UNAMBIGUOUS POLYHEDRAL GRAPHS*

BY

BRANKO GRÜNBAUM

ABSTRACT

The existence of unambiguous d-polyhedral graphs is established for every d.

1. A graph G is called *d-polyhedral* provided G can be realized by the vertices and edges of a *d*-dimensional convex polytope [3]. In general, a *d*-polyhedral graph may be *dimensionally ambiguous*, i.e., it may be also *d'*-polyhedral for $d' \neq d$ (though this can not occur for $d \leq 3$ [3]). A polyhedral graph is *unambiguous* provided it is not dimensionally ambiguous, and provided for every two convex polytopes realizing the graph a biunique correspondence exists between their vertices in such a way that a set of vertices of one of the polytopes determines a face of the polytope if and only if the corresponding vertices of the other determine one of its faces.

Recently, Klee [5] disproved one of the conjectures of [3] and established the existence, for every d, of d-polyhedral graphs which are not dimensionally ambiguous. Klee's proof is based on a new condition for d-polyhedrality. The aim of the present paper is to give a simpler proof and a slight sharpening of Klee's result, by proving the following

THEOREM. For every d there exist unambiguous d-polyhedral graphs.

The author is indebted to Victor Klee for many long and interesting conversations on polyhedral graphs.

2. Before proving the theorem, we collect some well-known definitions and facts, and state a few easily established assertions.

If P is a d-dimensional convex polytope in Euclidean d-space E^d , F a (d-1)-face of P, and A a point, we shall say that A is beyond F provided A belongs to the open halfspace which has F in its boundary and which does not meet P.

The following statements are easily established:

(i) If P is a d-dimensional convex polytope and if A is a point of E^d not belonging to P, there is a (d-1)-face F of P such that A is beyond F (Weyl [6]).

(ii) If A and B are vertices of a d-dimensional convex polytope P, joined by an edge of P, and if P_0 is the convex hull of the vertices of P different from A,

Received January 3, 1964.

^{*} Research supported in part by the National Science Foundation, U. S. A. (NSF-GP-378).

then either A is beyond some (d-1)-face of P_0 incident to B, or P_0 is (d-1)-dimensional.

(iii) If an open halfspace H contains at least two vertices of a convex polytope then H contains an edge of the polytope.

(iv) If a vertex V of a convex polytope P is beyond exactly one face F of the convex hull of the other vertices of P, then V is joined by an edge of P to each vertex of F.

For the following notions and facts see Gale [1, 2], Klee [4], and the references given in those papers.

A cyclic polytope C(d, n) is the convex hull of *n* distinct points on the "moment curve" in E^d , $n \ge d + 1$, $d \ge 2$, given parametrically by $(t, t^2, t^3, \dots, t^d)$. It is well known that C(d, n) is a *d*-dimensional polytope with *n* vertices, which is neighborly in the sense that every $s \le \lfloor d/2 \rfloor$ of its vertices determine an (s-1)-dimensional face of C(d, n). In particular, for $d \ge 4$, every pair of vertices of C(d, n) determines an edge. All the (d-1)-faces of C(d, n) are (d-1)-simplices. Their number m(d, n) is given by

$$m(d,n) = \left(\begin{array}{c} n - \left[\frac{d+1}{2} \right] \\ n - d \end{array} \right) + \left(\begin{array}{c} n - \left[\frac{d+2}{2} \right] \\ n - d \end{array} \right)$$

Let $\mu(d, n)$ denote the maximal possible number of (d-1)-dimensional faces for d-dimensional polytopes with n vertices. Obviously $\mu(d, n) \ge m(d, n)$; it has been conjectured that equality holds in this relation for all d and $n \ge d+1$. It is known that $\mu(d, n) = m(d, n)$ if either $n \le d+3$ or $n \ge [(d+1)/2]^2 - 1$.

Let C(d,n) be a cyclic polytope with vertices $\{V_i : i = 1, 2, \dots, n\}$; beyond each of its m(d,n) (d-1)-faces F_j we take a point W_j sufficiently near to the centroid of F_i , in such a way that in the convex hull K(d,n) of

$$\{V_i: i = 1, \dots, n\} \cup \{W_j: j = 1, \dots, m(d, n)\}$$

each W_j is joined by an edge only to the vertices V_i incident to F_j (then all the edges of C(d,n) are also edges of K(d,n)). We call K(d,n) a Kleetope derived from C(d,n). The graph of vertices and edges of K(d,n) shall be denoted by $K^*(d,n)$, its nodes by V_i^* , $1 \le i \le n$, and W_i^* , $1 \le j \le m(d,n)$.

3. We shall prove the theorem by establishing the following assertion:

For all n and d, such that $d \ge 4$ and $n + 1 \ge \max\{2d, \lfloor d/2 \rfloor^2\}$, the d-polyhedral graph $K^*(d,n)$ of the Kleetope K(d,n) is unambiguous.

Proof. (i) $K^*(d, n)$ is not dimensionally ambiguous. Indeed, since each of the nodes W_j^* is d-valent, $K^*(d, n)$ is not d'-polyhedral for d' > d. Assuming $K^*(d, n)$ to be realizable by a (d-1)-dimensional polytope P, let P_0 be the convex hull of the vertices V_i , $1 \leq i \leq n$, of P corresponding to the nodes V_i^* of $K^*(d, n)$. By the above, P_0 has at most $\mu(d-1,n) = m(d-1,n)$ faces of dimension d-2. By (i) above, each vertex W_j of P (corresponding to the node W_j of $K^*(d, n)$ is beyond at least one of the (d-2)-faces of P_0 . Since no two vertices W_j determine an edge of P, (iii) implies that no two of those vertices may be beyond the same (d-2)-face of P_0 . Therefore $m(d-1,n) \geq m(d,n)$, in contradiction to the value of m(d,n) and the assumption $n \geq 2d-1$. Since $n \geq 2d-1$ implies also m(d,n) > m((d-s), n) for every $s \geq 1$, the same reasoning shows that $K^*(d, n)$ is not (d-s)-polyhedral. Thus $K^*(d, n)$ is not dimensionally ambiguous.

(ii) Let P' and P" be two d-dimensional polytopes realizing $K^*(d, n)$, with vertices V'_i , W'_j and V''_i , W''_j . Let P'_0 be the convex hull of the vertices V'_i of P', and P''_0 the convex hull of the vertices V''_i of P". In each of P', P", the vertex corresponding to the node W^*_j of $K^*(d, n)$ is beyond at least one of the (d - 1)-faces of P'_0 resp. P''_0 , and vertices corresponding to different nodes W^*_j are not beyond the same (d - 1)-face. Since P' and P" have each at most m(d, n) faces of dimension d - 1, each vertex W'_j or W''_j is beyond exactly one (d - 1)-face of P'_0 resp. P''_0 . By ((iv) above, that face has as vertices exactly those V'_i 's resp. V''_i 's which correspond to nodes V^*_i connected to the given W^*_j by edges of $K^*(d, n)$. Therefore each (d - 1)-face of P'_0 , and of P''_0 , is a (d - 1)-simplex, and the correspondence of V'_i and W'_j to V''_i and W''_j shows that $K^*(d, n)$ is unambiguous.

4. REMARKS. (1) The assertion of §3 can be established for some additional values of d and n. Thus, $K^*(5,6)$ is unambiguous. The argument is similar to the above, with the addition that in the present case $P_0 = C(4,6)$ and therefore all its 3-faces are simplices. It follows that each W_j is beyond at least two 3-faces of P_0 , which is impossible since C(4,6) has only 9 such faces. Even the 11-node 5-polyhedral graph, obtained from $K^*(5,6)$ by deleting one of the nodes W_j^* , is not dimensionally ambiguous.

(2) It is some of interest to note that although $K^*(5,6)$ is unambiguous, the graph of the polytope polar to K(5,6) (in E^5) is 4-polyhedral.

(3) For a d-dimensional convex polytope C let K(C) denote the Kleetope derive from C, i.e. the polytope obtained from C by adjoining above each of its (d-1)-faces a sufficiently flat pyramid. Let $K^*(C)$ denote the graph of K(C).

CONJECTURE. For every C, the graph $K^*(C)$ is unambiguous.

References

1. Gale, D., 1964, Neighborly and cyclic polytopes, Proc. Symp. Pure Math., 7, 225-232.

2. Gale, D., 1964, On a number of faces of a convex polytope. Canad. J. Math., 16, 12-17.

3. Grünbaum, B. and Motzkin, T. S., 1963, On polyhedral graphs, Proc. Symp. Pure Math., 7, 285-290.

4. Klee, V., 1963, On the number of vertices of a convex polytope, Math. Note No. 304. Boeing Sci. Res. Labs., June, 1963 (42 pages); to appear in the *Canadian J. Math.*

5. Klee, V., A property of *d*-polyhedral graphs, Math. Note No. 319. Boeing Sci. Res. Labs., August, 1963 (7 pages); to appear in the *J. Math. and Mech.*

6. Weyl, H., 1934/35, Elementare Theorie der konvexen Polyeder, Comm. Math. Helv. 7, 290-306.

UNIVERSITY OF WASHINGTON, SEATTLE

AND

THE HEBREW UNIVERSITY OF JERUSALEM