GROTZSCH’S THEOREM ON 3-COLORINGS
Branko Griinbaum

1. INTRODUCTION

Grotzsch [3] established the following remarkable result: Every planar graph
with no 3-civcuits is 3-colorable. The aim of the present paper is to establish the
following generalization of Grotzsch’s result:

THEOREM. Every planayr gvaph with not move than three 3-civcuils is 3-
colovrable.

This result is in a certain sense best possible, since there exist infinitely many
planar graphs with four 3-circuits which are not 3-colorable. However, we were
unable to prove the conjecture: If a planar graph G is not 3-colovable, then G con-
tains two paivs of (edge ov vertex) incident triangles.

The present paper arose from an attempt to find a simple proof of Grotzsch’s
theorem. Berge’s [1] endeavor to give a short proof failed since the claim, essen-
tial to his proof, that every planar graph without 3-circuits is a subgraph of a rigid-
circuit graph (see Dirac [2]) containing no complete 4-graph, is invalidated by sim-
ple counterexamples (such as, for example, the net of a cube).

Our attempt did yield a proof somewhat simpler than Grotzsch’s original proof,
although the last step (Section 5 of the present paper) is only a reformulation of his
ingenious arguments. (There are other similarities between the proofs, but they in-
volve rather standard arguments.) The simplified proof allows one, however, to
prove Grotzsch’s theorem in the generalized form given above.

In the present paper, only graphs without 1- or 2-circuits are considered. A
graph is said to be k-colorable if its nodes may be assigned to k classes in such a
way that no two nodes belonging to the same class be connected by an edge of the
graph. Without loss of generality, we shall assume that all the graphs considered
are 2-connected. A 2-connected planar graph may have different imbeddings in the
2-sphere (for 3-connected graphs the faces are uniquely determined); we shall, how-
ever, always work with a giver imbedding of the graph, and therefore, with a well-
defined set of faces determined on the sphere by the graph. For nodes A, and A,
of a circuit C, we denote by d(A,,, A,) the number of edges in the shorter arc of C
connecting A,, and A,. We shall use the terms {riangle, quadrangle, and pentagon
for 3-face, 4-face, 5-face, respectively.

2. PROOF OF THE THEOREM

We begin by establishing

PROPOSITION 1. Let G be a planayr graph. Then theve exists a planayr graph H
with the following properties:
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(i) G is a subgrvaph of H,
(ii) »no face of H has more than 5 edges,
(iii) every 3-civcuit of H belongs to G.

Proof. The graph H is obtained from the given realization of G by repeating
the following procedure: Let K be a k-gonal face of G, k> 6. If there is an edge
in G connecting non-neighbouring nodes A;, A;, of K, we choose two nodes, A,,, A,
of K that are separated by A;, A;, and such that d(A,, A,) > 3; taking any point A*
in the interior of K, we adjoin to the graph the node A* and the edges A* A, and
A* A, . If, on the other hand, G contains no edge connecting non-neighbouring nodes
of K, we choose any two non-neighbouring nodes A, A,, of K and any point A* in
the interior of K, and adjoin the node A* and the edges A* A and A*A,. In either
case, K is split into two faces, each with less than k edges, and obviously no new
triangles are introduced. This ends the proof of Proposition 1.

As a consequence of Proposition 1, it is obvious that we may assume, in the
proof of the Theorem, that each face of G is either a triangle, or a quadrangle, or a
pentagon. For the inductive proof, we find it technically advantageous to prove the
following more complicated statement:

PROPOSITION 2. Let G be a planay graph having as faces only triangles,
quadvangles, and pentagons and containing at most thrvee 3-civcuits. Then it is pos-
sible to color G with 3 colovs. Movreover, if G contains at most one 3-circuit, the
colors on the nodes of one arbitrvarily chosen 4- ov 5-face may be prescribed, un-
less the chosen face is a pentagon three consecutive verviices of which form a 3-
cirvcuit—in which case the prescribed coloving of the pentagon must assign different
colors to those three vertices.

Proposition 2 will be proved by induction on the number of edges of G, the as-
sertion being obvious for graphs with a small number of edges. We shall describe
different veductions, that is, constructions indicating how a given G is to be 3-
colored to satisfy Proposition 2, assuming the validity of Proposition 2 for graphs
with a smaller number of edges. The set of reductions is chosen in such a way
as to cover all possible cases. This will complete the proof of Proposition 2 and
thus also the proof of the Theorem.

The first reduction applies to graphs G that have a k-cut, k < 5, where a k-cut
of G is a (simple) k-circuit which is not a k-face of G (therefore each of the con-
nected components of the complement (in the sphere) of a k-cut of G contains at
least one edge of G).

For graphs G that are free of k-cuts, k < 5, we describe reductions applicable
in the following cases:

(i) G contains a node of valence 2,
(ii) G contains a quadrangle,

(iii) G contains no quadrangle and no node of valence 2, but contains a triangle
having a node of valence 3,

(iv) G is not covered by (i), (ii), (iii); that is, G contains no quadrangle, no node
of valence 2 and, if any triangles are present, all their nodes have valence of at
least 4.

The details of the different reductions will be given in Sections 3, 4, and 5. We
conclude the present section by explaining the terminology used in the sequel.
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While the 3-coloring of a triangle is unique, a quadrangle can be 3-colored
either by assigning the same color to diametric points, or by assigning to one pair
of diametric points one color, the members of the other pair being colored by dif-
ferent colors. The 3-coloring of a pentagon is also unique, up to a cyclic permuta-
tion of its vertices; two pairs of vertices are colored by two colors, while the re-
maining vertex (special vertex in the sequel) receives the third color.

For graphs G with at most one 3-circuit, the quadrangle or pentagon whose
coloring is prescribed will be called the distinguished face of G.

If C is a k-cut of G, we shall call the part (of G) determined by C either of
the two graphs obtained from G by deleting the nodes and edges of G contained in
one of the connected components of the complement of C in the sphere. Note that
C is a face for each of the parts. A graph with no 3-, 4-, or 5-cuts will be called
cut-free.

For a planar graph (imbedded in the sphere), we shall denote by v, e, f, and fj,
the number of nodes, edges, faces, and k-faces, respectively, of G.

The identification of two nodes N; and N, of a graph G consists in omitting
from G the two non-neighbouring nodes N; and N, (and the edges incident to them)
and introducing a new node N connected to all nodes of G that were connected to at
least one of the nodes N} and N,. From any coloring of the reduced graph, a color-
ing of G is derived by assigning to both N; and N, the color of N.

3. REDUCTIONS FOR GRAPHS WITH k-CUTS, k<5

If G contains a 3-cut T, the reduction is immediate: each of the two parts of G
determined by T has less edges than G; therefore, each of the parts is 3-colorable,
and since the coloration of T is unique, the parts join along T in a proper way.

If G has no 3-cuts but has a 4-cut Q, we distinguish two cases:

(i) f3 = 2 o7 f3 = 3. One of the parts determined by Q contains at most one tri-
angle. We color first the other part, and then the first one, with Q as distinguished
face.

(ii) f3 = 0 or f3 = 1. The distinguished face D is contained in one of the parts
determined by Q; we 3-color this part first, and use Q as distinguished face for the
other part.

If G has no 3-cuts and no 4-cuts but has a 5-cut P, the procedure again depends
on f3.

(i) f3 = 0 or f3 = 1. As above, the distinguished face D is contained in one of
the parts determined by P; we 3-color this part first, and 3-color the other part
with P as the distinguished face. The only possible exception is if f3 = 1, the dis-
tinguished face D is contained in one of the parts determined by P = { ABCDE},
while the other part contains the only triangle present in the exceptional configura-
tion (see Fig. 1). Since G has no 3- or 4-cuts, T and Q are faces. If the nodes
B and D, or C and E (see Fig. 1), are joined in G by a path of length < 3 differ-
ent from those in Fig. 1, G has a 5-cut which is not of the exceptional kind, which
can be used instead of P. If, on the contrary, B and D, and C and E, are not joined
by such paths, at least one of these pairs can be identified without introducing new
3-circuits and without interfering with the coloring of the distinguished face D.
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(ii) f3= 2. If both triangles belong to one of the

A parts determined by P, we 3-color this part first

and use P as distinguished face for the other part.

If P separates the triangles, we use P as distin-
T guished face for both parts, taking a 3-coloring of
P which is compatible with the occurrence of the
exceptional configuration of Fig. 1 on either or both
sides of P. (Note that there always exists such a
3-coloring of P.)

(iii) f3 = 3. If all three triangles are in one of
the parts determined by P, we 3-color this part
first and use P as distinguished face for the other
part. In the only other case, one of the parts of G
determined by P contains one triangle, and the

Figure 1 other two triangles. We 3-color first the latter

part, and use P as distinguished face for the re-

maining part. The only possible complication (analogous to the exceptional case in
(1) above) arises if the part containing the one triangle is the configuration of Fig. 1.
In this case we attempt to reduce G by identifying B and D, or C and E. If the
identification of B and D introduces a new triangle (and is therefore unacceptable),
there exists a 3-path connecting B and D, disjoint from P. If a similar situation
were to prevail regarding C and E, G would contain one of the configurations in
Figs. 2 and 3. The configurations of Fig. 2 are ruled out by the assumption that G

A
A E 5
E B
D C
D C
F
H
G
Figure 2 Figure 3

has no 3- or 4-cuts. As for the configuration of Fig. 3, it contains a 5-cut which is
not of the exceptional kind. Indeed, both BCGHE and BFGDE are 5-cuts. If either
of them were the 5-circuit of the exceptional configuration in Fig. 1, G would con-
tain a 3- or 4-cut, contrary to the assumption.

Thus if G contains a k-cut with k < 5, one of the above reductions applies, and
there remains to be considered the case of graphs having no such cuts. Note that
this implies, in particular, that no triangle has an edge in common with either a tri-
angle or a quadrangle. (The configuration of Fig. 1 is the only exception, but for it
the assertion of Proposition 2 is obvious.)
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4. REDUCTIONS OF CUT-FREE GRAPHS

Throughout this section, G will denote a graph without 3-, 4-, or 5-cuts. We
shall describe reductions applicable in the cases (i), (ii), and (iii) of Section 2.

(i) Let G contain a node N of valence 2, and let N; and N, be the neighbours
of N. We omit N and adjoin the edge N; N, (if it is not already contained in G).
Note that, unless G is one of the graphs of Fig. 4 for which Proposition 2 obviously
holds, the two faces of G incident to N are pentagons. The reduced graph being
3-colored, N is assigned the color different from those of N; and N,. This pro-
cedure is inapplicable only in the following cases:

(a) G contains a vertex N* # N and edges N*N; and N*N,,

(b) N belongs to a pentagonal distinguished face P and N is neither the special
node of P nor a neighbour of the special node of P.

N

29

Figure 4

In case (a), G would have a 4- or 5-cut, contrary to the assumption. In case
(b), in which f3 < 1, we omit N and identify the nodes N; and N,. Since G is cut-
free, this introduces at most two additional triangles (but eliminates the distinguished
face).

Thus, if a cut-free G has a node of valence 2, G is reducible.

(i) Let G be cut-free and contain no node of valence 2, and let Q be a 4-face
of G. If Q is not the distinguished face D of G, there exists a node N; of Q which
does not belong to D. We form a reduced graph G* by identifying N; with the node
N; opposite to N; in Q. (Note that no new 3-circuits arise since G is cut-free.)
The 3-coloring of G* yields a 3-coloring of G, the nodes N; and N3 receiving the
same color.

The above procedure yields a reduction for all graphs with f4 > 0, with one ex-
ception: f4 =1, f3 < 1, and the only 4-face Q is the distinguished face. In this case
there exists an edge N; N, of Q which is incident to a pentagon P (Fig. 5). We omit
the edge N; N,, introduce the new edge Ny N,, and take in the resulting graph Q*
the pentagon Ny N, N3 Ny N; } as the distinguished face, with a 3-coloring coincid-
ing on {Nl N; N3 N4} with the one prescribed for Q. The graph Q* contains at
least one 4-face and is not of the exceptional type; therefore, one of the previous
reductions applies.

Thus, all cut-free graphs with f; > 0 are reducible.
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N2

N3
No
T Ny
Q
P
N+ 2
Ng
N3
Ng
Figure 5 Figure 6

(iii) Let G be a cut-free graph with no node of valence 2, such that f4 =0,
i3 > 0, and at least one of the triangles has a node N of valence 3 (Fig. 6). We
take a pentagon incident to Ny which is not the distinguished face; assume this to be
P,. Then we omit N and identify Ny and N<; let G* be the resulting graph. The
number of 3-circuits in G* is the same as that in G. Clearly, a 3-coloring of G*
yields a 3-coloring of G, except if P; is the distinguished face and the special node
is Np or Nj3. In that case we apply a different reduction: a graph G** is formed
from G by omitting N, and adjoining the edge N4N-. G** contains no 3-circuits,
and we 3-color it, taking {N;N,N3N4N7} as the distinguished face with a 3-
coloring that agrees on N, N,, N3, Ny with that prescribed for P;.

This completes the reduction procedures for the case (iii).

5. PROOF OF PROPOSITION 2 (END)

We have still to describe reductions for graphs G satisfying the following con-
ditions (graphs of type (P)):

(a) G has no k-cuts, k < 5,

(b) every node of G has valence of at least 3,

(c) every face of G is either a triangle or a pentagon,

(d) every node incident to a triangle has valence of at least 4.

This case will be disposed of in three steps. First, the existence of a special
configuration of pentagons in each graph of type (P) will be established; next, two
possible reductions will be described for that configuration; lastly, it will be shown
that at least one of the reductions is always applicable.

Given any planar graph G, we assign (following Lebesgue [4] and Grétzsch [3])
to each node N of G the weight w(N) = 1/k, where k is the valence of N. To any
face F of G, we assign the weight w(F) = £ w(N), where N runs over all the nodes
incident to F. Clearly, Z w(F), where the summation is over all the faces F of G,
equals v, the number of nodes of G. If G is a graph of type (P), then, as is easily
checked, w(T) < 3/4 for any triangle T in G, and w(P) < 3/2 for any pentagon P
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in G that is not of the following special type: four vertices of P have valence 3,
the fifth has valence 3, 4 or 5. For such special pentagons 3/2 <w(P) < 5/3.

Since for graphs of type (P), f= 13+ f5, 2e = 3f3+ 5f5, and Euler’s formula
v+ f= e + 2 holds, we obtain (denoting by fg‘ the number of pentagons of the special

type)

1 3 3 S 3 Xy |
§f3+§f5+2=v=?w(F)SZf3+—§f5+-§(f5-f5),

that is, 24 < 3f3 + 2f§. But f3 < 3, and therefore f’g > 15/2; that is f£ > 8. Thus,
each graph of type (P) contains at least 8 pentagons P with four vertices of valence
3; that is, the configuration of Fig. 7 obtains. Therefore, we may choose among them
one in which neither P, nor any P; (i=0, 1, 2, 3, 4) is the distinguished face of G.

Ap

Figure 7
Note that Af} possibly coincides with one or both of the nodes Ay and AQ; but, since
G is of type (P), no other coincidences may occur among the nodes in Fig. 7.

The two reductions (due to Grotzsch [3]) of the configuration of Fig. 7 are as
follows. In both, the nodes Nj, N, and N3 are omitted. In the first reduction, the
node N, is identified with A;, and the node A, is identified with A;. Thus the con-
figuration of Fig. 8 is obtained. The second reduction consists in identifying the
node N, with A3 and the node A; with A,, yielding the configuration of Fig. 9.

It is easily checked that if the graph obtained from G on replacing the chosen
configuration of Fig. 7 by that of Fig. 8 or that of Fig. 9 is 3-colored, it is possible
to 3-color G by assigning to N;, N, N3 appropriate colors. Thus if either of the
two reductions is possible, the proof of Proposition 2 is complete.

The only obstacle to either of the reductions is the appearance of 3-circuits.
Since d(A;, A;) = d(A,, Aj) = 2, the identification of A; with A,, or that of A,
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Ag
m )
Ao A
By N By
0 Aa
By Ao A B,
Ag Ay=Ny
By Ay N A3=Np
B B A=A By
B3 A2=A3 Bz 3 2 1 2
Figure 8 : Figure 9

with Aj, does not cause the appearance of additional 3-circuits (G being of type

(P)).

Thus any 3-circuit arising in the first reduction must pass through A] = N4
and, since d(Ng, A;) = d(N3, A;) = 2, through A4. Therefore, G contains a node A*
and edges A*A;, A¥*A,; A* may coincide with B; or with B3, but not with B, or
B4 since G has no 5-cuts.

Similarly, any 3-circuit arising in the second reduction must pass through
Az = Nj and one of the nodes Ag, Ay, Ag. Also, G must contain a node A** and
edges A** A3 and one of A**Ag, A¥* Al A**¥ All. The node A** may coincide with
one of the nodes By or B,;.

If both reductions were to lead to 3-circuits, it would follow that A* = A** (and
therefore, it would be different from all the nodes B;), and a contradiction would re-
sult through the presence of a 4-circuit A*A3B4A,4. Thus at least one of the above
reductions is possible, and the proof of Proposition 2 is completed.
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