A PROOF OF ROGERS' CONJECTURE ON PAIRS OF CONVEX DOMAINS

B. Grunbaum

1. Introduction

Rogers [7] established the following result:
Let K_{1}, K_{2} be centrally symmetric convex bodies in the plane; unless both K_{1} and K_{2} have ellipses as boundaries, there exists an affine transformation T such that $T K_{2} \subset K_{1}$, and bd $K_{1} \cap b d T K_{2}$ is the union of four nonempty disjoint closed sets.

In the general case, i.e. if the sets K_{i} are not assumed to be centrally symmetric, Rogers conjectured that an analogous result holds, with "four" replaced by "three" in the last part of the theorem.

The aim of the present paper is to establish this conjecture of Rogers. We shall prove the following

Theorem. Let K_{1}, K_{2} be plane convex bodies; unless both bd K_{1} and $\mathrm{bd} K_{2}$ are ellipses, there is an affine transformation T such that $T K_{2} \subset K_{1}$ and $\operatorname{bd} K_{1} \cap \mathrm{bd} T K_{2}$ has at least three connected components.

In §2 we shall prove the theorem for the special case $K_{1}=K_{2}$; the general case is established in $\S \S 3$ and 4 . Contained in §5 are some remarks on other characterizations of ellipses.

2. Proof of the theorem in case $K_{1}=K_{2}$

If $K_{1}=K_{2}$ (or if K_{1} is an affine image of K_{2}), the assertion of the theorem follows from well-known results.

Indeed, if $K=K_{1}=K_{2}$ is centrally symmetric, our assertion is only a weakened version of a special case of Rogers' theorem. Therefore we may assume that K is not centrally symmetric.

Let $\sigma(K)$ denote the Minkowski measure of symmetry of K. [For various definitions of $\sigma(K)$, its properties, and a list of references, see §6.1 of [4]; there the Minkowski measure of symmetry of K is denoted by $F_{1}(K)$.] Our assumptions imply that $\frac{1}{2} \leqslant \sigma(K)<1$. Let the origin O be the σ-critical point of K. Taking $T K_{2}=-\sigma(K) . K$, our theorem follows from the result of Neumann [6].

3. Proof of the theorem in the general case

In $\S \S 3$ and 4 we shall assume that K_{1} and K_{2} are not affinely equivalent. Our proof shall be simplified by the following

[^0][Journal London Math. Soc., 39 (1964), 697-702]

Lemma 1. Let K_{1}, K_{2} be plane convex bodies such that $C=K_{2} \cap b d K_{1}$ has at least three connected components. Let, moreover, components C_{0}, C_{1}, C_{2} of C, points p_{1}, p_{2} and lines L_{1}, L_{2}, L exist such that:
(i) $p_{1} \in C_{0} \subset b d K_{2}$ and $V \cap K_{2} \subset V \cap K_{1}$ for some open set $V \supset C_{0}$;
(ii) L_{1} contains p_{1} and is a supporting line of K_{2};
(iii) L_{2} is a supporting line of K_{1} parallel to $L_{1}, L_{2} \cap K_{2}=\phi$, and K_{2} is contained in the strip determined by L_{1} and L_{2};
(iv) $p_{2} \in L_{2} \cap K_{1}$;
(v) L is determined by p_{1} and p_{2};
(vi) $C_{1} \cap L=C_{2} \cap L=\varnothing ; C_{1}$ and C_{2} are on opposite sides of L.

Then there exists an affine transformation T such that $T K_{2} \subset K_{1}$ and bd $K_{1} \cap \mathrm{bd} T K_{2}$ has at least three connected components.

Proof of Lemma l. Let $C^{(i)}$ be the part of $C \backslash C_{0}$ contained in that half-plane determined by L which contains $C_{i}, i=1,2$. Let q_{i} be the point of $C^{(i)}$ nearest to p_{2} in the sense that the open arc $\widetilde{q_{i} p_{2}}$ does not meet C. Without loss of generality we shall assume that p_{1} is the origin O, that L_{1} is one of the coordinate axes and $L^{(i)}$ the other, $i=1$ or 2 , where $L^{(i)}$ is the line determined by p_{1} and q_{i}. We consider affine transformations $T_{i}{ }^{\alpha}(p)=(\alpha x, y)$, where (x, y) are the coordinates of the point p in the coordinate system determined by L_{1} and $L^{(i)}$, and $\alpha>0$. We shall call $T_{i}{ }^{\alpha}$ a shrinking [resp. stretching] with base $L^{(i)}$ in the direction L_{1} provided $\alpha<1$ [resp. $\alpha>1$].

Each transformation $T_{i}{ }^{\alpha}, i=1,2,0<\alpha<1$, is area-diminishing. Unless $K_{2} \subset K_{1}$, at least one of the $T_{i}{ }^{\alpha}$ can be applied, leading to a pair $K_{1}, T_{i}{ }^{\alpha} K_{2}$ which satisfies the assumptions of Lemma 1 (with the same points p_{1}, p_{2} and lines L_{1}, L_{2}, L, and with arc-distance from C_{0} to $C \backslash C_{0}$ not decreased). An application of Blaschke's selection theorem yields therefore such an affine transform $K_{2} *$ of K_{2} for which the assumptions of Lemma 1 are satisfied and $K_{2}^{*} \subset \subset K_{1}$. But this proves the assertion of Lemma 1.

The proof of the theorem shall therefore be completed if, for given K_{1} and K_{2}, we succeed in finding affine transforms of K_{1} and K_{2} which satisfy the assumptions of Lemma 1. In the present section we shall establish the existence of such transforms in the case that either K_{1} is not strictly convex, or that K_{2} fails to be smooth. In §4 we shall perform the same task assuming that K_{1} is strictly convex and that K_{2} is smooth.

Let a segment S, with midpoint p_{1}, be contained in bd K_{1}, and let q be an exposed point of K_{2} (see Straszewicz [8]). There obviously exists an affine transformation T_{0} such that $p_{1}=T_{0}(q)$ and $T_{0}\left(K_{2} \backslash\{q\}\right) \subset \operatorname{int} K_{1}$. Then a suitable stretching of $T_{0}\left(K_{2}\right)$, with any line through p_{1} and a point of int $T_{0}\left(K_{2}\right)$ as base, in the direction of the carrierline of S, yields
a transform $K_{2}{ }^{*}$ of K_{2} such that K_{1} and $K_{2}{ }^{*}$ satisfy the conditions of Lemma 1.

If bd K_{2} contains a point q through which pass two different supporting lines of K_{2}, we choose a smooth point $p_{1} \in \operatorname{bd} K_{1}$ and continue as above, using the supporting line to K_{1} at p_{1} in place of the line S.

4. Proof of the theorem (end)

Before completing the proof of the theorem, we shall establish a lemma whose idea (in case B is an ellipse) goes back to Behrend [1].

Lemma 2. Let A, B be plane convex bodies, $B \subset A$, such that $T(B) \subset A$ for an affine transformation T implies area $T(B) \leqslant$ area B. Then $G=\operatorname{bd} A \cap \operatorname{bd} B$ is a global set on $\operatorname{bd} A$.

Here a closed subset G of $\operatorname{bd} A$ is called global provided
(i) G is not a pair of antipodal points of A (i.e. points contained in a pair of parallel supporting lines of A);
(ii) G is not contained in a small arc of $b d A$, where a small arc of $\operatorname{bd} A$ is an arc contained in the interior of an arc of $\operatorname{bd} A$ determined by a pair of antipodal points of A.
Proof of Lemma 2. If G were contained in the interior of the arc of $\mathrm{bd} A$ determined by the antipodal points r_{1}, r_{2} of A, we assume, without loss of generality, that $r_{1}=(0,1), r_{2}=(1,1)$, that $x=0$ and $x=1$ are supporting lines of A containing r_{1} resp. r_{2}, that G is contained in the halfplane $y \leqslant 1$ and that $y=0$ is a supporting line of B. Then, clearly, a suitable stretching T, with the x-axis as base, in direction of the y-axis, satisfies $T(B) \subset A$ although T is area-increasing. Thus G is not contained in any small are of $\mathrm{bd} A$.

If G were reduced to a pair of antipodal points p_{1}, p_{2}, with parallel lines L_{1}, L_{2} supporting A at p_{1}, p_{2}, we assume, without loss of generality, that $p_{i}=\left((-1)^{i}, 0\right)$, while L_{i} is the line $x=(-1)^{i}$. Then, for $\lambda<1$ sufficiently close to 1 , the area-preserving transformation

$$
T(x, y)=\left(\lambda x, \lambda^{-1} y\right)
$$

can be shown to yield $T(B) \subset \operatorname{int} A$, i.e. A contains affine images of B of area greater than that of B. This completes the proof of Lemma 2.

Now we are ready to return to the proof of the theorem. Let $T_{0} K_{2}$ be an affine transform of K_{2} contained in K_{1} and having maximal possible area. (Its existence follows from Blaschke's selection theorem.) Without loss' of generality we assume $T_{0} K_{2}=K_{2}$. According to Lemma 2, $G=\mathrm{bd} K_{1} \cap \mathrm{bd} K_{2}$ is a global set on $\mathrm{bd} K_{1}$. If G has three or more connected components, the theorem is established. There remain to be considered only the two following cases:
(i) G is connected;
(ii) G has two connected components.

In case (i), G is an arc of bd K_{1}. (Note that, since K_{1} and K_{2} are not affinely equivalent, G cannot coincide with bd K_{1}.) Since G is global on $\operatorname{bd} K_{1}$, there exist parallel supporting lines L_{i} of K_{1}, and points $g_{i} \in G$, such that $L_{i} \cap G=g_{i}$ for $i=1,2$. Moreover, the lines L_{i} may be chosen in such a way that only one of the supporting lines of K_{1}, parallel to the line g_{1}, g_{2}, intersects G. Let this supporting line be L, and let M be the line parallel to L_{i} and passing through the (unique) point $L \cap G$. Then a suitable stretching of K_{2}, with base L, in direction M, yields a set K_{2} * which, together with K_{1}, satisfies the assumptions of Lemma 1. This establishes the theorem in case (i).

In case (ii) let G consist of the two arcs G_{1} and G_{2}; note that at least one of the arcs, say G_{1}, is not reduced to a point. Let $c_{i} \in G_{i}$ be points on parallel supporting lines M_{i} of K_{1}; let $p_{1} \in G_{1}, p_{1} \neq c_{1}$, and let L be the line determined by c_{1} and p_{1}. We shrink K_{2}, with base L in direction M_{1}, to obtain a set $K_{2} \%$. For a sufficiently small shrinking, the set $G^{*}=K_{2}{ }^{*} \cap b d K_{1}$ consists of at least three connected components: one reduced to c_{1}, another containing (or reduced to) p_{1}, and one near c_{2}, on the arc $\overparen{p_{1} c_{2}}$. If p_{1} and the component C_{0} of G^{*} containing it satisfy the assumptions of Lemma 1, we are through. Otherwise, we shrink K_{2}^{*}, with the line determined by c_{1} and the point of G^{*} (arcwise) nearest to c_{2} as base, in direction M_{1}, to obtain a set $K_{2}^{* * *}$ such that K_{1} and $K_{2}^{* * *}$ satisfy the assumptions of Lemma 1.

This completes the proof of the theorem.

5. Remarks

(i) As a corollary of our theorem and of the theorem of Rogers' we obtain the following strengthening of a result of Süss [9]:

If C is a plane convex curve different from an ellipse, it is possible to find affine images C_{1} and C_{2} of $C, C_{1} \neq C_{2}$, such that $C_{1} \cap C_{2}$ contains at least six points. Moreover, if C is centrally symmetric, C_{1} and C_{2} may be chosen in such a fashion that $C_{1} \cap C_{2}$ contains at least eight points.

Indeed, taking as K_{1} and K_{2} the convex hull of C, one has to apply to the affine image $T K_{2}$ of K_{2} obtained by our theorem, or by Rogers' theorem, a homothetic expansion with centre at the centroid of $T K_{2}$ and with a suitably small ratio $\lambda>1$.

The first half of the above version of Süss' theorem may also be obtained directly from an application of our Lemma 2, with A a circular disc, and B a suitable affine image of the convex hull of C. Then C_{1} may be taken as bd B, while C_{2} is obtained from C_{1} by an appropriately small rotation of C_{1} about the centre of A.
(ii) Lemma 2, and arguments closely related to it, may be used to obtain very short proofs of various known results. As an example we
mention the theorem of Bertrand [2] and Brunn (see [3; p. 143]): Ellipses are the only convex curves with straight "Schwerlinien". (A "Schwerlinie" is the locus of midpoints of parallel chords.) Indeed, it is very easily established that a convex curve C with straight "Schwerlinien" has a centre of symmetry; then, if C were not an ellipse, consider the maximal inellipse E of C. Let p_{1} and p_{2} be two points on $C \cap E$ such that the (open) small arc determined by them on C does not meet E, and let p_{0} be a point on that arc of C. Consider the chord $p_{2} p_{3}$ of C parallel to $p_{0} p_{1}$. Since the "Schwerlinien" of a centrally symmetric C pass through its centre, and since p_{0} is outside E, it follows that p_{3} is inside E, thus contradicting $p_{2} \in C$.

Other applications of related ideas are given in [5].
(iii) It may be conjectured that both Rogers' and our theorems generalize to higher dimensions in the following form :

Let K_{1}, K_{2} be [centrally symmetric] n-dimensional convex bodies, $n \geqslant 2$; unless both are ellipsoids, there is a non-singular affine transformation T such that $T K_{2} \subset K_{1}$ and $\operatorname{bd} K_{1} \cap \mathrm{bd} T K_{2}$ has at least three [four] connected components.

In order to see that the bounds 3 respectively 4 cannot be improved even for $n \geqslant 3$, it is sufficient to take for K_{2} a solid n-dimensional sphere, and for K_{1} a solid half-sphere, or a spherical zone, respectively.
(Added December 15, 1963.) A weaker version of the above conjecture is obtained if the transformation T is allowed to be singular. The following reasoning, supplied by the referee, proves the conjecture in this formulation.

We recall a result, proved for $n=3$ by T. Kubota (" Einfache Beweise eines Satzes über die konvexe, geschlossene Fläche ', Science Reports of the Tôhoku Imperial University, lst Series, 3 (1914), 235-255) and for general n by H. Buseman (The geometry of geodesics, New York, 1955, page 91):

If p is an inner point of a convex body K and each two-dimensional section. of K by a plane through p is an ellipse, then K is an ellipsoid.

By the theory of polar reciprocal convex bodies this is equivalent to the result (proved in the case $n=3$ by T. Kubota, loc. cit., and also by W. Blaschke and G. Hessenberg, "Lehrsätze über konvexe Körper", Jber. Deutsch. Math.-Verein., 26 (1917), 215-220):

If all the two-dimensional orthogonal projections of a convex body K are ellipses, then K is an ellipsoid.

We suppose that K_{1} and K_{2} are not both ellipsoids. It follows that we can choose a two-dimensional section S_{1} of K_{1} and a two-dimensional projection P_{2} of K_{2}, which are not both ellipses. It follows from the main theorem that we can choose an affine transformation T_{0} so that $T_{0} P_{2} \subset S_{1}$
and $\operatorname{bd} S_{1} \cap b d T_{0} P_{2}$ has at least three connected components.
The corresponding result for centrally symmetric bodies follows in the same way from Rogers' theorem.

References

1. F. Behrend, " Uber die kleinste umbeschriebene und die grösste einbeschriebene Ellipse eines konvexen Bereichs ", Math Annalen, 115 (1938), 378-411.
2. J. Bertrand, "Démonstration d'un théorème de géometrie", J. Math. Pures Appl., 7 (1842), 215-216.
3. T. Bonnesen and W. Fenchel, Theorie der konvexen Körper (Springer, Berlin, 1934).
4. B. Grünbaum, "Measures of symmetry for convex sets", Proc. Symp. Pure Math., 7 (1963), 233-270.
5. ———" Fixing systems and inner illumination ", Acta Math. Acad. Sci. Hungarica, 15 (1964), 161-163.
6. B. H. Neumann, " On some affine invariants of closed convex regions ", Journal London Matl. Soc., 14 (1939), 262-272.
7. C. A. Rogers, "Pairs of convex domains", Journal London Math. Soc., 37 (1962), 164-168.
8. S. Straszewicz, Beiträge sur Theorie der konvexen Punktmengen (Thesis, Zürich, 1914).
9. W. Süss, "Eine characteristische Eigenschaft der Ellipse ", Math.-phys. Semesterber., 4 (1955), 54-56.

The Hebrew University of Jerusalem.

[^0]: Received 15 July, 1963; revised 15 December, 1963. The research reported in this paper has been sponsored in part by the Air Force of Scientific Research, OAR, through the European Office, Aerospace Research, United States Air Force.

