STRICTLY ANTIPODAL SETS*

BY
BRANKO GRÜNBAUM

ABSTRACT

A subset A of E^{3} is called strictly antipodal provided that for every pair X_{1}, X_{2} of points of A there is a pair H_{1}, H_{2} of parallel supporting planes of A such that $H_{i} \cap A=\left\{X_{i}\right\}$. The main result asserts that a strictly antipodal set has at most five points. This strengthens a recent result of Croft [2].

1. Introduction. For a convex polyhedron K let $v(K)$ denote the number of vertices of K. If K_{1} and K_{2} are convex polyhedra it is clear that $v\left(K_{1}+K_{2}\right) \leqq v\left(K_{1}\right) \cdot v\left(K_{2}\right)$. It is easy to find examples showing that equality may hold for suitable K_{1}, K_{2} in E^{3}; if $K_{1}, K_{2}, \subset E^{2}$, then

$$
v\left(K_{1}+K_{2}\right) \leqq v\left(K_{1}\right)+v\left(K_{2}\right)
$$

More complicated, and unsolved in the general case, is the following related problem:

If K is a convex polyhedron in E^{n}, with $v=v(K)$ vertices, how many vertices can $K^{*}=K+(-K)$ have? It is easily checked that, independent of n, $v\left(K^{*}\right) \leqq v(v-1)$. However, equality in this relation can take place only if v is not too large with respect to n.

Let $f(n)$ denote the maximal v such that there exists an n-dimensional convex polyhedron K with $v=v(K)$ and $v\left(K^{*}\right)=v(v-1)$. It is easily seen that $f(2)=3$. In Section 2 we shall prove the following result.

Theorem. $f(3)=5$.
As easy corollaries we shall obtain (in Section 3) a simple solution of a problem of Erdös [5] recently solved by Croft [2], as well as a number of results on families of translates of convex polyhedra in E^{3}. Some additional remarks and problems are also given in Section 3.
2. Proof of the Theorem. For an arbitrary set $A \subset E^{n}$ let a pair of points $X_{1}, X_{2} \in A$ be called strictly antipodal if there exists a pair H_{1}, H_{2} of (distinct) parallel supporting hyperplanes of A such that $A \cap H_{i}=\left\{X_{i}\right\}$ for $i=1,2$. A set A is called strictly antipodal provided ever y two points of A are strictly

Received December 19, 1962

* This research was supported in part by the United States Air Force under Grant No. AF-EOAR 63-63 and monitored by the European Office, Office of Aerospace Research.
antipodal. Let $g(n)$ denote the maximal number of points in a strictly antipodal set $A \subset E^{n}$. The following assertion is obvious:

Lemma. The set of vertices of a convex polyhedron K is strictly antipodal if and only if $v\left(K^{*}\right)=v(K) \cdot(v(K)-1)$.

If A is a strictly antipodal set and K its convex hull, then A coincides with the set of vertices of K. Therefore, the lemma implies that $f(n)=g(n)$.
In order to prove the Theorem it is sufficient to show that the common value of $f(3)$ and of $g(3)$ is 5 . Since $f(3) \geqq 5$ (see Section 3) and since every subset of a strictly antipodal set is strictly antipodal, we have only to show that no 6-pointed set in E^{3} is strictly antipodal.

Assuming this to be false, let A be a six-pointed strictly antipodal set in E^{3}, with convex hull K. Because of $f(2)=g(2)=3$, all the faces of K are triangles. Counting incidences and using Euler's formula it follows at once that K must be a polyhedron of one of the two types represented in Figure 1 by their Schlegel diagrams.

Figure 1
We first note that K cannot have configuration II. Indeed, if there would exist such K, in view of the affine invariance of strict antipodality we could assume that K has the form indicated in Figure 2. Since the segment $E F$ is not an edge of $K, \min \{a, \alpha\}<1$. Without loss of generality we assume that $a<1$, and we note

Figure 2

$$
\begin{aligned}
& A=(1,0,1) ; B=(1,0,-1) ; C=(-1,1,0) \\
& D=(-1,-1,0) ; E=(a, b, c) ; F=(\alpha, \beta, \gamma)
\end{aligned}
$$

that E is contained in the wedge formed by the planes through $A C D$ and $B C D$. Considering the sections of K by the planes $z=0$ resp. $z=c$ it is immediate that C and E are not strictly antipodal.

Thus we may assume, for the remaining part of the proof, that K has configuration I; without loss of generality we may therefore assume that K has the form indicated in Figure 3.

Figure 3

$$
\begin{aligned}
& A=(-1,-1,0) ; B=(-1,1,0) ; C=(1,0,1) \\
& D=(1,0,-1) ; E=(a, b, c) ; F=(\alpha, \beta, \gamma)
\end{aligned}
$$

Since sufficiently small displacements of the points of a strictly antipodal set do not destroy strict antipodality, it follows that no generality is lost in assuming that no edge of K is parallel to a face of K, and that $|b|+|c| \neq 1,|\beta|+|\gamma| \neq 1$. It follows that $K^{*}=K+(-K)$ will have 16 triangular faces (called t-faces in the sequel), and that all other faces of K^{*} are parallelograms (called p-faces in the sequel). Using again a count of incidences and Euler's formula, it is easily found that K^{*} has $20 p$-faces.

We shall end the proof of the Theorem by examining the construction of K^{*} and by showing that it cannot contain $20 p$-faces.

Let K_{1} denote the convex hull of $\{A, B, C, D, E\}$. Then K_{1}^{*} is a polyhedron with the vertices $\pm(C-A)= \pm(2,1,1), \quad \pm(D-A)= \pm(2,1,-1), \quad \pm(C-B)=$ $\pm(2,-1,1), \pm(D-B)= \pm(2,-1,-1), \pm(B-A)= \pm(0,2,0), \pm(C-D)=$ $\pm(0,0,2), \quad \pm(E-A)= \pm(1+a, 1+b, c), \pm(E-B)= \pm(1+a,-1+b, c)$, $\pm(E-C)= \pm(-1+a, b,-1+c), \pm(E-D)= \pm(-1+a, b, 1+c)$. Since K is of type I, we have $a>1$; this and the convexity of K_{1}^{*} imply that $|b|+|c|<1$. (Indeed, by considering the vertices $C-A, D-A, C-B, D-B, E-A$ and $E-B$ it follows from $a>1$ that $|c|<1$. Then, assuming without loss of generality that $c>0$ and $b+c>1$, a consideration of the vertices $C-D, C-B, E-B$, $E-D$, leads to the contradiction that $C-A$ is not a vertex of $\left.K_{1}^{*}\right)$. Projecting orthogonally the part of K_{1}^{*} contained in the half-space $E^{+}=\{(x, y, z) \mid x \geqq 0\}$ onto $x=0$, we obtain a configuration of the type represented in Figure 4a. Denoting by K_{2} the convex hull of $\{A, B, C, D, F\}$, the same reasoning applied to K_{2}^{*} leads to a configuration of the type given in Figure 4 b .

Figure 4a

Figure 4b

Now, K^{*} is the convex hull of $K_{1}^{*} \cup K_{2}^{*} \cup\{E-F, F-E\}$. Obviously, $E-F$ and $F-E$ are incident only to t-faces of K^{*}; therefore the number of p-faces of K^{*} at most equals the number of p-faces in the convex hull Q of $K_{1}^{*} \cup K_{2}^{*}$. But the latter number is at most 12 . Indeed, superimposing Figures 4 a and 4 b , we observe that every p-face of Q is a p-face of either K_{1}^{*} or K_{2}^{*}, and that only one p-face of Q contained in the half-space E^{*} can be incident to each of the vertices $C-A, D-A, C-B, D-B$.

Thus Q has at most four p-faces contained in E^{+}; by symmetry the same number of p-faces of Q is contained in the half-space E. Together with the four p-faces parallel to the x-axis, this yields at most $12 p$-faces for Q, and thus also for K^{*}, in contradiction to the former assertion that K^{*} has $20 p$-faces.

This completes the proof of the Theorem.

3. Some related results and problems.

i) Erdös [5] posed the problem of determining the maximal number $e(n)$ of points in E^{n} such that all the angles determined by triplets of the points be acute. For $n=3$ Croft [2] recently established that $e(3)=5$. This results also from our Theorem and from the obvious assertion $e(n) \leqq g(n)$.
ii) The inequality $e(n) \geqq 2 n-1$ was established in [3] by means of the following example (reproduced here for the sake of completeness): Let $\left\{e_{i}\right\}_{i=1}^{n}$ be mutually orthogonal unit vectors in E^{n}. The ($2 n-1$)-pointed set $\left\{A, B_{2}, \cdots, B_{n}\right.$, C_{2}, \cdots, C_{n} satisfies Erdös' condition if, e. g., $A=e_{1}, B_{k}=\alpha_{k} e_{1}+e_{k}$, $C_{k}=-\alpha_{k} e_{1}-e_{k}, k=2,3, \cdots, n$, where all α_{k} 's satisfy $0<\alpha_{k}<1$ and are different from each other.
iii) As mentioned (in part) in [3], it is easily shown that $g(n)$ is also the maximal number of members in any family \mathscr{K} of translates of a convex body $K \subset E^{n}$, provided the family satisfies any of the following conditions:
(a) The intersection of any two members of \mathscr{K} is a single point;
(b) The intersection of all members of \mathscr{K} is a single point, which is also the only common point of any two members of \mathscr{K};
(c) The intersection of any two members of \mathscr{K} is $(n-1)$-dimensional.

The same is true if in (a) or in (c) the attention is restricted to centrally symmetric K.
iv) The restriction of \mathscr{K} to families of translates of one convex body is essential in iii). This is obvious in case of conditions (a) and (b); in the case of (c) the bound is 4 for $n=2$ (while $g(2)=3$); already for $n=3$ it has been proved repeatedly (e.g. by Tietze, Besicovitch, Rado; see [4] for references to these and some related results) that there exists no finite bound. In [4] it is also pointed out that arbitrarily large families \mathscr{K} in E^{3}, any two of whose members have a 2-dimensional intersection, are obtainable as the Schlegel-diagrams of the duals of 4-dimensional "neighborly polytopes" (see [7]). This was known, however, already to Brûckner [1].

Nevertheless, the following question seems to be open even for $n=3$: How many members can a family of centrally symmetric convex bodies in E^{n} have, if every two have an $(n-1)$-dimensional intersection?
v) Among unsolved problems related to the Theorem of the present paper we mention:
(a) The determination of $e(n)$ and of $f(n)=g(n)$ for $n>3$; in particular, is $e(n)=g(n)$ for all n ?
(b) The determination of $h(k, n)=\max \left\{v(K+(-K)) \mid K \subset E^{n}, \quad v(K)=k\right\}$ for $k \geqq 2 n, n \geqq 3$.

Remark. The example ii) above implies $h(k, n)=k(k-1)$ for $n+1 \leqq k \leqq 2 n-1$; for $k>n=2$, we have $h(k, 2)=2 k$. This follows from the observation that $h(k, n)=2 s(k, n)$, where $s(k, n)$ is the maximal number of strictly antipodal pairs of vertices for a convex polyhedron $K \subset E^{n}$ with $v(K)=k$, and the assertion $s(k, 2)=k$. To prove this latter assertion assume that $s(k, 2)>k$ for some k. Let k_{0} be the minimal k with this property and let K, with $v(K)=k_{0}$, be a k_{0}-gon such that more than k_{0} pairs of vertices of K are strictly antipodal. Then at least one vertex V_{0} is antipodal to some three consecutive vertices V_{i-1}, V_{i}, V_{i+1} of K; but then V_{i} is easily seen to be strictly antipodal only to V_{0}. Thus the convex hull of the $k_{0}-1$ vertices of K different from V_{i} yields an example showing $s\left(k_{0}-1,2\right)>k_{0}-1$, in contradiction to the minimality of k_{0}.

It is worth mentioning that $s(k, 3) \geqq[k / 2] \cdot[k(+1) / 2]+2$ for $k \geqq 4$, the difference in behavior between $s(k, 2)$ and $s(k, 3)$ being similar to the jump in the number of times the diameter of a set is assumed in 3- and 4-dimensional sets (Erdös [6]). The above inequality is easily established by placing approximately half of the points on each of two suitable circular arcs.
vi) Klee [8] defined a pair of points X_{1}, X_{2} of a set $A \subset E^{n}$ to be antipodal provided there exist distinct parallel supporting hyperplanes H_{1}, H_{2} of A such that $X_{i} \in A \cap H_{i}, \mathrm{i}=1,2$; he also asked about the maximal number of points in a set $A \subset E^{n}$ such that every two points of A are antipodal. It was established in [3] that the required number is 2^{n}. In analogy to the above definition of $s(k, n)$ one may ask what is the maximal number $a(k, n)$ of pairs of antipodal points in k-pointed sets in E^{n}. While the problem is open for $n \geqq 3$, it can be shown by
arguments similar to those used above in connection with $s(k, 2)$ that $a(k, 2)=[3 k / 2]$.

References

1. Brückner, M., 1909, Über die Ableitung der allgemeinen Polytope und die nach Isomorphismus verschiedenen Typen der allgemeinen Achtzelle (Oktatope), Verh. Nederl. Akad. Wetensch. Sect. I, 10 (1), 27pp. +2 plates.
2. Croft, H.T., 1961, On 6 -point configurations in 3-space, J. London Math. Soc., 36, 289-306.
3. Danzer, L. and Grünbaum, B., 1962, Über zwei Probleme bezüglich konvexer Körper von P. Erdös und von V.L. Klee, Math. Z., 79, 95-99.
4. Danzer, L., Grünbaum, B. and Klee, V., Helly's theorem and its relatives. Proc. Symp. Pure Math., Vol. 7, 101-180.
5. Erdös, P., 1957, Some unsolved problems, Michigan Math. J., 4, 291-300.
6. Erdös, P., 1960, On sets of distances of n points in Euclidean space, Magyar Tud. Akad. Mat. Kutató Int. Közl., 5, 165-169.
7. Grünbaum, B. and Motzkin, T.S., On polyhedral graphs, Proc. Symp. Pure Math., Vol. 7, 285-290.
8. Klee, V., 1960, Unsolved problems in intuitive geometry, (Mimeographed notes) Seattle.
the hebrew university of jerusalem

Added in proof (June 13, 1963):
The result of Croft [2] that $e(3)=5$ was recently established also by Schütte, K., 1963, Minimale Durchmesser endlicher Punktmengen mit vorgeschriebenem Mindestabstand, Math. Annalen, 150, 91-98.

