finite.

A number of nonuniform regular-faced solids (83, in fact) can be
obtained by cutting certain uniform polyhedra by appropriate planes and
by putting together various uniform polyhedra and pieces of uniform
polyhedra. A regular-faced polyhedron is elementary if it is not the union
of two regular-faced polyhedra that have a common face. Zalgaller
[5, pp. 7-8] lists 9 elementary nonuniform polyhedra (each of which is
part of a uniform polyhedron). Johnson [3] has found a total of 92 non-
uniform regular-faced solids, of which 17 are elementary.

The aim of the present paper is to bring nearer the complete enumera-
tion of convex polyhedra with regular faces, by establishing

THEOREM 2. The only polygons that may occur as faces of a regular-
faced polyhedron, other than a prism or an antiprism, are triangles, squares,
pentagons, hexagons, octagons, and decagons.
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We shall prove Theorem 2 by showing that polygons different from
those mentioned in the theorem can occur only in prisms and antiprisms.

It is easily verified that the minimal deficiency at a vertex of a regular-
faced polyhedron having only faces with 3, 4, 5, 6, 8, or 10 sides is 6°,
and, since the total deficiency is 720°, such a polyhedron has at most 120
vertices. This bound is the best possible, being attained for the Archi-
medean truncated icosidodecahedron, which has at each vertex a square,
a hexagon, and a decagon.

A regular polygon of n sides will be denoted by the Schlafli symbol {n}.
A vertex surrounded by faces {n^, {w2}, ..., {wfc}, in cyclic order, will be
said to be of type {n-^.n^ nk). If a polyhedron is uniform, all its
vertices are of the same type,f and the solid itself may be denoted by the
vertex-type symbol without parentheses. Thus, the truncated icosido-
decahedron is 4.6.10, the n-gonal prism is 42.?i, the n-gonal antiprism is
33.w, etc. A vertex may also be classified as trivalent, tetravalent, or
pentavalent, according as there are 3, 4, or 5 faces surrounding it.

LEMMA 1. A regular-faced polyhedron that contains a face {n}, where
n ^ 12, is either the n-gonal prism or the n-gonal antiprism.

Proof, (i) An w-gonal face N, n > 12, cannot be incident with a
&-gonal face K with k > 6. For, assuming such an incidence possible,
let A be a vertex incident with N and K (see Fig. 1). Considering the
face angles at A, we see that A is a trivalent vertex and that the third
face incident with A is a triangle T. Let B be the other vertex of T
incident with N, and C the other vertex of T incident with K. The
vertex B must be trivalent (since the sum of the face angles of the addi-
tional faces would have to be greater than 120° and less than 150°), and
therefore the third face must be a fc-gon K\ It follows that vertex C
is also trivalent, and this implies that n = k. But this is impossible,
since the sum of the face angles at a vertex must be less than 360°. Thus

FIG. 1 Fio. 2

f The converse is not true, however: there are two solids whose vertices are all of
type (3.43), but only one is uniform. The existence of the extra figure [3, Table III, No. 37]
has led ASkinuze [1] and, following him, several other Russian writers, e.g., Zalgaller
[5, p. 7], to claim that there are actually 14 " Archimedean " polyhedra.
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(i) is proved, and for every polyhedron containing a face {n}, n^\2,
each such face is incident only with faces having at most five sides.
However,

(ii) An w-gonal face N, n ^ 12, cannot be incident with a pentagon.
For, if N were incident with a pentagon, it would have to possess vertices
of one of the types (4.5.?i) and (3.5.w). A vertex of type (4.5.?i) is
impossible, since (see Fig. 2) if A were such a vertex, the neighbouring
vertex B would necessarily be of the same type; this means that the
adjacent vertices of the pentagon, C and D, would have to be trivalent
and therefore also of type (4.5.w). But then the sum of the face angles
at E, the opposite vertex of the pentagon, would be greater than 360°.

If a vertex A of type (3.5.w) were to occur (see Fig. 3), then for the
neighbouring vertex B we would have only the two possibilities (3.5.?i)
or (33.n). In the first case a contradiction is reached at the third vertex
of the triangle, C, which on the one hand is not trivalent but on the other
hand allows no regular polygon to fit as the fourth face. But the second
case is also impossible, since convexity would be violated at B (see Fig. 4).
(Note that l_CBD would be 108°.)

FIG. 4

It follows that every w-gonal face, n > 12, is incident only with
triangles and squares.

(iii) If a regular-faced polyhedron has an w-gonal face N, n ^ 12,
incident with a square, it is the w-gonal prism. For, a vertex incident
with a {4} and an {n} must be trivalent if n ^ 12, and, by (i) and (ii), the
third face has at most four sides. A triangle cannot occur since then the
sum of two of the face angles would not exceed the third. Thus every
vertex of N is of type (42.w), and the edges of the squares opposite to those
of N form another regular w-gon N'. If N' is not a face of the polyhedron,
then at each vertex of N' there must be, in addition to the two squares
incident with N, at least two other faces with angles totalling more than
150°. As these faces would be incident with N' in a regular-faced poly-
hedron obtained by cutting the given polyhedron along the plane of NT,
they can consist only of triangles and squares. Thus if the angle sum of
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the additional faces is to exceed 150°, it must be at least 180°, making the
sum of all the face angles at the vertex at least 360°. Therefore N' is a
face, and the polyhedron is the n-gonal prism.

(iv) If a regular-faced polyhedron has an w-gonal face N, n ^ 12,
incident only with triangles, it is the w-gonal antiprism. For, all the
vertices of N must be of type (33.w). Let the vertices of the triangles
opposite the edges of N be Fl5 F2 , . . . , Vn (see Fig. 5). Let ô  be the angle
Ff_! Vt Vi+1, where Yi = Viifi = j (mod n). Then, if ô  = ai+1 for some i,
all the angles ô  are equal and VXV2... Vn is a regular w-gon N'. As in
(iii), N' must be a face of the polyhedron, which is therefore the w-gonal
antiprism. Thus it may be assumed that oĉ  ^ ai+1 for any i. As is easily
seen, ô  = ai+2 for alH; if oĉ  ^ ai+1, n must be even. Also, 120° < ô  < 180°
and max {ai9 ai+1} > 150° for all i. Without loss of generality, we may
assume ô  <a2. If F2 were tetravalent, say of type (33.&), then the
inequality CL1 = 180°. (&—2)Ik <a2 implies that F2 would have to be of
type {33.k.h). Since ax > 120°, i.e., k>6, this would yield at F2 a sum
of face angles greater than 360°. It follows that Vv and consequently
every Vi} is pentavalent. They cannot be of types (35) or (34.4), since
a2 >150°. The only remaining possibility is that all the vertices F^ are
of type (34.5). The next tier of vertices U3, U5, etc., are then of type
(3.5.3.5). The edges W2 WA, PF4 WG, etc., are equi-inclined to the edges
V2V3, V^V5) etc., and thus form a regular polygon {%n}. The vertices
W2, Wi} etc., are tetravalent, since /_ W2 W± W6 is at least 120° for n ^ 12.
The additional face must have angles less than 132°; i.e., n is either 12 or
14. But the impossibility of these two cases is readily established (either
by computation or by constructing cardboard models).f

This completes the proof of Lemma 1.

K

Fio. 6

I The above construction is possible for n = 10, in which case it yields the gyro-
elongated pentagonal rotunda [3, Table III, No. 25].
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LEMMA 2. A regular-faced polyhedron that contains a face {11} is
either the hendecagonal prism or the hendecagonal antiprism.

Proof, (i) A hendecagonal face H cannot be incident with a &-gonal
face K with & > 7. For, any vertex A incident with both H and K
would be trivalent, the third face being a triangle (see Fig. 6). By (i) in
the proof of Lemma 1, we may assume that k ^ 11. Obviously, neither
of the other vertices of the triangle, B and C, can be trivalent, unless
& = 11 and the other face incident with the edge BC is also an {11}. But
even this is impossible since no Archimedean solid 3.II2 exists; thus
we may assume that both B and C are at least tetravalent. Since the
largest face that may occur in a pentavalent vertex is a pentagon, B
and C must be tetravalent, the two additional faces at B being a triangle
and a square, and the additional faces at C being either a triangle and a
square or (if k = 7) a triangle and a pentagon. But, as is easily verified,
the faces fit only if k = 11, both B and C then being incident with two
{3}'s, a {4}, and an {11}. The two possibilities for the arrangement of
these faces are represented in Figs. 7 and 8. In the case of Fig. 7, no single

Fio. 7

FIG. 8
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face nor any combination of faces fits at D. In the case of Fig. 8, although
the free angle at D is equal to the angle of an {11}, the vertex cannot be
completed with a hendecagon, since then there would be no way to
complete vertex E. The only other possibility would be to close up D
with a triangle and a square, but neither of the two conceivable arrange-
ments allows vertex E to be completed.

Thus a hendecagonal face can be incident only with triangles, squares,
pentagons, and hexagons, and the only types of vertices that need to be
considered are:

(4.6.11), (3.6.11), (3.4.11), (4^.11),

(3.4.3.11), (32.4.11), (4.5.11), (3.5.11), (33.11).

We shall complete the proof of Lemma 2 by showing that only vertices of
types (42.11) and (33.11) actually occur, the polyhedron being the
hendecagonal prism in the former case and the hendecagonal antiprism
in the latter.

(ii) A vertex of type (4.6.11), (3.6.11), or (3.4.11) cannot occur.
For, if a vertex of type (4.6.11) were to occur at A (see Fig. 9), then
the free angle at B would be 120°; for convexity, B must be trivalent, the
third face being a hexagon. Vertex C is also necessarily trivalent, and,
the free angle being 90°, the third face is a square. Therefore, hexagons
and squares would have to alternate around a hendecagon, which is absurd.
Thus a vertex of type (4.6.11) cannot occur.

Fio. 9 FIG. 10

Similarly, if A (see Fig. 10) were a vertex of type (3.6.11), vertex B
would have to be of the same type. For C the possibilities would be
(3.6.11), (3.4.3.11), or (32.4.11), but both tetravalent types of vertices
are ruled out by convexity considerations. Thus hexagons and triangles
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would have to alternate around a hendecagon; i.e., a vertex of type
(3.6.11) cannot occur.

Analogously it can be shown that a vertex of type (3.4.11) cannot
occur.

(iii) If a regular-faced polyhedron has a vertex of type (42.11), the
polyhedron is the hendecagonal prism. For, if A (see Fig. 11) is a vertex
of type (42.11), a neighbouring vertex B is either of type (42.11) or of
type (32.4.11); the latter case, however, is easily seen not to be convex.
Therefore, all the vertices of the {11} are of type (42.11), and the opposite
edges of the squares form another {11}. This second {11} must be a face
of the polyhedron, since otherwise two faces—necessarily a triangle and
a square—would have to be added at every vertex, but, with an odd
number of edges, this is impossible. Thus the polyhedron is the hendeca-
gonal prism.

(iv) A vertex of type (3.4.3.11) or (32.4.11) cannot occur. To show
this, we consider a vertex A of type (3.4.3.11) and distinguish two cases:

FIG. 11 FIG. 12

(a) A neighbouring vertex B (see Fig. 12) is also of type (3.4.3.11).
Then vertex C is tetravalent. The fourth face cannot be larger than a
pentagon, but it is easily seen that the free angle at C is greater than 108°,
so that there is no regular polygon that fits. Hence no two vertices of
type (3.4.3.11) are neighbouring.

(b) Neither of the neighbouring vertices is of type (3.4.3.11). Then,
since the free angle at B (see Fig. 13) is greater than 108° and vertices
of type (3. &. 11) with k ^ 6 are impossible, B cannot be trivalent and must
be either of type (33.11) or of type (32.4.11). The first is impossible
because of the requirement of convexity. Thus we are left only with the
possibility that both neighbours of A are of type (32.4.11).
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Now consider a vertex V of type (32.4.11) (see Fig. 14). The free
angle at the neighbouring vertex U being less than 120° but greater than
108°, U cannot be trivalent and is therefore also of type (32.4.11). Like-
wise, vertex W is necessarily tetravalent, either of type (32.4.11) or of

FIG. 13 Fio. 14

type (3.4.3.11). The former case, however, is impossible, since it would
yield at vertex Z a free angle greater than 168° (= 60°+K^0), s o that Z
could be closed up neither with a single face of 11 or fewer sides nor with
any pair of faces; thus W is of type (3.4.3.11).

It follows from the above that a vertex of type (3.4.3.11) is adjacent
to two vertices of type (32.4.11), and a vertex of type (32.4.11) is adjacent
to one vertex of the same type and one of type (3.4.3.11). But since
11 is not a multiple of 3, this is impossible.

(v) No vertex of type (4.5.11) can occur since all the vertices of the
{11} would have to be of the same type, and this is obviously impossible.

(vi) The only remaining types of vertices are (33.11) and (3.5.11).
We remark first that if all the vertices of a hendecagon are of type (33.11),
the resulting belt of triangles is rigid (as it is for every polygon with an
odd number of sides).

Now consider a face {11} with vertices of types (3.5.11) and (33.11).
Not all of them can be of type (3.5.11) (since 11 is odd), and if all are of
type (33.11), the polyhedron is the hendecagonal antiprism. If there
were vertices of both kinds, then (see Fig. 15) since /_ABF = /_CDH =
/_DCF = 108°, we could delete each pentagon from the belt around the
hendecagon and introduce triangles like CDO and DGH (see Fig. 16).
The dihedral angle along DO being the same as that along BE, convexity
would not be destroyed, and by symmetry CFG is also an equilateral
triangle. Thus it is possible to replace each pentagon in the belt by three
triangles; in other words, we obtain from the original belt another one,
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FIG. 15 FIG. 16

consisting of triangles only. As noted above, the latter belt is rigid;
i.e., it is the belt of the antiprism. But in the hendecagonal antiprism
the angles like ABF are not 108°. Hence a combination of vertices of
types (3.5.11) and (33.11) is impossible.

This completes the proof of Lemma 2.

LEMMA 3. A regular-faced polyhedron that contains a face {7} or {9}
is either a prism or an antiprism.

Proof. There are 32 a priori possible types of vertices that include
a {7} or a {9}. We shall show that all but four cannot actually occur in a
regular-faced polyhedron, the four exceptions leading to the heptagonal
and enneagonal prisms and antiprisms.

(i) As in part (ii) of the proof of Lemma 2, in some cases it can be
shown that two different kinds of faces must alternate around a polygon
with an odd number of sides, which is impossible. This reasoning applies
to the following types of vertices:

(3.4.7), (3.4.9), (3.6.9), (4.5.9), (4.6.7), (4.6.9),

(4.72), (4.7.8), (52.7), (52.9), (5.6.7).

The necessity of continuing with certain kinds of faces follows from
limitations on the free angles and (in some cases) from the fact that
certain a priori possible continuations yield nonconvex solid angles.

(ii) If there is a vertex of type (42.7) or (42.9), it is easily seen that all
the vertices of the {7} or {9} are of the same type and that the {7} or {9}
formed by the opposite edges of the squares must be a face, so that the
polyhedron is a prism.

(iii) Vertices of type (3.6.7) are impossible. For, the other two
vertices of the triangle must be tetravalent, but then the inclinations to
the {6} and the {7} are different, and no combinations of faces will fit at
both vertices. The same reasoning applies to vertices of types (3.7.8),
(3.7.9), (3.7.10), (3.8.9), and (3.9.10).

(iv) If a vertex of type (3.72) were present, it can be shown that each
of the other five vertices of either heptagon would have to be incident
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with one square and two triangles. But the whole configuration, i.e., the
belt around one of the heptagons, being rigid, one finds that the belt does
not close up. The same reasoning applies to (3.92).

(v) Vertices of types (3.5.7) and (33.7) or types (3.5.9) and (33.9)
are dealt with in the same manner as in part (vi) of the proof of Lemma 2:
vertices (33.7) and (33.9) occur only in antiprisms; the other two types
do not occur.

(vi) If one of the vertices of a face {9} is of type (3.4.3.9) or (32.4.9),
then all are of these types, and there would necessarily be two adjacent
ones of the first kind. However, there is no way to complete the third
vertex of the triangle incident with these two vertices. A similar argument
rules out vertices of types (3.4.3.7) and (32.4.7) and of types (3.5.3.7)
and (3a.5.7).

(vii) If a vertex of type (4.5.7) were to occur, then the neighbouring
vertices of the {7} would have to be of the same type, since vertices of
types (32.4.7) and (32.5.7) cannot occur. Thus squares and pentagons
must alternate around a heptagon, which is impossible.

This completes the proof of Lemma 3 and thus also of Theorem 2.

Zalgaller et al. [6] have determined all the regular-faced polyhedra that
have at least one trivalent vertex, as well as those having only pentavalent
vertices. This enables us to prove

THEOREM 3. Every nonuniform regular-faced polyhedron has at least
four triangular faces.

Proof. If every vertex is trivalent, the solid is uniform. All the
nonuniform regular-faced polyhedra with one or more trivalent vertices
being known, it can be directly verified that each of them has at least four
triangular faces. If a polyhedron has no trivalent vertices, then by
Euler's formula it has at least eight triangular faces.
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