
A MEASURE OF ASYMMETRY FOR PLANE CONVEX SETSf

B. GRUNBATJM

1. Introduction.

For any plane convex bodyj K we consider partitions of K by straight
lines -L1? L2, L3, subject to the condition§ (see Fig. 1):

Fig. 1

Et < Yi for i = 1, 2, 3. (*)

Let f(K; Llt L2, L3) = E + E + E •

We are interested in the functional f(K) defined by

f(K) = sup {f(K; Llt L2, Lz) \ Llt L2, L3 satisfy (•)},

and we shall prove the following

THEOREM. For every plane convex body K

(i) 0 ^.f(K) ^ ~-;

(ii) f(K) = 0 if and only if K has a centre of symmetry;

(iii) f(K) = -^£ if and only if K is a triangle.

Thus f(K) is a measure of asymmetry|| for plane convex bodies; it
is obviously an aflfine-invariant measure of asymmetry.

Received 29 November, 1962.
f The research reported in this document has been sponsored in part by the Air Force

Office of Scientific Research of the Air Research and Development Command United States
Air Force through its European office.

% A convex body is a compact convex set with non-empty interior.
§ We shall denote a convex set and its area by the same letter.
|| See [5] for a summary of results on measures of asymmetry and references.
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Our estimate f{K) < ^ generalizes the well-known result of Sholander
[6]f that/(i£; Lx, L2, L3) is at most ^ if, in addition to (*), the relation
Ex = E2 = Es is assumed.

In §2 we shall prove the assertion (i) of the theorem; as a by-product
of the proof we obtain (iii). Assertion (ii) shall be proved in §3, while
§4 contains some remarks and problems.

2. Proof of Assertion (i).

Since f(K) is obviously non-negativej, we shall prove only f{K) ^ ^ j .
We begin by remarking that, by standard compactness arguments, for
any given K the functional f(K; Lx, L2, L3) assumes a maximal value for
certain lines Lx, L2, L3, and also that f(K) assumes its maximal value for
a certain convex body /v*. Using simple geometric arguments, we shall
first determine K* and some properties of the L^a which maximize
f(K; Lx, L2, L3). The analytic determination of the L^a and of f(K)*
will complete the proof of (i) and (iii).

For any given K a necessary condition for the maximum of
f(K; L), L2, Ls) is (see Fig. 2) that the segment CXA2 have the same
length as u43Blt and similarly C2AS = Ax B2 and C2AX = A2 2?3. Indeed,
if e.g. C1A2,>A3B1, then for a suitable line Lx* through the midpoint
A/* of A2A3 we would have/(if; L^, L2, L3) >f{K; Lx. L2, La).

Fig. 2

Let now any K, Lx, L2, Ls be given and let K* be the triangle deter-
mined by the straight lines Bx C3, B2 CX) and B3 Cx (cf. Fig. 2). Obviously

the lines L.t satisfy condition (*) with respect to X*, and

f(K*;Lx,L2,L3)>f(K;Lx,L2,L3).

f Conjectured by R. C. Buck and E. F. Buck [1]; proved also by H. G. Eggloston [2]
(this proof is reproduced in Eggleston's books [3, 4]).

J The existence of at least one set of lines Lly L2, L3, satisfying (*) is a consequence of
the existence of sixpartite points (Buck and Buck [1 ]; sixpartito points correspond to the
case T = 0, E( = V, for i, j = 1,2, 3.
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Equality holds here if and only if the boundary of K coincides with that
of K* in E1\JE2KJE3. It follows that the maximum of f(K) is assumed
for K a triangle.

For a triangle K with vertices Dx, D2, Dz, the maximum oj
f(K; Lx, L2, Ls) can be achieved only if Vi — Ei for all i. Indeed, if e.g.
Vx > Ex then for a suitable triangle if* with vertices Dx*, D2*, D3

:i: (see
Fig. 3) we would have / ( Z * ; Lx, L2, L3) >f{K; Llt L2, Ls).

rig. 3

According to the above, the Assertion (i) of the theorem shall be proved
if we show that for all lines Lx, L2, L3, such that (using the notations of
Fig. 3) Ei = Viiovi = l, 2, 3, and

the inequality 24T < E^E^E^ holds. We find it convenient to prove
the stronger statement, viz. ST < Ex provided (**) holds and Vx = Ex^ Ei}

j = 2, 3, with no assumption on F2 and F3. For simplicity of computa-
tion we take T (and Lx, L2, L3) fixed as indicated in Fig. 4 and proceed
as follows (assuming, without loss of generality, that a^b).

First we find

1+c
9 7 wi \

1+c
» . - - ( i + c ) 2_ ( a _ c ) ( 6 _ c )

From Ex = Vx it follows that

(a-b)2c2+2[a{l+a)+b(l+b)]c- [ab{2+a-\-b)+ (a+b+ab)(ab—l)] = 0;

JOUU. 153 H



98 B. GRUNBAUM

L

A, = (0, 0)
At = (1,0)
A3 = (0, 1)

B, = (~c, 1+c)
B2 = (0,-6)
B3 = (l+a, 0)
£>i = (a-'o. Vo)

Fig. 4

C 2 = (0,1 + 6)
O3 = (~a, 0)

similarly, E3^EX implies b(l+c)-\-c^a-\-b-t-ab and therefore
Combining, this inequality with (***) and simplifying, it follows that

a?+a2+a ^b{2a2— 1); (****)

together with b < a this implies a3—a2—2a > 0. Since a > 0 we obtain

Now, as easily checked,

2 for a > 2,

and therefore (****) yields a ^ 6 ^ 2 . But then J5/1>4 = 877, as
claimed in (i). Equality holds if and only if a=b=2; then c=2, and
Ei=Vi = ^) T = $. This establishes (iii).

3. Proof of Assertion (ii).

It is well known that a plane convex body K is centrally symmetric
if and only if all the straight lines which bisect the area of K are con-
current (at the centre of K). Therefore, if K is not centrally symmetric
there exists three non-concurrent lines Lv L2, L3, each of which bisects
the area of K. Obviously T > 0, and since the JC/S are area-bisectors of K
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we have (in the notation of Fig. 1) Vi=T+Ei for t = 1, 2, 3; thus
Vi ̂  Ei} condition (*) is fulfilled, and f{K • Lv L2, L3) > 0.

There remains to be shown that f(K) = 0 for centrally symmetric K.
Suppose that, on the contrary, this is not true, i.e. that there exists a
centrally symmetric K and lines Lx, L2, L3 such that/(if; Lv L2, La) > 0.
Compactness arguments again establish the existence of extremal K
and Li's.

With regard to the possible positions of the centre 0 of K relative to
Lt, L2, L3, it is immediate that 0 cannot belong to T or to E^E^KJE^
Indeed, in the first case (see Fig. 5) each of the lines iŴ  through 0 parallel
to Li bisects the area of K, and therefore

M, r—

Fig. 5

with strict inequality at least in one of the relations; adding the three
inequalities we obtain V^V^+V^ < Ex-\-E2-\-E^, in contradiction to (*).

The possibility that 0 belongs, e.g., to Ex is at once contradicted by
the condition VX^EX (see Fig. 6).

Fig. 6
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In order to dispose of the remaining possibility let us assume that 0
belongs to Vx (see Fig. 7). Let B^, C^, be the points symmetric to Bi} Ci}

with respect to the centre 0. Denote by P the parallelogram with vertices
Po, Px, P2, P 3 whose sides are determined by the lines C2 B3, B2* C3,
B3*C2*, B2C3*. Considering the shaded areas it follows that (:i:) is
satisfied by the lines LX) L2) L3, with respect to P, and that
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Fig. 7

We may therefore restrict our attention to parallelograms.
Assuming the configuration to yield maximal f(P, Lx, L2, L3) we have

(as shown in §2) B1A3 = A2C1 (see Fig. 8). Substituting for Lx the line
Lx'

li determined by the midpoint Ax* of A2AZ and by Po (or Px), it follows
that f{P, Llt L2, L3) < / ( P , Lj*, L2, L3). (Note that if Lv L2, L3 satisfy
(*), so do V S L2, L3). But if Cx = Po (or Bx = P J , then C3AX = A2 B3

obviously contradicts (*). The contradiction reached completes the proof
of (ii).

4. Remarks.

(a) Using the notations of §1, let

g{K; Llt L2, L3) = max \ w , w , -^- ,
1^1 ^ 2 ^3)

the lines Li satisfying condition (*). As in §3 it follows that g(K) is a
measure of asymmetry; obviously Sf(K) ^.g(K). Probably
but our arguments do not establish this.

T
(b) Similarly, i£h(K; Lx, L2, L3) — ^r for Li satisfying
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it follows from part (i) of our theorem that h{K)^% with equality only
if K is a triangle. Also, h(K) = 0 if K is centrally symmetric. One may
conjecture that h(K) = 0 only for centrally symmetric K, although no
proof of this seems to be known.

Fig. 8

(c) It would be interesting to investigate the analogues of f(K) in
higher dimensions. It seems that one reasonable generalization to E3

would consist in asking for the maximum of the volume of the central
tetrahedron if its bounding planes are supposed to satisfy conditions of
the type "all vertex regions have the same volume, and so do all edge
regions and vertex regions ", and possibly some inequalities of the type (*).

(d) Our theorem obviously implies the following statement: For any
convex body K in the plane, and any lines Llt L2, L3, satisfying (*) we
have 0 < T/K < 49. Equality on the left holds if and only if K is centrally
symmetric, and on the right if and only if K is a triangle. Thus T/K is
another measure of asymmetry. It is interesting to note that the direct
proof of TjK < ^ seems to be more complicated than that of our theorem.
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