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Common Secants for Families of Polyhedra 

By 

BRANKO GRi)NBAU~I* ) 

1. Introduction. A family :/C of sets in E n is said to have property ~f ff there exists 

a hyperplane (i.e. an (n--1)-dimensional linear variety) intersecting every member 

of • .  The family S is said to have property 5 p (k) if every/c-membered subfamily 

of d has property 5 p. 

The question under what conditions on the family ~C does 5z(k) imply 5f was 

posed by VrNCENSI~I [6]. The first positive result in that  direction was the fol lo~ng 

result of SA~T~L6 [5]: 

For families of parallelotopes in E n, with edges parallel to the coordinate axes, 

~f(2n-l(n ~- 1)) implies ~ .  

Except for n = 2, SANTAL6'S paper and VALE~TIXE [7] are the only references 

known to us dealing with this problem. The case n = 2 and the analogous problem 

about straight lines transversal to members of a family of sets in E n, received much 

greater attention. See Chapter 5 of DA~ZE~-G~OxBAv~-KLEv. [1] for an account of 

the known results and references. 

In  the present paper we shall prove a generalization of SAXTAL6'S theorem to 

families of polyhedra related (see definition below) to any given polyhedron. 

The method of proof is an extension of that  used in [2] for n = 2. Our proof is 

somewhat related to SA~TAL6'S in as much as in both proofs HELLY'S theorem on 

intersections of convex sets (see [1]) is highly relevant. SA~TAL6 uses a variant of 

RADOX'S proof of HELLY'S theorem, while in the present paper the use of HELLY'S 

theorem itself permits a simpler reasoning and greater generality. 

We also show (Theorem 3) that  the limitation to polyhedra in Theorem 1 is neces- 

sary, at least for n = 2. 

2. Statement of results. A convex cone C, with vertex at the origin 0, is called the 

azsociated cone of a (convex) polyhedron P c E n with respect to the vertex v of P 

if v + C is the conical extension of P from v (i.e. v + C is the union of all the half- 

lines with endpoint v which contain at least one point of P different from v). A poly- 

hedron P '  is related to a polyhedron P provided each associated cone of P '  is an 

intersection of associated cones of P. (Note that  P '  may be related to P without P 

being related to P'.)  A family ~ is related to P if each member of ~ is related to P. 
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For  example, SANTAL6'S families of  parallelotopes are related to  the uni t  cube. 

Families of translates,  or homothets ,  of  a given polyhedron P are related to P .  

Using the not ion of  a family related to  a polyhedron,  we m a y  formulate  our results 

as follows. 

Theorem 1. _For/amilies 3~ related to a centrally symmetric convex polyhedron P c E n 

with 2p vertices, 5 f  (p (n ~ 1) ) implies $f. 

Theorem 2. For every positive integer k there exists a t ~-- t (It, n) such that /or ]a- 

milies ~ related to a convex polyhedron P c E n with k vertices, .9~ (t) implies ~ .  More- 

over, w e m a y t a l c e  t(lc, n) ~ ( ~ ) . ( n - ~ - 1 ) .  

The restriction to polyhedra  in Theorem 1 is natural ,  as shown by  

Theorem 3. Let a centrally symmetric convex body K c E 2 have the property that 5 ~ (t) 

implies ~ /or ]amilies o / (posi t ive)  homothets o / K ,  where t depends on K only. Then K 

is a polygon. 

3. A lemma. Before proving the theorems we shall establish a lemma, for the  

formulat ion of  which we have to introduce some notat ion.  

Le t  C be a proper  convex cone in E n, with vertex 0. Let  K be a convex set in E n 

such that ,  for suitable x l ,  x2 ~ K,  we have K c (xl ~- C) r~ (x2 - -  C). This condition 

is fullfilled, e.g., ff C is an associated cone of a polyhedron P and K is related to P .  

We denote by  3(t ~ the set of all hyperplanes in E n having translates which Support C. 

We map  the set Jt ~ onto an  n-dimensional Euclidean space R n in the  following 

fashion. Let  y e int  C be a fixed point  ; in the hyperplane Y th rough  0, perpendicular  
n 

to  the  vector  y, we choose n points zi0 1 _~ i _~ n, with linear hull Y, and ~ z~ ~ 0. 

E v e r y  H ~ J~  intersects each of the  lines Li = zi ~- R y  in a unique point  zi -~ ~ y .  

Then  H --> co(H) --~ (~1 . . . . .  ZCn) is the mapping  of  ~ f  onto R n we need, the :r being 

the coordinates of  H.  I n  this nota t ion we have 

L e m m a  1. The set {:r (H) : H e J([', H (~ K ~: O} c t~n is convex. 

P r o o f  o f  t h e  l e m m a .  Let  H0, H1 e 5r~; the  family of hyperplanes 

{H;. : ~(H%) ---- (1 - -  ~)~(H0) -k ~z(H~), 0 ~ ~ _~ 1}i, 

the  "segment"  with endpoints H0 

and  H1, is easily seen to be par t  of  

the pencil of  hyperplanes determined 

by  H0 and H1. Moreover, for at  least 

one i, L~ n H0 (~ H1 = 0. Let  S be the 

segment  determined by  L~ (~ H0 and 

Li (~ H1. Then H~ n S ~: 0 for all ~, 

0 ~-- A ~ 1. (See Fig. 1 for the case 

n = 2 to  which the  general case 

reduces a t  once.) 

H~ + 

J 
H ; J  

LI L2 

Fig. 1 
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Let  Kc~H0=~0,  K n H I = ~ 0 .  I f H 0 c ~ H l ~ 0  then H ~ K = ~ O  for 0 ~ - - ~ 1  on 

account  of  the convexi ty  of K.  If, on the contrary,  V ~ H0 n H1 ~= 0, then V is 

an (n - -  2 )-dimensional var ie ty  which divides each H~ into closed half-hyperplanes 

H + and  H~, the nota t ion being such tha t  H+c~ S =~ 0. I f  H + c ~ K  ~ ~ for i ~ 0,1, 

or i f H ~ c ~ K  :~ 0 for i = 0,1, again Kc~H~ • 0 by  the convexi ty  of  K. Bu t  K • H o  + 

: K n H~ = 0, or K (~ H o = K n H ~  : 0 is impossible s ince /~c  (xl ~- C) (~ (x2 - -  C) and  

both  H0 and H1 are parallel to support ing hyperplanes of  C. This ends the proof  o f  

Lemma 1. 

4. Proof of Theorem 1. Let  the  vertices of  P be ~-x~, 1 --< i ~ p ,  and let Cl be 

the associated cone of P with respect to xi, 1 ~ i ~ p. Le t  JCt be the family of  all 

hyperplanes in E n having translates which support  C~. Clearly U ~ is the set o f  
i = ]  

all hyperplanes in E n. Assuming tha t  there is no hyperplane in E n intersecting all 

the members  of  ~ ,  it follows t h a t  for each i, 1 ~ i ~ p,  no hyperplanes in ~ i  inter- 

sect all the members of ~ .  According to the above lemma, t h e  set {~ (H) : H e 5~i,  

H ~ P~ =~ 0} is convex for every P~ e ~ ,  and it follows from HEIz~Y's theorem on 

intersections of convex sets t h a t  some n -~ 1 members  o f  ~ do not  have a common 

secant belonging to JC~. Therefore there exists a subfamily . ~ ' c  ~ ;  containing a t  

most  p ( n  ~- 1) members  and such tha t  the members  of ~ '  do not  have a common 

secant belonging to  ] ~  for i = 1, 2 . . . .  , p ; in other  words, the members of  ~ '  do 

not  have any  common secant. This ends the proof  of  Theorem 1. 

5. Proof of Theorem 2. The existence assertion of  Theorem 2 is an obvious con- 

sequence of  Theorem 1 and  

Lemma 2. A convex polyhedron K c E n is related to its "di~erences body" ("vector- 

body") K *  = K + (-- K).  

The p r o o f  of  Lemma 2 is immediate :  For  a vertex v of  K, let vi, 1 ~ j  ~ m, 

be all those vertices of  K *  for which there exists vectors x~., such tha t  x~ ~- K c K *  

and xj -~ v : vj. Obviously, the associated cone of  K with respect to v is then the  

intersection, for 1 ~ j ~ m, of  the  associated cones of K *  with respect to  v~. 

The estimate of  t(k, n) follows from the  trivial observat ion t h a t  P *  has at  mos t  

6. Proof of Theorem 3. Assume tha t  K = - -  K is not  a polygon. Then it is pos- 

sible to find t points p l ,  . . . ,  p~ of  K with the following properties : 

(i) each p~ is an  exposed point  of K, i.e. there exists a line L~ support ing K and  

such tha t  K ~ L~ = {p~}. 

(ii) p~ , : -p i=~0 ,  l < i , j < t .  

(iii) L~: is not  parallel to L1 for i =~ j ,  1 < i, j < t. 

Let  us define pt+~ -: --P~ for 1 < i < t, .P2ht+i = Pr for h = 0, -~ 1, ~ 2 . . . . .  

1 --< i < 2t, and correspondingly for the support ing lines L~. We assume, moreover,  

tha t  the nota t ion is arranged in such a fashion tha t  p~+~ follows immediately  after  p ,  

in the positive direction on the boundary  of  K. 
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Let H + denote that  closed half-plane determined by Li which contains K, and 

let H~ denote the other closed half-plane determined by Li. We put'C~----H~ 

~H+t_I~H++t+~. Then Ci is a closed convex set whose boundary consists of two 

half-lines (contained in L~+t-1 resp. Li+t+l) 

and one segment of L~. (Cf. Fig. 2. where 

C1 is shaded.) 

Let Kt ~ xi -k :r be that  (uniquely 

determined) set homothetic to K which is 

inscribed into Ci, i.e. Kic Ci, K~ n L~ r 0, 

K i n  L~+t-1 r 0 and K i n  Li+t+l :~ O. (For 

a very similar construction see HADWIG]~g- 

DEBgU~ZeE~ [4], p. 17.) Then, obviously, 

Ki (~ L~+j .  0 for all j with 0 ~ j ~ t --  1 

and t~-  1 ~ j ~ 2 t - - 1 .  Thus for each 

2 t - - 1  members of J f - - - - { K i : l - - - - - i ~ 2 t }  

there exists a straight line intersecting 

them all. But there is no straight line 

intersecting all the members of .;/~. Indeed, 

L~ 

i 

L7 L a L 3 L~ 

Fig. 2 

if L were a common secant for the members of ~ ,  due to the symmetry of the 

family S (viz. K~ ~ -- Ki+t), the line - - L  would also be a common secant. Then 

L* -~ L -4- ( - -L)  would be a common secant, too. But ff L* is a common secant 

for K, it is a fortiori a common secant for the family ~, : {Cl : 1 ~ i  ~--2t}. However, 

the only common secants (through the orion) of all the members of ~ are easily seen 

to be those straight lines which, for some i, intersect C~ ~) Cl+t-1 in the single point 

Ci • Ci+t-1 --~ Li (~ L~+t-1. But  such a line misses both Ki and Ki+~-i by the choice 

of the exposed points P i e K  and supporting lines L~. Thus 5 f ( 2 t -  1)does  not 

imply ~0 ~ for families of homothets of K. Since t was arbitrary, this ends the proof 

of Theorem 3. 

7. Remarks and Problems. (i) In  case n ~ 2, the number 2 n-1 (n -k 1) of S.~NTA~6'S 

theorem is the smallest possible [6], even if only families of translates of a square 

are considered [3]. This is the only case in which the number (n -k 1)p of Theorem 1 

is known to be the best possible. From the proof of Theorem 3 it follows easily that, 

in case n ---- 2, one may not substitute ~ ( 2 h  -- 1) for 5P(3h) in Theorem 1. 

(ii) The bound ~ven  for t(k, n) in Theorem 2 is probably much too high. For 

n ---- 2 it can easily be reduced to 3 k. But even in that  case, and for P a triangle 

(i.e. k = 3), the least value for t (k, n) is not known. 

(iii) Let v (k, n) denote the maximal number of vertices of P* for polyhedra P o E  n 

having k vertices. As easily seen v (k, 2) ---- 2k, but in the case n ___-- 3 no upper bound 

for v(]~, n), be t t e r  t han  the  t r ivial  2 ( 2 ) ,  seems to be known1). 
\ ] 

(iv) I t  would be interesting to know whether Theorem 3 remains true ff only 

families of translates of K are considered, or ff K is not assumed to have a center 

of symmetry. Is it possible to extend Theorem 3 to higher dimensions ? 

1) Cf. B. GRii~BAV~r, Strictly antipodal sets (to appear in Israel Bull. of Math.). 
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(v) The subject  of  the present paper m a y  be pu t  in the f o l l o ~ n g  "appl ied" setting. 

Assume a linear relationship between some physical variables (e.g. between x and  y) 

is to be tested. Exper imenta l  results are obtained as pairs (x~, yt), each afflicted 

with errors zJx~, LJy~ est imated in a suitable form (e.g., I zJxi[ ~ ~i, [/lYi[ ~ ~i; or 

]zJxiI + ] d y i [  ~ y~, etc.). To check whether  a linear relationship is compatible  

with the experimental  results, within the assumed limits of  error, one does no t  have 

to  consider the whole set of  da ta  at  once;  it is enough to verify the possibility of  

accomodat ing linearly subsets of  da ta  consisting of  a predetermined number  of  

measurements,  this number  depending on the assumed behaviour  of  the errors. 

(vi) The interpretat ion in (v) leads quite natural ly  to  the following type  of  pro- 

blems, presented here in geometric language and in the  simplest case, n = 2 .  

Le t  a family • = (x~ + K} of  translates of  a convex body  K = - -  K c E 2 be 

given, such t h a t  every m-membered subfamily of  K has a common secant. W h a t  is 

the smallest positive ~ = R (K, m) such that ,  for every 5C satisfying the above con- 

ditions, the family ~ '  = (x~ + ~K} has a common secant. 

Even  in the simplest cases (e.g., m = 3 and K is a circle, or a square) no results 

seem to be available. 
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