LONGEST SIMPLE PATHS IN POLYHEDRAL GRAPHS

B. Grünbaum and T. S. Motzkin

1. A graph (= one-dimensional simplicial complex) G shall be called d-polyhedral if the nodes and edges of G may be identified with the vertices and edges of a convex polyhedron P in Euclidean d-space.

Tutte [8] constructed a 46-node 3-polyhedral graph H (reproduced also in Berge [2]) of valence \dagger which does not admit a Hamiltonian circuit (= closed path passing exactly once through each node); this example disproved Tait's [7] conjecture on the existence of a Hamiltonian circuit in any 3 -polyhedral graph of valence 3. Balinski [1, $\left.1^{\prime}\right]$ mentions as unsolved the question whether every n-polyhedral graph admits a simple path passing through all the nodes of G.

In the present note we shall show that the answer to Balinski's problem is negative, and establish a stronger result on the maximal length of simple paths in some classes of graphs.

For any graph G with $n(G)$ nodes let $p(G)$ denote the maximal number of nodes contained in a simple path, and let

$$
p(n, d)=\min \{p(G): G \text { is } d \text {-polyhedral and } n(G)=n\}
$$

$p^{*}(n, d)=\min \{p(G): G$ is d-polyhedral, of valence d, and $n(G)=n\}$.
A theorem of Dirac [3; Theorem 5] implies that $p^{*}(n, d)>c \log n$, where $c>0$ depends on d only, the same estimate holding also if one of the endpoints of the path is preassigned.

We shall prove the following results:
Theorem 1. There exists an $\alpha<1$ such that $p^{*}(n, 3)<2 n^{\alpha}$; e.g., $\alpha=1-2^{-19}$.

Theorem 2. There exists an $\alpha<1$ such that $p(n, d)<2(d-2) n^{\alpha}$ for $d \geqslant 3 ;$ e.g., $\alpha=1-2^{-19}$.
2. In the proof of these theorems we shall use the following facts:
(A) Let G be a connected planar graph (with no 1- or 2-circuits), which has at least four nodes, and is such that:
(1) each edge belongs to two different faces;

[^0][Journal London Math. Soc. 37 (1962), 152-160]

Fig. 1.

Fig. 2.

Fig. 3.
(2) for each node N and each face F containing N there exist exactly two edges containing N and contained in F;
(3) if the different nodes N_{1} and N_{2} both belong to the different faces F_{1} and F_{2}, then N_{1} and N_{2} determine an edge which belongs to F_{1} and F_{2};
then G is 3-polyhedral.
Statement (A) is easily derived from Steinitz's "Fundamentalsatz der konvexen Typen" [6; p. 192]. As an inspection of the following proof of Theorem 1 shows, the assumptions of (A) will be fulfilled for the graphs $T, H^{*}, H^{* *}, G_{n}$ and $G^{(n)}$, and therefore these graphs are 3-polyhedral. [The analogue of (A) for d-polyhedral graphs, $d>3$, seems to be unknown.]
(B) If G is a graph, N a node of degree 3 of G, and if G^{\prime} is obtained from G be deleting N and introducing three nodes N_{1}, N_{2}, N_{3}, forming a 3 -circuit, then $p\left(G^{\prime}\right) \leqslant p(G)+2$. (Fig. 1.)
(C) If G_{1} and G_{2} are graphs containing 3 -circuits $N_{1}{ }^{(1)}, N_{2}{ }^{(1)}, N_{3}{ }^{(1)}$, resp. $N_{1}{ }^{(2)}, N_{2}{ }^{(2)}, N_{3}{ }^{(2)}$, and G is obtained by merging these two 3 -circuits to a 6 -circuit (Fig. 2), then $p(G) \leqslant p\left(G_{1}\right)+p\left(G_{2}\right)$.
(D) Any simple path P containing all the nodes of the graph T (Fig. 3) passes through one of the triangles T_{i} (i.e. no endpoint of P is in that T_{i}, and omits one of the three heavy edges issuing from that T_{i}.

The statements (B), (C) and (D) are easily verified, and we omit the proofs. (For (B) and (C) the discussion is similar to that in Tutte [8].)
3. We now turn to the proof of Theorem 1.

Starting from Tutte's graph H which admits no Hamiltonian circuit we obtain the graph H^{*} (Fig. 4) by replacing a node of H (arbitrarily chosen) by a 3 -circuit. As in (B), it is clear that H^{*} admits no Hamiltonian circuit. Now we merge, by the procedure described in (C), three copies of H^{*} with T, one copy at each of the three 3 -circuits of T represented by light edges in Fig. 3, and obtain a new graph $H^{* *}$ (with 154 nodes). Because of (D), no simple path in $H^{* *}$ contains all the nodes of $H^{* * *}$. [If for a d-polyhedral $(d \geqslant 3)$ graph G we have $p(G)<n(G)$, then the nodes of G may not be covered by two simple, disjoint circuits. For $H^{* * *}$ it is easily seen that its nodes may not be covered even by three simple, disjoint circuits; they may be covered by four such circuits.]

Next, we take six copies $H_{i}^{* *}, i=1,2,3,4,5,6$, of $H^{* * *}$, replace one node by a 3 -circuit in $H_{1} \% *$ and in $H_{6}^{*} \%$, two nodes by two 3 -circuits in $H_{i}^{* *}, i=2,3,4,5$, and merge these six graphs into a new graph G_{1}. Then G_{1} has 944 vertices and, according to (C), $p\left(G_{1}\right) \leqslant 938$.

We proceed by induction to construct a sequence of graphs G_{k}, with $n_{k}=n\left(G_{k}\right)$ nodes and such that every simple path in G_{k} contains at most

Fig. 4.
$p_{k}=p\left(G_{k}\right)$ nodes, where the order of magnitude of p_{k} is indicated in Theorem 1.

We first replace each node of G_{k} by a 3 -circuit, thus obtaining a graph $G_{k}^{*} \%$ with $n\left(G_{k}^{*}\right)=3 n_{k}$. Then we take n_{k} copies of G_{k}, replace in each of them one node by a 3 -circuit, and merge these graphs with $G_{k} *$ along the 3 -circuits of $G_{k} *$. The resulting graph is G_{k+1}. Obviously

$$
n_{k+1}=n_{k i}\left(n_{k}+5\right)
$$

Since each simple path in G_{k} fails to contain some $n_{k}-p_{k}$ (or more) nodes, the same number of copies of G_{k}, used in the construction of G_{k+1}, will be completely missed by any simple path in G_{k+1}; in each of the remaining p_{k} (or less) copies of G_{k}, the simple path in G_{k+1} determines a simple path in G_{k}. Therefore, taking into account the additional nodes introduced with the 3 -circuits, it follows that each simple path in G_{k+1} omits at least $\left(n_{k}-p_{k}\right)\left(n_{k}+5\right)+p_{k i}\left(n_{k i}-p_{k}\right)$ nodes, and thus $p_{k+1} \leqslant p_{k}\left(p_{k}+5\right)$. [We note that the construction may be arranged in such a way as to ensure $\left.p_{k+1}=p_{k}\left(p_{k}+5\right).\right] \quad$ Let $\beta>0$ be such that

$$
\frac{p_{1}+5}{n_{1}}<\frac{1}{\left(n_{1}+5\right)^{\beta}}
$$

(In view of $n_{1}=p_{1}+6=944$, we may take, e.g., $\beta=2^{-17}$.) By induction
it follows that

$$
\frac{p_{k}}{n_{k}}<\frac{p_{k}+5}{n_{k}}<\left(n_{k}+5\right)^{-\beta} \text { for all } k>1
$$

Indeed,

$$
\frac{p_{k+1}}{n_{k+1}} \leqslant \frac{p_{k}\left(p_{k}+5\right)}{n_{k}\left(n_{k}+5\right)}<\left(\frac{p_{k}+5}{n_{k}}\right)^{2}<\left(n_{k}+5\right)^{-2 \beta}<\left(n_{k+1}+5\right)^{-\beta}
$$

To complete the proof we have still to construct graphs $G^{(n)}$ for all even integers n different from the n_{k}. Let $m_{k}=n_{k}+4$; then

$$
m_{k+1}=m_{l i}\left(m_{k}-3\right) \text { and } p_{k}+5<m_{k}^{1-\beta}
$$

Any even integer $n>m_{1}$ can be (uniquely) expressed in the form $n=2\left(q_{0}-2\right)+\Sigma_{i=1}^{k} q_{i} m_{i}$, with $0 \leqslant q_{i}<m_{i}-3$ for $1 \leqslant i \leqslant k, q_{k} \geqslant 1$ and $0 \leqslant 2 q_{0}<m_{1}$. We obtain a graph $G^{(n)}$ with n nodes by taking q_{i} copies of G_{i}, for $i=1, \ldots, k$, replacing some of their nodes by 3 -circuits and merging them, and by replacing in the resulting graph q_{0} nodes by 3 -circuits. Using the easily verified relations

$$
\left(m_{s+1}+3\right) p_{s+1} \geqslant m_{1}+\sum_{i=1}^{s} m_{i}\left(p_{i}+2\right)
$$

and

$$
p(n) \leqslant p\left(G^{(n)}\right) \leqslant \sum_{i=1}^{k} q_{i}\left(p_{i}+2\right)+2 q_{0}-4
$$

we obtain

$$
\begin{aligned}
\frac{p(n)}{n} & \leqslant \frac{2 q_{0}-4+\sum_{i=1}^{k} q_{i}\left(p_{i}+2\right)}{2 q_{0}-4+\Sigma_{i=1}^{k i} q_{i} m_{i}} \leqslant \frac{q_{k}\left(p_{k}+2\right)+\left(m_{k-1}-3\right) p_{k-1}}{q_{k} m_{k}} \\
& \leqslant \frac{p_{k}+2}{m_{k}}+\frac{p_{k-1}}{m_{k-1}} \leqslant 2 m_{k}^{-\frac{1}{2} \beta}<2 m_{k+1}^{-\dagger \beta}<2 n^{-\frac{z}{2}} .
\end{aligned}
$$

This ends the proof of Theorem 1, with $\alpha<1-2^{-19}$. (A slightly better bound, $\alpha<1-2^{-16}$, can be obtained if instead of T one uses the graph obtained by truncating all the vertices of a simplex.)
4. Before proving Theorem 2, we observe the following immediate consequence of Theorem 1.

Let $p_{r}(n)$ denote the maximal number of nodes of $G^{(n)}$ contained in the union of r mutually disjoint, simple paths. Then for each r we have $p_{r}(n)<2 r n^{\alpha}$.

The proof of Theorem 2 is now trivial. Let $P_{3}{ }^{(n)}$ be a convex polyhedron in E^{3} whose vertices and edges form a graph isomorphic with $G^{(n)}$. For $d>3$ we construct by induction a d-dimensional polyhedron $P_{d}{ }^{(n)}$
with $n+d-3$ vertices, by taking the convex hull of $P_{d-1}^{(n)}$ and a point outside the E^{d-1} spanned by $P_{d-1}^{(n)}$. For the graph $G_{d}{ }^{(n)}$, determined by the vertices and edges of $P_{d}{ }^{(n)}$, we have

$$
\begin{aligned}
p(n+d-3, d) & \leqslant p\left(G_{d}^{(n)}\right) \leqslant d-3+p_{d-2}(n)<d-3+2(d-2) n^{\alpha} \\
& <2(d-2)(n+d-3)^{\alpha} .
\end{aligned}
$$

This completes the proof of Theorem 2.
5. Remarks. (i) Tutte [10] proved that every 4 -connected planar graph (with at least two edges) has a Hamiltonian circuit. Balinski [1^{\prime}] proved that every d-polyhedral graph is d-connected. Our Theorem 2 shows, therefore, that Tutte's result may not be generalised from planar to d-polyhedral graphs, despite the higher degree of connectivity of these graphs.
(ii) It would be interesting to find closer bounds for $p^{*}(n, 3)$ than $c_{1} \log n<p^{*}(n, 3)<c_{2} n^{\alpha}$, given by Dirac's [3] and our results. Possibly $p^{*}(n, d)=o\left(n^{\alpha}\right)$ for every $\alpha>0$.
(iii) The polyhedra $P_{3}{ }^{(n)}$ we constructed contain as faces k-gons such that $k \rightarrow \infty$ for $n \rightarrow \infty$. Does an estimate $p(G)>c n(G)$ hold for some $c>0$ and 3 -polyhedral graphs G of valence 3 for which the corresponding polyhedra have faces of bounded orders? Is $p(G)=n(G)$ if G has valence 3 and if all the faces of the polyhedron are k-gons, $k \leqslant 6$, or if paths may pass through diagonals of the faces? ($C f .[11]$.)
(iv) Among the many unsolved problems related to paths in graphs or in polyhedral graphs, we mention also:
(1) Is it possible to generalise Dirac's logarithmic lower bound to d-polyhedral graphs, or to planar graphs of connectivity $\geqslant 3$?
(2) If N_{1}, N_{2} are nodes of a d-polyhedral graph G, let $p\left(N_{1}, N_{2}\right)$ denote the maximal number of nodes of G contained in a simple path with endpoints N_{1} and N_{2}. It is easily seen, even if $N_{1} \neq N_{2}$ is assumed, that $p\left(N_{1}, N_{2}\right)$ may depend on N_{1} and N_{2}. [E.g., in the graph H^{*} (Fig. 4), $p\left(A_{1}, A_{3}\right)=n\left(H^{*}\right)=p\left(A_{2}, A_{4}\right)+1$.] How does

$$
\min _{N_{1}, N_{2} \varepsilon G} p\left(N_{1}, N_{2}\right)
$$

depend on $n(G)$; what are the bounds, in terms of $n(G)$, for

$$
\Sigma_{N_{1} \neq N_{2}} p\left(N_{1}, N_{2}\right) ?
$$

Does the average of $\max _{N_{1}, N_{2} \varepsilon} \mathcal{F} p\left(N_{1}, N_{2}\right)$ over all non-isomorphic (d-polyhedral) graphs G with n nodes tend to 0 for $n \rightarrow \infty$? For what fraction of non-isomorphic graphs of order n is $p(G)=n$?
(3) How does the minimal number $m(G)$ of disjoint, simple paths needed to cover all the nodes of G depend on $n(G)$? From Theorem 1 follows that for some graphs $m(G)>[n(G)]^{\beta}$ for some fixed $\beta=1-\alpha>0$. Conceivably $\max _{n(G)=n}(m(G) \cdot p(G))>n^{1+\gamma}$ for some $\gamma>0$.
(4) Let $\delta\left(N_{1}, N_{2}\right)$ denote the distance between N_{1} and N_{2} (i.e. minimal number of nodes contained in a path connecting the nodes N_{1} and N_{2} of G). From Balinski's [1'] result and Whitney's [12] theorem it follows that $\delta\left(N_{1}, N_{2}\right) \leqslant 2+\frac{n(G)}{d}$ for d-polyhedral graphs G. This result is the best possible one, as is shown by the following example (described, for simplicity, for $d=3$; completely analogous examples may be given for $d>3$). We take $3 n+2$ points on the unit sphere, namely the two poles and the points with (spherical) coordinates $\left(\frac{k \pi}{2 n} ; \frac{2 m \pi}{3}\right)$ where $m=0,1,2$ and $k=0,1, \ldots, n-1$. The convex hull of these points has $3 n+2$ vertices, and the distance between the poles is $n+2$.

On the other hand, if the d-polyhedral graph G is required to be of valence d, a better estimate of $\delta\left(N_{1}, N_{2}\right)$ should be possible. E.g., for $d=3$, one might conjecture $\delta\left(N_{1}, N_{2}\right) \leqslant 2+\frac{n(G)}{4} ;$ this bound is reached for n-sided prisms.
(5) One may also consider paths passing through some nodes more than once. A result of Petersen [5; §5] may be stated as follows: For every graph G of valence $2 k$ there exists a closed path passing through each edge once and through each node k times. Using the criterion of Tutte [9; Theorem V] and Balinski's [1^{\prime}] result on the degree of connectivity of polyhedral graphs, it follows easily that for every ($2 d-1$)-polyhedral graph of valence $2 d-1$ there exists a closed path passing d times through each node. One might inquire, e.g., whether the last statement is true for all ($2 d-1$)-polyhedral graphs; how many nodes have to be passed more than once by a path containing all the nodes; what fraction of the $n(G)$ nodes can be reached by paths containing no node more than k times; and for which smallest $k=k(n, d)$ every d-polyhedral graph with n nodes can be covered by a path that passes through no node more than k times.
(v) Another class of related problems concerns the nature of trees, or other special graphs, containing all the nodes of a given (polyhedral) graph. The existence of such trees is obvious for all connected graphs; it is easy to see, using Theorem 1, that already for 3-polyhedral graphs the number
of, and the valences at, the branching points cannot be simultaneously bounded. Provided the valences of branching points are bounded (as is the case, e.g., in d-polyhedral graphs of valence d) how does the minimal number of branching points of trees containing all the nodes of G increase with increasing $n(G)$? Does there exist, for every 3-polyhedral graph G, a connected graph $G *$ containing all the nodes of G and such that each node of G is of valence $\leqslant 3$?

Added in proof.

1. The main result of Whitney [11] is that there exists a Hamiltonian path in every polyhedral graph G with the property that the corresponding polyhedra P have only triangular faces, G being such that every 3 -circuit corresponds to a face of P. Whitney also established by an example that the last condition may not be dropped. Starting from a 60 -faced polyhedron derived from the icosahedron, it is not hard to produce examples of polyhedral graphs G_{n}, with n nodes, whose corresponding polyhedra have only triangular faces, such that $p\left(G_{n}\right)<2 n^{\alpha}$, for some fixed $\alpha<1$.
2. J. Chuard claimed to have proved Tait's conjecture on the existence of Hamiltonian paths in polyhedral graphs of valence 3 (and thus also to have affirmatively solved the four-colour problem); see (i) "Une solution du problème des quatre couleurs ', Verh. Internat. Math.-Kongr., Zürich, 1932, Vol. 2, 199-200, and (ii) "Les réseaux cubiques et le problème des quatre couleurs ", Mémoires de la Société Vaudoise des Sciences Naturelles, No. 25, Vol. 4 (1932), 41-101. Doubts in the validity of Chuard's claim were raised in a review of (ii) by Pannwitz in the Jahrbuch über die Fortschritte der Math., 58 (1932), 1204.

References.

[^1][^2]7. P. G. Tait, " Listing's 'Topologie '," Phil. Mag. (5), 17 (1884), 30-46. (Sci. Papers, Vol. 2, pp. 85-98.)
8. W. T. Tutte, " On Hamiltonian circuits", Journal London Math. Soc., 21 (1946), 98-101.
9. ——, "The factorization of linear graphs", Journal London Math. Soc., 22 (1947), 107-111.
10. ———, "A theorem on planar graphs", Irans. American Math. Soc., 82 (1956), 99-116.
11. H. Whitney, "A theorem on graphs", Annals. of Math., 32 (1931), 378-390.
12. --, "Congruent graphs and the connectivity of graphs ", American J. of Math., 54 (1932), 150-168.

University of California,
Los Angeles, Calif., U.S.A.

[^0]: Received 19 September, 1960. Presented to the American Mathematical Society on January 25, 1961. The preparation of this work was sponsored in part by the Office of Naval Research, U.S.A.
 \dagger Number of edges incident at a node. "Degree" is also used, but the term seems overworked; the chemical term " valence" suggested by one of the authors (see, e.g., [4]) was recommended by the International Colloquium on Graph Theory, Dobogokkő, 1959.

[^1]: 1. M. L. Balinski, "An algorithm for finding all vertices of convex polyhedral sets", Princeton ONR Report, May 1959, p. 23.
 1 '. ——" On the graph structure of convex polyhedra in n-space ", Pacific J. Math., 11 (1961), 431-434 \dagger.
 2. C. Berge, Théorie des graphes et ses applications (Dunod, Paris, 1958).
 3. G. A. Dirac, "Some theorems on abstract graphs", Proc. London Math. Soc. (3), 2 (1952), 69-81.
 4. Th. Motzkin, Contributions à la théorie des graphes, C. R. Congrés Internat. Math. (Oslo, 1936, Vol. 2, pp. 133-134 (1937)).
 5. J. Petersen, "Die Theorie der regulären Graphs ", Acta Math., 15 (1891), 193-220.
 6. E. Steinitz, Vorlesungen über die Theorie der Polyeder (Springer, Berlin, 1934).
[^2]: \dagger The present paper was completed in July 1960. In a revised version of [1^{\prime}] it is stated that a graph without a simple covering path has been found by T. A. Brown, unpublished note, RAND Corporation, August 1960. Brown's paper is to appear in the Pacific J. Math. For non-constant valence already the rhombic dodecahedron provides a counter-example (Problem E 7il, Amer. Math. Monthly, 53 (1946), 146 and 593).

