
A PROOF OF ROGERS' CONJECTURE ON PAIRS OF CONVEX
DOMAINS
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1. Introduction

Rogers [7] established the following result:

Let Kv K2 be centrally symmetric convex bodies in the plane; unless
both Kx and K2 have ellipses as boundaries, there exists an affine transforma-
tion T such that TK2aKx, and hdK1r\h6.TK2 is the union of four non-
empty disjoint closed sets.

In the general case, i.e. if the sets Ki are not assumed to be centrally
symmetric, Rogers conjectured that an analogous result holds, with
"four" replaced by "three" in the last part of the theorem.

The aim of the present paper is to establish this conjecture of Rogers.
We shall prove the following

THEOREM. Let Kx, K2 be plane convex bodies; unless both hdK1 and
hdK2 are ellipses, there is an affine transformation T such that TK2<^K1

and hdK^hdTK^ has at least three connected components.

In §2 we shall prove the theorem for the special case Kx = K2; the
general case is established in §§ 3 and 4. Contained in §5 are some remarks
on other characterizations of ellipses.

2. Proof of the theorem in case Kx = K2

If Kx = K2 (or if Kx is an affine image of K2), the assertion of the
theorem follows from well-known results.

Indeed, if K = Kx = K2 is centrally symmetric, our assertion is only
a weakened version of a special case of Rogers' theorem. Therefore we
may assume that K is not centrally symmetric.

Let a(K) denote the Minkowski measure of symmetry of K. [For
various definitions of a(K), its properties, and a list of references, see
§6.1 of [4]; there the Minkowski measure of symmetry of K is denoted
by FX(K).] Our assumptions imply that \ ^.a(K) < 1. Let the origin
0 be the a-critical point of K. Taking TK2= —a(K).K, our theorem
follows from the result of Neumann [6].

3. Proof of the theorem in the general case

In §§ 3 and 4 we shall assume that Kx and K2 are not affinely equivalent.
Our proof shall be simplified by the following
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LEMMA 1. Let Kx, K2 be plane convex bodies such that C = K2r\hdKx

has at least three connected components. Let, moreover, components Go, Cx, C2

of C, points px, p% and lines Lx, L2, L exist such that:

(i) pxeC0<^hdK2
 an^ Vr\K2^Vr\Kx for some open set F=>C0;

(ii) Lx contains px and is a supporting line of K2;

(iii) L2 is a supporting line of Kx parallel to Lx, L2c\K2 = <j>, and K2

is contained in the strip determined by Lx and L2;

(iv) p2eL2r\Kx\

(v) L is determined by px and p2;

(vi) Clr\L—C2r\L = Qi; Cx and C2 are on opposite sides of L.

Then there exists an affine transformation T such that TK2^KX and
b&K1r\bdTK2 has at least three connected components.

Proof of Lemma 1. Let C(i) be the part of C\CQ contained in that
half-plane determined by L which contains Gi} i=l,2. Let qi be the

point of C(i) nearest to p2 in the sense that the open arc qi p2 does not
meet G. Without loss of generality we shall assume that px is the origin 0,
that Lx is one of the coordinate axes and L® the other, i = 1 or 2, where
L(i) is the line determined by px and q^ We consider affine transforma-
tions Ti

a{p) = (OLX, y), where (x, y) are the coordinates of the point p in
the coordinate system determined by Lx and L(i), and a > 0. We shall
call Tf a shrinking [resp. stretching'] with base L{i) in the direction Lx

provided a < 1 [resp. a > 1].
Each transformation Tf, i = l , 2 , 0 < a < l , is area-diminishing.

Unless K2<^KV at least one of the Tf can be applied, leading to a pair
Kx, Ti

aK2 which satisfies the assumptions of Lemma 1 (with the same
points pv p2 and lines Lv L2, L, and with arc-distance from Co to C \ Co

not decreased). An application of Blaschke's selection theorem yields
therefore such an affine transform K2* of K2 for which the assumptions
of Lemma 1 are satisfied and K2*<^KV But this proves the assertion
of Lemma 1.

The proof of the theorem shall therefore be completed if, for given
Kx and K2, we succeed in finding affine transforms of Kx and K2 which
satisfy the assumptions of Lemma 1. In the present section we shall
establish the existence of such transforms in the case that either Kx is
not strictly convex, or that K2 fails to be smooth. In §4 we shall perform
the same task assuming that Kx is strictly convex and that K2 is smooth.

Let a segment S, with midpoint px, be contained in bdKx, and let q
be an exposed point of K2 (see Straszewicz [8]). There obviously exists
an affine transformation To such t h a t ^ = T0(q) and T0(K2 \ {q}) <= int Kx.
Then a suitable stretching of T0(K2), with any line through px and a
point of int TQ(K2) as base, in the direction of the carrierline of S, yields
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a transform K2* of K2 such that Kx and K2* satisfy the conditions of
Lemma 1.

If bdii2 contains a point q through which pass two different supporting
lines of K2, we choose a smooth point p1ebdK1 and continue as above,
using the supporting line to K1 at px in place of the line S.

4. Proof of the theorem (end)

Before completing the proof of the theorem, we shall establish a lemma
whose idea (in case B is an ellipse) goes back to Behrend [1].

LEMMA 2. Let A, B be plane convex bodies, B<^A, such that
for an affine transformation T implies area T(.B) <area J5. Then
G = bdAr\hdB is a global set on b&A.

Here a closed subset G of bd A is called global provided

(i) G is not a pair of antipodal points of A (i.e. points contained in a
pair of parallel supporting lines of A);

(ii) G is not contained in a small arc of bd A, where a small arc of bd A
is an arc contained in the interior of an arc of bd A determined by
a pair of antipodal points of A.

Proof of Lemma 2. If G were contained in the interior of the arc of
hdA determined by the antipodal points rlf r2 of A, we assume, without
loss of generality, that rx = (0, 1), r2= (1, 1), that x = 0 and x= 1 are
supporting lines of A containing rx resp. r2, that G is contained in the half-
plane y < 1 and that y = 0 is a supporting line of B. Then, clearly,
a suitable stretching T, with the a;-axis as base, in direction of the y-axis,
satisfies T(B) <=-A although T is area-increasing. Thus G is not contained
in any small arc of bd-4.

If G were reduced to a pair of antipodal points pv p2, with parallel
lines Lv L2 supporting A at px, p2, we assume, without loss of generality,
that p . = ( ( - l ) \ o ) , while Li is the line x=(—l)\ Then, for A< 1
sufficiently close to 1, the area-preserving transformation

T(x,y)=(\x,\-1y)

can be shown to yield T(-B)<=int^4, i.e. A contains affine images of B of
area greater than that of B. This completes the proof of Lemma 2.

Now we are ready to return to the proof of the theorem. Let T0K2

be an affine transform of K2 contained in Kx and having maximal possible
area. (Its existence follows from Blaschke's selection theorem.) Without
loss' of generality we assume T0K2 = K2. According to Lemma 2,
G = hdK1r\hdK2 is a global set on bdi!^. If G has three or more con-
nected components, the theorem is established. There remain to be
considered only the two following cases:

(i) G is connected; (ii) G has two connected components.
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In case (i), 0 is an arc of bd/fj. (Note that, since Kx and K2 are not
affinely equivalent, G cannot coincide with bdKx.) Since G is global on
bdijfj, there exist parallel supporting lines Li of Kx, and points g^G,
such that Lir\G = giiov i=l,2. Moreover, the lines Li may be chosen
in such a way that only one of the supporting lines of Kx, parallel to the
line gx, g2, intersects G. Let this supporting line be L, and let M be the
line parallel to 2^ and passing through the (unique) point Lr\G. Then
a suitable stretching of K2, with base L, in direction M, yields a set 7JL2*

which, together with Kx, satisfies the assumptions of Lemma 1. This
establishes the theorem in case (i).

In case (ii) let G consist of the two arcs Gx and G2; note that at least
one of the arcs, say Gv is not reduced to a point. Let c^e Gi be points on
parallel supporting lines Mi of Kx\ let pxeGx, px^cx, and let L be the
line determined by cx and px. We shrink K2, with base L in direction M x,
to obtain a set K2*. For a sufficiently small shrinking, the set
G* = K2*r\bdKx consists of at least three connected components: one
reduced to cx, another containing (or reduced to) px, and one near c2, on

the arc pxcv If px and the component Co of G* containing it satisfy the
assumptions of Lemma 1, we are through. Otherwise, we shrink K2*,
with the line determined by cx and the point of G* (arcwise) nearest to
c2 as base, in direction Mx, to obtain a set 7JL2** such that Kx and .Kg**
satisfy the assumptions of Lemma 1.

This completes the proof of the theorem.

5. Remarks

(i) As a corollary of our theorem and of the theorem of Rogers' we
obtain the following strengthening of a result of Suss [9]:

If C is a plane convex curve different from an ellipse, it is possible to
find affine images Cx and C2 of C, CX=£C2, such that Cxr\C2 contains at
least six points. Moreover, if C is centrally symmetric, Cx and C2 may be
chosen in such a fashion that Oxr\C2 contains at least eight points.

Indeed, taking as Kx and K2 the convex hull of C, one has to apply
to the affine image TK2 of K2 obtained by our theorem, or by Rogers'
theorem, a homothetic expansion with centre at the centroid of TK2

and with a suitably small ratio A > 1.
The first half of the above version of Suss' theorem may also be obtained

directly from an application of our Lemma 2, with A a circular disc, and
B a suitable affine image of the convex hull of G. Then Cx may be taken
as bd B, while C2 is obtained from Gx by an appropriately small rotation
of Gx about the centre of A.

(ii) Lemma 2, and arguments closely related to it, may be used to
obtain very short proofs of various known results. As an example we
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mention the theorem of Bertrand [2] and Brunn (see [3; p. 143]):
Ellipses are the only convex curves with straight " Schwerlinien ". (A
" Schwerlinie " is the locus of midpoints of parallel chords.) Indeed, it
is very easily established that a convex curve C with straight " Schwer-
linien " has a centre of symmetry; then, if C were not an ellipse, consider
the maximal inellipse E of C. Let p1 and p2 be two points on Cr\E
such that the (open) small arc determined by them on C does not meet E,
and let p0 be a point on that arc of C. Consider the chord p2p3 of C
parallel to p^Px- Since the "Schwerlinien" of a centrally symmetric C
pass through its centre, and since p0 is outside E, it follows that p3 is
inside E, thus contradicting p2e C.

Other applications of related ideas are given in [5].

(iii) It may be conjectured that both Rogers' and our theorems
generalize to higher dimensions in the following form:

Let Kv K2 be [centrally symmetric] w-dimensional convex bodies,
n ^ 2; unless both are ellipsoids, there is a non-singular affine transforma-
tion T such that TK2<^K1 and b d / ^ ^ b d TK2 has at least three [four]
connected components.

In order to see that the bounds 3 respectively 4 cannot be improved
even for n ^ 3, it is sufficient to take for K2 a solid ?i-dimensional sphere,
and for Kx a solid half-sphere, or a spherical zone, respectively.

{Added December 15, 1963.) A weaker version of the above conjecture
is obtained if the transformation T is allowed to be singular. The following
reasoning, supplied by the referee, proves the conjecture in this formula-
tion.

We recall a result, proved for n = 3 by T. Kubota (" Einfache Beweise
eines Satzes iiber die konvexe, geschlossene Flache ", Science Reports of the
Toholcu Imperial University, 1st Series, 3 (1914), 235-255) and for general
n by H. Buseman {The geometry of geodesies, New York, 1955, page 9.1):

If p is an inner point of a convex body K and each two-dimensional section
of K by a plane through p is an ellipse, then K is an ellipsoid.

By the theory of polar reciprocal convex bodies this is equivalent to the
result (proved in the case ?i = 3 by T. Kubota, loc. cit., and also by W.
Blaschke and G. Hessenberg, "Lehrsatze iiber konvexe Korper", Jber.
Deutsch. Math.-Verein., 26 (1917), 215-220):

If all the two-dimensional orthogonal projections of a convex body K are
ellipses, then K is an ellipsoid.

We suppose that Kx and K2 are not both ellipsoids. It follows that we
can choose a two-dimensional section Sx of Kx and a two-dimensional
projection P2 of K2, which are not both ellipses. It follows from the main
theorem that we can choose an affine transformation To so that To P2 <= Sx
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and bd/S^bdToPg has at least three connected components.
The corresponding result for centrally symmetric bodies follows in

the same way from Rogers' theorem.

References

1. F. Behrend, " t)ber die kleinste umbeschriebene und die grosste einbeschriebene Ellipse
eines konvexen Bereichs ", Math Annalen, 115 (1938), 378-411.

2. J. Bortrand, "Demonstration d'un th6oreme de geometrie ", J. Math. Piires Appl.,
7 (1842), 215-216.

3. T. Bonnesen and W. Fenchel, Tlieorie der konvexen Korper (Springer, Berlin, 1934).
4. B. Griinbaum, "Measures of symmetry for convex sets", Proc. Symp. Ptire Math.,

7 (1963), 233-270.
5. , " Fixing systems and inner illumination ", Ada Math. Acad. Sci. Hungarica,

15 (1964), 161-163.
6. B. H. Neumann, " On some affine invariants of closed convex regions ", Journal London

Math. Soc, 14 (1939), 262-272.
7. C. A. Rogers, "Pairs of convex domains", Journal London Math. Soc, 37 (1962),

164-168.
8. S. Straszewicz, Beitrage sur Theorie der konvexen Punktmengen (Thesis, Zurich, 1914).
9. W. Siiss, " Eine characteristische Eigenschaft der Ellipse", Math.-phys. Semesterber.,

4 (1955), 54-56.

The Hebrew University of Jerusalem.


