A PROOF OF ROGERS’ CONJECTURE ON PAIRS OF CONVEX
DOMAINS

B. GrRuxBAUM

1. Introduction

Rogers [7] established the following result:

Let K,, K, be centrally symmetric convex bodies in the plane; wunless
both K, and K, have ellipses as boundaries, there exists an affine transforma-
tion T such that TK,< K,, and bd K,~bd TK, is the union of four non-
empty disjoint closed sets.

In the general case, i.e. if the sets K, are not assumed to be centrally
symmetric, Rogers conjectured that an analogous result holds, with
“four” replaced by “three” in the last part of the theorem.

The aim of the present paper is to establish this conjecture of Rogers.
We shall prove the following

TueorEM. Let K,, K, be plane convex bodies; wunless both bd K, and
bd K, are ellipses, there is an affine transformation T such that TK,< K,
and bd K;~nbd TK, has at least three connected components.

In §2 we shall prove the theorem for the special case K, = K,; the
general case is established in §§ 3 and 4. Contained in §5 are some remarks
on other characterizations of ellipses.

2. Proof of the theorem in case K= K,

If K,=K, (or if K, is an affine image of K,), the assertion of the
theorem follows from well-known results.

Indeed, if K = K, = K, is centrally symmetric, our assertion is only
a weakened version of a special case of Rogers’ theorem. Therefore we
may assume that K is not centrally symmetric.

Let o(K) denote the Minkowski measure of symmetry of K. [For
various definitions of o(K), its properties, and a list of references, see
§6.1 of [4]; there the Minkowski measure of symmetry of K is denoted
by F(K).] Our assumptions imply that } <o(K)<1. Let the origin
O be the o-critical point of K. Taking TK,= —o(K).K, our theorem
follows from the result of Neumann [6].

3. Proof of the theorem in the gemeral case

In §§ 3 and 4 we shall assume that K, and K, are not affinely equivalent.
Our proof shall be simplified by the following
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Lemma 1. Let K,, K, be plane convex bodies such that C = K,~bd K,
has ot least three connected components.  Let, moreover, components Cy, C, C,
of C, points p,, p, and lines L,, Ly, L exist such that:

(i) p1eCycbd K, and VAK,cVAK, for some open set V> C,;
(ii) L, contains p, and ts a supporting line of K,;
(iii) L, vs a supporting line of K, parallel to L,, LynK,= ¢, and K,
18 contained in the strip determined by L, and L,;
(iv) poe LynK,;
(v) L is determined by p, and p,;
(vi) ;AL =C,nL=0; C, and C, are on opposite sides of L.

Then there exists an affine transformation T such that TK,<K, and
bd K,~nbd TK, has at least three connected components.

Proof of Lemma 1. Let C® be the part of €\ C, contained in that
half-plane determined by L which contains C;, i=1,2. Let ¢; be the

point of C® nearest to p, in the sense that the open arc q:;z does not
meet C. Without loss of generality we shall assume that p, is the origin O,
that L, is one of the coordinate axes and L® the other, : =1 or 2, where
L% js the line determined by p, and ¢;. We consider affine transforma-
tions 7,%(p) = (ax, y), where (z,y) are the coordinates of the point p in
the coordinate system determined by L, and L®, and « > 0. We shall
call T;* a shrinking [resp. strefching] with base LD in the direction L,
provided « < 1 [resp. a > 1].

Each transformation 7% ¢=1,2, 0<a<1, is area-diminishing.
Unless K,< K, at least one of the 7', can be applied, leading to a pair
K,, T K, which satisfies the assumptions of Lemma 1 (with the same
points p,, p, and lines L,, L,, L, and with arc-distance from C, to C\ C,
not decreased). An application of Blaschke’s selection theorem yields
therefore such an affine transform K,* of K, for which the assumptions
of Lemma 1 are satisfied and K,* < K,. But this proves the assertion
of Lemma 1.

The proof of the theorem shall therefore be completed if, for given
K, and K,, we succeed in finding affine transforms of K, and K, which
satisfy the assumptions of Lemma 1. In the present section we shall
establish the existence of such transforms in the case that either K, is
not strictly convex, or that K, fails to be smooth. In §4 we shall perform
the same task assuming that K, is strictly convex and that K, is smooth.

Let a segment S, with midpoint p,, be contained in bd K,, and let ¢
be an exposed point of K, (see Straszewicz [8]). There obviously exists
an affine transformation 7', such that p, = T (g) and T(K, \ {g}) <int K.
Then a suitable stretching of 7'(K,), with any line through p, and a
point of int Tj(K,) as base, in the direction of the carrierline of S, yields
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a transform K,* of K, such that K, and K,* satisfy the conditions of
Lemma 1.

If bd K, contains a point ¢ through which pass two different supporting
lines of K,, we choose a smooth point p,ebd K, and continue as above,
using the supporting line to K, at p, in place of the line S.

4. Proof of the theorem (end)

Before completing the proof of the theorem, we shall establish a lemma
whose idea (in case B is an ellipse) goes back to Behrend [1].

Lemma 2. Let A, B be plane convex bodies, B< A, such that T(B)< A
for an affine transformation T implies area T(B)<<areaB. Then
G=bd Anbd B is a global set on bd A.

Here a closed subset G of bd 4 is called global provided

(i) @ is not a pair of antipodal points of A (i.e. points contained in a
pair of parallel supporting lines of 4);

(ii) @ is not contained in a small arc of bd A, where a small arc of bd 4
is an arc contained in the interior of an arc of bd A determined by
a pair of antipodal points of A4.

Proof of Lemma 2. If G were contained in the interior of the arc of
bd A determined by the antipodal points r,, r, of A, we assume, without
loss of generality, that r, = (0, 1), r,= (1, 1), that =0 and =1 are
supporting lines of 4 containing r, resp. r,, that G is contained in the half-
plane y <1 and that y =0 is a supporting line of B. Then, clearly,
a suitable stretching 7', with the z-axis as base, in direction of the y-axis,
satisfies 7'(B) < 4 although T is area-increasing. Thus @ is not contained
in any small arc of bd 4.

If @ were reduced to a pair of antipodal points p,, p,, with parallel
lines L,, L, supporting 4 at p,, p,, we assume, without loss of generality,

that p,= ((—l)i, O), while L, is the line = (~1).. Then, for A< 1
sufficiently close to 1, the area-preserving transformation
T(z, y) = (Az, A 1y)

can be shown to yield 7'(B)<int 4, i.e. 4 contains affine images of B of
area greater than that of B. This completes the proof of Lemma 2.

Now we are ready to return to the proof of the theorem. Let 7K,
be an affine transform of K, contained in K, and having maximal possible
area. (Its existence follows from Blaschke’s selection theorem.) Without
loss' of generality we assume 7,K,= K, According to Lemma 2,
G =bd K,nbd K, is a global set on bd K,. If & has three or more con-
nected components, the theorem is established. There remain to be
considered only the two following cases:

(i) G is connected; (ii) G has two connected components.
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In case (i), & is an arc of bd K,. (Note that, since K, and K, are not
affinely equivalent, G cannot coincide with bd K,.) Since @ is global on
bd K, there exist parallel supporting lines L; of K;, and points g,e G,
such that L;nG =g; for i =1,2. Moreover, the lines L; may be chosen
in such a way that only one of the supporting lines of K, parallel to the
line g,, g,, intersects (. Let this supporting line be L, and let M be the
line parallel to L; and passing through the (unique) point L~ G. Then
a suitable stretching of K,, with base L, in direction J/, yields a set K,*
which, together with K, satisfies the assumptions of Lemma 1. This
establishes the theorem in case (i).

In case (ii) let G consist of the two arcs G, and G,; note that at least
one of the arcs, say @, is not reduced to a point. Let ¢;e @, be points on
parallel supporting lines M, of K,; let p,e(,, p, #¢,, and let L be the
line determined by ¢, and p,. We shrink K,, with base L in direction M,,
to obtain a set K,*. For a sufficiently small shrinking, the set
G¥ = K,*~bd K, consists of at least three connected components: one
reduced to c,, another containing (or reduced to) p,, and one near c,, on

the arc pflzz. If p, and the component C; of G* containing it satisfy the
assumptions of Lemma 1, we are through. Otherwise, we shrink K, ¥,
with the line determined by ¢, and the point of G* (arcwise) nearest to
¢, as base, in direction M, to obtain a set K,** such that K, and K,**
satisfy the assumptions of Lemma 1.

This completes the proof of the theorem.

5. Remarks

(i) As a corollary of our theorem and of the theorem of Rogers’ we
obtain the following strengthening of a result of Siiss [9]:

If Cis a plane convex curve different from an ellipse, it is possible to
find affine tmages Cy and C, of C, Cy # Cy, such that C;nC, contains at
least siz points. Moreover, if C is centrally symmetric, Cy and C, may be
chosen in such a fashion that C,~C, contains at least eight points.

Indeed, taking as K, and K, the convex hull of C, one has to apply
to the affine image TK, of K, obtained by our theorem, or by Rogers’
theorem, a homothetic expansion with centre at the centroid of TK,
and with a suitably small ratio A > 1.

The first half of the above version of Siiss’ theorem may also be obtained
directly from an application of our Lemma 2, with 4 a circular disc, and
B a suitable affine image of the convex hull of . Then C; may be taken
as bd B, while C, is obtained from C; by an appropriately small rotation
of (', about the centre of 4.

(i1) Lemma 2, and arguments closely related to it, may be used to
obtain very short proofs of various known results. As an example we



A PrOOTF OF ROGERS’ CONJECTURE ON PAIRS OF CONVEX DOMAINS 701

mention the theorem of Bertrand [2] and Brunn (see [3; p. 143]):
Ellipses are the only convex curves with straight  Schwerlinien ”. (A
“Schwerlinie ”’ is the locus of midpoints of parallel chords.) Indeed, it
is very easily established that a convex curve C with straight ‘“Schwer-
linien "’ has a centre of symmetry; then, if C were not an ellipse, consider
the maximal inellipse £ of C. Let p, and p, be two points on CAnE
such that the (open) small arc determined by them on C' does not meet £,
and let p, be a point on that arc of C. Consider the chord p,p; of C
parallel to p,p,. Since the ““Schwerlinien’’ of a centrally symmetric C
pass through its centre, and since p, is outside E, it follows that p, is
inside E, thus contradicting p,e C.

Other applications of related ideas are given in [5].

(iii)) It may be conjectured that both Rogers’ and our theorems
generalize to higher dimensions in the following form :

Let K, K, be [centrally symmetric] n-dimensional convex bodies,
7 > 2; unless both are ellipsoids, there is a non-singular affine transforma-
tion 7' such that TK,< K, and bd K; ~nbd T K, has at least three [four]
connected components.

In order to see that the bounds 3 respectively 4 cannot be improved
even for » > 3, it is sufficient to take for K, a solid n-dimensional sphere,
and for K, a solid half-sphere, or a spherical zone, respectively.

(Added December 15, 1963.) A weaker version of the above conjecture
is obtained if the transformation 7' is allowed to be singular. The following
reasoning, supplied by the referee, proves the conjecture in this formula-
tion.

We recall a result, proved for » = 3 by T. Kubota (* Einfache Beweise
eines Satzes liber die konvexe, geschlossene Flache ”, Science Reports of the
Téhoku Imperial University, 1st Series, 3 (1914), 235-255) and for general
n by H. Buseman (T'he geometry of geodesics, New York, 1955, page 91):

If p is an inner point of a convex body K and each two-dimensional section
of K by a plane through p is an ellipse, then K is an ellipsoid.

By the theory of polar reciprocal convex bodies this is equivalent to the
result (proved in the case » =3 by T. Kubota, loc. cit., and also by W.
Blaschke and G. Hessenberg, ¢ Lehrsitze iiber konvexe Koérper”’, Jber.
Deutsch. Math.-Verein., 26 (1917), 215-220):

If all the two-dimensional orthogonal projections of a convex body K are
ellipses, then K is an ellipsoid.

We suppose that K, and K, are not both ellipsoids. It follows that we
can choose a two-dimensional section S, of K, and a two-dimensional
projection P, of K,, which are not both ellipses. It follows from the main
theorem that we can choose an affine transformation 7'y so that 7', P,< 8,
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and bd §;Abd T, P, has at least three connected components.

The corresponding result for centrally symmetric bodies follows in

the same way from Rogers’ theorem.

© o
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