UNAMBIGUOUS POLYHEDRAL GRAPHS*

BY
BRANKO GRÜNBAUM

ABSTRACT
The existence of unambiguous d-polyhedral graphs is established for every d.

1. A graph G is called d-polyhedral provided G can be realized by the vertices and edges of a d-dimensional convex polytope [3]. In general, a d-polyhedral graph may be dimensionally ambiguous, i.e., it may be also d^{\prime}-polyhedral for $d^{\prime} \neq d$ (though this can not occur for $d \leqq 3$ [3]). A polyhedral graph is unambiguous provided it is not dimensionally ambiguous, and provided for every two convex polytopes realizing the graph a biunique correspondence exists between their vertices in such a way that a set of vertices of one of the polytopes determines a face of the polytope if and only if the corresponding vertices of the other determine one of its faces.

Recently, Klee [5] disproved one of the conjectures of [3] and established the existence, for every d, of d-polyhedral graphs which are not dimensionally ambiguous. Klee's proof is based on a new condition for d-polyhedrality. The aim of the present paper is to give a simpler proof and a slight sharpening of Klee's result, by proving the following

Theorem. For every d there exist unambiguous d-polyhedral graphs.
The author is indebted to Victor Klee for many long and interesting conversations on polyhedral graphs.
2. Before proving the theorem, we collect some well-known definitions and facts, and state a few easily established assertions.
If P is a d-dimensional convex polytope in Euclidean d-space E^{d}, F a ($d-1$)face of P, and A a point, we shall say that A is beyond F provided A belongs to the open halfspace which has F in its boundary and which does not meet P.
The following statements are easily established:
(i) If P is a d-dimensional convex polytope and if A is a point of E^{d} not belonging to P, there is a $(d-1)$-face F of P such that A is beyond F (Weyl [6]).
(ii) If A and B are vertices of a d-dimensional convex polytope P, joined by an edge of P, and if P_{0} is the convex hull of the vertices of P different from A,

Received January 3, 1964.

* Resoarch supported in part by the National Science Foưndation, U. S. A. (NSF-GP-378).
then either A is beyond some $(d-1)$-face of P_{0} incident to B, or P_{0} is $(d-1)$ dimensional.
(iii) If an open halfspace H contains at least two vertices of a convex polytope then H contains an edge of the polytope.
(iv) If a vertex V of a convex polytope P is beyond exactly one face F of the convex hull of the other vertices of P, then V is joined by an edge of P to each vertex of F.

For the following notions and facts see Gale [1, 2], Klee [4], and the references given in those papers.

A cyclic polytope $C(d, n)$ is the convex hull of n distinct points on the "moment curve" in $E^{d}, n \geqq d+1, d \geqq 2$, given parametrically by $\left(t, t^{2}, t^{3}, \cdots, t^{d}\right)$. It is well known that $C(d, n)$ is a d-dimensional polytope with n vertices, which is neighborly in the sense that every $s \leqq[d / 2]$ of its vertices determine an $(s-1)$ dimensional face of $C(d, n)$. In particular, for $d \geqq 4$, every pair of vertices of $C(d, n)$ determines an edge. All the $(d-1)$-faces of $C(d, n)$ are $(d-1)$-simplices. Their number $m(d, n)$ is given by

$$
m(d, n)=\binom{n-\left[\frac{d+1}{2}\right]}{n-d}+\binom{n-\left[\frac{d+2}{2}\right]}{n-d}
$$

Let $\mu(d, n)$ denote the maximal possible number of $(d-1)$-dimensional faces for d-dimensional polytopes with n vertices. Obviously $\mu(d, n) \geqq m(d, n)$; it has been conjectured that equality holds in this relation for all d and $n \geqq d+1$. It is known that $\mu(d, n)=m(d, n)$ if either $n \leqq d+3$ or $n \geqq[(d+1) / 2]^{2}-1$.

Let $C(d, n)$ be a cyclic polytope with vertices $\left\{V_{i}: i=1,2, \cdots, n\right\}$; beyond each of its $m(d, n)(d-1)$-faces F_{j} we take a point W_{j} sufficiently near to the centroid of F_{j}, in such a way that in the convex hull $K(d, n)$ of

$$
\left\{V_{i}: i=1, \cdots, n\right\} \cup\left\{W_{j}: j=1, \cdots, m(d, n)\right\}
$$

each W_{j} is joined by an edge only to the vertices V_{i} incident to F_{j} (then all the edges of $C(d, n)$ are also edges of $K(d, n)$). We call $K(d, n)$ a Kleetope derived from $C(d, n)$. The graph of vertices and edges of $K(d, n)$ shall be denoted by $K^{*}(d, n)$, its nodes by $V_{i}^{*}, 1 \leqq i \leqq n$, and $W_{j}^{*}, 1 \leqq j \leqq m(d, n)$.
3. We shall prove the theorem by establishing the following assertion:

For all n and d, such that $d \geqq 4$ and $n+1 \geqq \max \left\{2 d,[d / 2]^{2}\right\}$, the d-polyhedral graph $K^{*}(d, n)$ of the Kleetope $K(d, n)$ is unambiguous.

Proof. (i) $K^{*}(d, n)$ is not dimensionally ambiguous. Indeed, since each of the nodes W_{j}^{*} is d-valent, $K^{*}(d, n)$ is not d^{\prime}-polyhedral for $d^{\prime}>d$. Assuming $K^{*}(d, n)$ to be realizable by a ($d-1$)-dimensional polytope P, let P_{0} be the convex hull of the vertices $V_{i}, 1 \leqq i \leqq n$, of P corresponding to the nodes V_{i}^{*} of $K^{*}(d, n)$. By the above, P_{0} has at most $\mu(d-1, n)=m(d-1, n)$ faces of dimension $d-2$. By (i) above, each vertex W_{j} of P (corresponding to the node W_{j} of $K^{*}(d, n)$ is beyond at least one of the $(d-2)$-faces of P_{0}. Since no two vertices W_{j} determine an edge of P, (iii) implies that no two of those vertices may be beyond the same ($d-2$)-face of P_{0}. Therefore $m(d-1, n) \geqq m(d, n)$, in contradiction to the value of $m(d, n)$ and the assumption $n \geqq 2 d-1$. Since $n \geqq 2 d-1$ implies also $m(d, n)>m((d-s), n)$ for every $s \geqq 1$, the same reasoning shows that $K^{*}(d, n)$ is not $(d-s)$-polyhedral. Thus $K^{*}(d, n)$ is not dimensionally ambiguous.
(ii) Let P^{\prime} and $P^{\prime \prime}$ be two d-dimensional polytopes realizing $K^{*}(d, n)$, with vertices $V_{i}^{\prime}, W_{j}^{\prime}$ and $V_{i}^{\prime \prime}, W_{j}^{\prime \prime}$. Let P_{0}^{\prime} be the convex hull of the vertices V_{i}^{\prime} of P^{\prime}, and $P_{0}^{\prime \prime}$ the convex hull of the vertices $V_{i}^{\prime \prime}$ of $P^{\prime \prime}$. In each of $P^{\prime}, P^{\prime \prime}$, the vertex corresponding to the node W_{j}^{*} of $K^{*}(d, n)$ is beyond at least one of the $(d-1)$ faces of P_{0}^{\prime} resp. $P_{0}^{\prime \prime}$, and vertices corresponding to different nodes W_{j}^{*} are not beyond the same $(d-1)$-face. Since P^{\prime} and $P^{\prime \prime}$ have each at most $m(d, n)$ faces of dimension $d-1$, each vertex W_{j}^{\prime} or $W_{j}^{\prime \prime}$ is beyond exactly one $(d-1)$-face of P_{0}^{\prime} resp. $P_{0}^{\prime \prime}$. By ((iv) above, that face has as vertices exactly those V_{i}^{\prime} 's resp. $V_{i}^{\prime \prime}$'s which correspond to nodes V_{i}^{*} connected to the given W_{j}^{*} by edges of $K^{*}(d, n)$. Therefore each $(d-1)$-face of P_{0}^{\prime}, and of $P_{0}^{\prime \prime}$, is a $(d-1)$-simplex, and the correspondence of V_{i}^{\prime} and W_{j}^{\prime} to $V_{i}^{\prime \prime}$ and $W_{j}^{\prime \prime}$ shows that $K^{*}(d, n)$ is unambiguous.
4. Remarks. (1) The assertion of $\S 3$ can be established for some additional values of d and n. Thus, $K^{*}(5,6)$ is unambiguous. The argument is similar to the above, with the addition that in the present case $P_{0}=C(4,6)$ and therefore all its 3-faces are simplices. It follows that each W_{j} is beyond at least two 3-faces of P_{0}, which is impossible since $C(4,6)$ has only 9 such faces. Even the 11 -node 5-polyhedral graph, obtained from $K^{*}(5,6)$ by deleting one of the nodes W_{j}^{*}, is not dimensionally ambiguous.
(2) It is some of interest to note that although $K^{*}(5,6)$ is unambiguous, the graph of the polytope polar to $K(5,6)$ (in E^{5}) is 4-polyhedral.
(3) For a d-dimensional convex polytope C let $K(C)$ denote the Kleetope derive from C, i.e. the polytope obtained from C by adjoining above each of its ($d-1$)-faces a sufficiently flat pyramid. Let $K^{*}(C)$ denote the graph of $K(C)$.

Conjecture. For every C, the graph $K^{*}(C)$ is unambiguous.

References

1. Gale, D., 1964, Neighborly and cyclic polytopes, Proc. Symp. Pure Math, 7, 225-232.
2. Gale, D., 1964, On a number of faces of a convex polytope. Canad. J. Math., 16, 12-17.
3. Grünbaum, B. and Motzkin, T. S., 1963, On polyhedral graphs, Proc. Symp. Pure Math., 7, 285-290.
4. Klee, V., 1963, On the number of vertices of a convex polytope, Math. Note No. 304. Boeing Sci. Res. Labs., June, 1963 (42 pages); to appear in the Canadian J. Math.
5. Klee, V., A property of d-polyhedral graphs, Math. Note No. 319. Boeing Sci. Res. Labs., August, 1963 (7 pages); to appear in the J. Math. and Mech.
6. Weyl, H., 1934/35, Elementare Theorie der konvexen Polyeder, Comm. Math. Helv. 7, 290-306.

University of Washington, Seattle
AND
The Hebrbw University of Jerusalem

