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1. Borsuk (l) made the following conjecture:
Every bounded set of points in Euclidean n-space En can be represented as the union

of n+l sets of smaller diameter.
Hadwiger (2,3,4) proved Borsuk's conjecture assuming the additional condition

that the surface of the set is sufficiently smooth. On the other hand, a number of simple
proofs have been supplied in the two-dimensional case (see, for example, Gale (5),
where a stronger result is proved), as well as a complicated proof in the three-dimen-
sional case (Eggleston (6)). In this note a simple proof is given for the conjecture in E3.
The proof is based on the idea (used also by Gale in E2) of finding a suitable universal
covering set (Deckel, couvercle, see Bonnesen & Fenchel (7), p. 87) for sets of diameter 1
in E3 and partitioning the covering set in four parts, each of diameter less than 1.

2. As mentioned by Gale ((5), p. 225) every set of diameter 1 can be embedded in
a regular octahedron, the distance between whose opposite faces is 1, i.e. whose
diameter is ^/3. Starting from this octahedron, with vertices A1A2A3A{A'2A3, the
triangle A1A2A3 forming, say, the base and A\ being the corner opposite to Ait we find
a smaller universal covering set in the following way:

Parallel to the plane ak containing the vertices ̂ ^ - ^ J ^ , where i, j , k are distinct, at
distance \ from ak intersect the octahedron by two planes bk and b'k, which cut from the
octahedron two square pyramids with Ak, A'k as vertices. At least one of the pair of
pyramids has no interior point in common with a set of diameter 1 inscribed in the octa-
hedron, since the distance between their bases is 1. Repeating the procedure with all
three pairs of opposite vertices we are able finally (changing the notation if necessary)
to cut off the vertices A'lt A'2, A'3 and replace them by squares .B^i^C^C^ (i = 1,2, 3), the
points Bi and B\ being on the original face A[A2A'3. The upper base of the new
polyhedron is a hexagon with vertices B^B^B^B^B^'^, angles §TT and sides
B^ = (V3 -1)1^/2 and B'XB2 = B'2B3 = B'3Bl = (2-j3)lj2. Its other faces, besides
the base AXA2A3 and the squares BiB'iC'iCi, are: three pentagons congruent to
B'1B2C2A3C1 (the angle at A 3 being ^n, the others §77-; A3C[ = A3C2 = 1/̂ /2) and three
trapezoids congruent to G1C'1A3A2 (the angles at A2 and A3 being \n, the others §77-).
The diameter of thepolyhedron is ̂ /2; it is the distance from A^ to the points B^B'^G^C'^
From its construction it is clear that the polyhedron is a universal covering set.

3. We shall show now that it is possible to divide the polyhedron described above
(and drawn in Fig. 1) into four parts, each with diameter less than 1. Since the poly-
hedron is a universal covering set, this will prove Borsuk's conjecture in the case n = 3.
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First of all we remark that it is sufficient to divide the surface of the polyhedron in
four parts of diameter less than 1. Indeed, the sphere circumscribed to the polyhedron
has a radius < \ *]Z, since the sphere circumscribed to the original octahedron has
radius ^^/3. Therefore, if the surface is subdivided into parts of diameter d < \,d ^ ^-J'i,
the diameter of the convex hulls of the unions of these parts with the circumcentre of
the polyhedron will also bed < 1.

Fig. 1

Now to the subdivision of the surface of the polyhedron. The three (congruent) parts
containing the vertices At will be denoted by S{, i = 1,2,3. The fourth part will
contain the hexagon B1B'1B2B'2B3B3 and will be denoted by #4. The boundary of St is
the closed polygon OG2F2E2D'2D3E3F3G3O, where 0 is the centre of A1A2A3, G2 the
centre of the segment ArA3, F2 the centre of G2C'2l and similarly for G3 and F3; the
location of the points Et, Dt and D\ will be specified later. The boundaries of S2 and S3

are, respectively, OG^E^D'^E^Gfi and O^F^D^D^F^O, while £4 is
bounded by DXEXD'XD2E2D'2D3E3D'3D^. The points Dt resp. D\ are on the seg-
ments B{Ci resp. B'fi'^ with QZfc = C-Z>; = (15^3- 10)/(46^2). Then

DXG3 = D^D'2 = (10+3lV3)/(46V2) = 0-979.

The pointy is on the segment joining Fi with the mid-point of BiB'i, for i = 1, 2,3, with
EtFt = (123lV3-1986)/(1518V2). Then

E3G2 = E3D2 = (6,129,030-937,419 V3)*/(1518V2) = 0-9887,

and this is also the diameter of the sets St, i = 1,2, 3,4.
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4. Applying essentially the same method as used above, the bound 0-9887 could be
somewhat improved in two ways:

(i) By locating the points Eit Dt and D[ in such a fashion that Dx G3 = E1G3 = EXDZ.
(ii) By further truncating the polyhedron, e.g. by planes parallel to the plane

A1G1A[ etc.
Both ways result in a very slight improvement, while considerably complicating the

argument. I have found no way of proving by my method Gale's conjecture ((5), p. 224)
according to which the bound should be (3+^/3)^/6 = 0-888.
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I have recently carried out some direct searches for solutions of certain Diophantine
equations of the form f(x) +f[y) = / ( z ) + / ( < ) >

where f(x) is either a power of a; or a binomial coefficient I I for fixed n. In this note

I give a summary of the results obtained.

1. f(x) = x3. This is the only part of the work where I know of a previous published
table, that of Richmond (l). This gives solutions of the equation

xz ± y3 ± z3 ± t3 = 0

in positive integers less than 100. I t is said to be 'possibly complete: there may be
omissions, but not many'. I have checked only the entries with two of the cubes


