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1. A graph (= one-dimensional simplicial complex) G shall be called
^-polyhedral if the nodes and edges of 0 may be identified with the
vertices and edges of a convex polyhedron P in Euclidean (Z-space.

Tutte [8] constructed a 46-node 3-polyhedral graph H (reproduced
also in Berge [2]) of valence f 3 which does not admit a Hamiltonian
circuit (= closed path passing exactly once through each node); this
example disproved Tait's [7] conjecture on the existence of a Hamiltonian
circuit in any 3-polyhedral graph of valence 3. Balinski [1, 1'] mentions
as unsolved the question whether every w-polyhedral graph admits a
simple path passing through all the nodes of G.

In the present note we shall show that the answer to Balinski's problem
is negative, and establish a stronger result on the maximal length of
simple paths in some classes of graphs.

For any graph G with n{G) nodes let p(G) denote the maximal number
of nodes contained in a simple path, and let

p(n, d) = mm{p(G): G is d-polyhedral and n{G) = n);

p*(n, d) = min{p(G): G is (^-polyhedral, of valence d, and n(G) = ?&}.

A theorem of Dirac [3; Theorem 5] implies that p*(n, d)>c\ogn)

where c > 0 depends on d only, the same estimate holding also if one of
the endpoints of the path is preassigned.

We shall prove the following results:

THEOREM 1. There exists an a < l such that p*(n, 3)<2wa; e.g.,
a = 1 - 2 - " . .

THEOREM 2. There exists an a < 1 such that p(n, d) < 2(d—2)?ia for
d^S; e.g., a = l —2~19.

2. In the proof of these theorems we shall use the following facts:

(A) Let G be a connected planar graph (with no 1- or 2-circuits),
which has at least four nodes, and is such that:

(1) each edge belongs to two different faces;
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f Number of edges incident at a node. " Degree " is also used, but the term seems
overworked; the chemical term " valence " suggested by one of the authors (see, e.g., [4])
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(2) for each node N and each face F containing N there exist exactly
two edges containing N and contained in F;

(3) if the different nodes N1 and iV2 both belong to the different faces
Fx and F2, then NL and N2 determine an edge which belongs to
Fx and F2;

then G is 3-polyhedral.
Statement (A) is easily derived from Steinitz's " Fundainentalsatz der

konvexen Typen" [6; p. 192]. As an inspection of the following proof
of Theorem 1 shows, the assumptions of (A) will be fulfilled for the graphs
T, H*, #**, Gn and #<»>, and therefore these graphs are 3-polyhedral.
[The analogue of (A) for d-polyhedral graphs, d > 3, seems to be unknown.]

(B) If G is a graph, N a node of degree 3 of G, and if G' is obtained
from G be deleting N and introducing three nodes Nl3 N2, JV3, forming
a 3-circuit, then p(G') ^p{G)+2. (Fig. 1.)

(C) If G1 and G2 are graphs containing 3-circuits N-^, iV2
(1), N3

Kl),
resp. N-^, iV2

(2), N3®\ and G is obtained by merging these two 3-circuits to
a 6-circuit (Fig. 2), then p(Q)

(D) Any simple path P containing all the nodes of the graph T
(Fig. 3) passes through one of the triangles Ti (i.e. no endpoint of P is in
that Tt), and omits one of the three heavy edges issuing from that Tt.

The statements (B), (C) and (D) are easily verified, and we omit the

proofs. (For (B) and (C) the discussion is similar to that in Tutte [8].)

3. We now turn to the proof of Theorem 1.
Starting from Tutte's graph H which admits no Hamiltonian circuit

we obtain the graph H* (Fig. 4) by replacing a node of H (arbitrarily
chosen) by a 3-circuit. As in (B), it is clear that H* admits no Hamiltonian
circuit. Now we merge, by the procedure described in (C), three copies
of H* with T, one copy at each of the three 3-circuits of T represented
by light edges in Fig. 3, and obtain a new graph #** (with 154 nodes).
Because of (D), no simple path in H** contains all the nodes of #**. [If
for a riJ-polyhedral (d ̂  3) graph G we have p(G) < n(G), then the nodes
of G may not be covered by two simple, disjoint circuits. For #** it is
easily seen that its nodes may not be covered even by three simple, disjoint
circuits; they may be covered by four such circuits.]

Next, we take six copies H^*, i = 1, 2, 3, 4, 5, 6, of H**, replace one
node by a 3-circuit in H^** and in HG**, two nodes by two 3-circuits in
7/^**, i = 2, 3, 4, 5, and merge these six graphs into a new graph G^.
Then Gx has 944 vertices and, according to (C), piGj) < 938.

We proceed by induction to construct a sequence of graphs Gk, with
nk = n(Gk) nodes and such that every simple path in GK. contains at most
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Fig. 4.

pk=p{Gk) nodes, where the order of magnitude of pk is indicated in
Theorem 1.

We first replace each node of Gk by a 3-circuit, thus obtaining a graph
Gk* with n(Gk*) = Snk. Then we take nk copies of Gk> replace in each
of them one node by a 3-circuit, and merge these graphs with Gk* along
the 3-circuits of Gk*. The resulting graph is Gk+1. Obviously

Since each simple path in Gk fails to contain some nk—pk (or more) nodes,
the same number of copies of Gk, used in the construction of Gk+V will be
completely missed by any simple path in Gk+1; in each of the remaining
pk (or less) copies of Gk, the simple path in Gk+i determines a simple path
in Gk. Therefore, taking into account the additional nodes introduced
with the 3-circuits, it follows that each simple path in Gk+1 omits at least
(nk—p,c)(nk+5)+pk(nk-pk) nodes, and thus pk+1 ^pk{pk+5). [We
note that the construction may be arranged in such a way as to ensure
pk+1=pk(pk+5).] Let j8>0 be such that

Pi±5

(In view ofn1=p1-{-6 = 944, we may take, e.g., j8 = 2~17.) By induction
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it follows that

2M<Pk±^.< (nk+5)-P for all ft>

Indeed,

To complete the proof we have still to construct graphs #(n) for all
even integers n different from the nk. Let mfc = % + 4 ; then

mk+1 — mk{mk—3) and pk+5 < m^-fi.

Any even integer n>m1 can be (uniquely) expressed in the form
n = 2{qQ—2)-\-'L\=1qimi, with 0 ̂ .qi<mi—3 for l ^ i < & , qk ^ 1 and
0 ^ 2g0 < mx. We obtain a graph 0{n) with n nodes by taking qi copies
of Gi} for i = l, ...,k, replacing some of their nodes by 3-circuits and
merging them, and by replacing in the resulting graph qQ nodes by 3-circuits.
Using the easily verified relations

a n d j,

we obtain

Pk=i ^ 2m, " ^ < 2m"}f < 2n~tf.
m^ m ^ ! ^ /c fc+1

This ends the proof of Theorem 1, with a < 1 — 2~19. (A slightly better
bound, a < 1 — 2~16, can be obtained if instead of T one uses the graph
obtained by truncating all the vertices of a simplex.)

4. Before proving Theorem 2, we observe the following immediate
consequence of Theorem 1.

Let p.r(n) denote the maximal number of nodes of 6r(n) contained in the
union of r mutually disjoint, simple paths. Then for each r we have
pr(n) < 2rna.

The proof of Theorem 2 is now trivial. Let P3
(7l) be a convex poly-

hedron in E3 whose vertices and edges form a graph isomorphic with #(M).
For d > 3 we construct by induction a ^-dimensional polyhedron Pf/

n)
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with n-\-d—3 vertices, by taking the convex hull of Pa-i and a point
outside the Ed~x spanned by P'f-x- For the graph Gd

(n), determined by
the vertices and edges of P£n\ we have

p(n+d-3, d)

<2{d-2)(n+d-3)«.

This completes the proof of Theorem 2.

5. Remarks, (i) Tutte [10] proved that every 4-connected planar
graph (with at least two edges) has a Hamiltonian circuit. Balinski [1']
proved that every d!-polyhedral graph is ^-connected. Our Theorem 2
shows, therefore, that Tutte's result may not be generalised from planar
to d-polyhedral graphs, despite the higher degree of connectivity of these
graphs.

(ii) It would be interesting to find closer bounds for p*(n, 3) than
cx logn <p*{n, 3) < c2n

<x, given by Dirac's [3] and our results. Possibly
p*(n, d) = o(na) for every a > 0.

(iii) The polyhedra P3
(w) we constructed contain as faces &-gons such

that &-»oo for n-+co. Does an estimate p(G) >cn(G) hold for some c > 0
and 3-polyhedral graphs G of valence 3 for which the corresponding
polyhedra have faces of bounded orders ? Is p(G) = n(G) if G has valence 3
and if all the faces of the polyhedron are &-gons, k ̂  6, or if paths may
pass through diagonals of the faces? (Cf. [11].)

(iv) Among the many unsolved problems related to paths in graphs
or in polyhedral graphs, we mention also:

(1) Is it possible to generalise Dirac's logarithmic lower bound to
rf-polyhedral graphs, or to planar graphs of connectivity ^ 3 ?

(2) If Nx, N2 are nodes of a cZ-polyhedral graph G, let p{Nx, JV2)
denote the maximal number of nodes of G contained in a simple path
with endpoints Nt and JV2. It is easily seen, even if Nx ^ N% is assumed,
that p{Nv N2) may depend on Nt and JV2. [E.g., in the graph H*
(Fig. 4), p(A1} A3) = n(H*) =p(A2, AA)+1.] How does

depend on n{G); what are the bounds, in terms of w(Cr), for

Does the average of ^na,xNiNzeGp(N1, N2) over all non-isomorphic
(d-polyhedral) graphs G with n nodes tend to 0 for n-+oo ? For what
fraction of non-isomorphic graphs of order n is p(G) = n%
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(3) How does the minimal number m(G) of disjoint, simple paths
needed to cover all the nodes of G depend on n(G) ? From Theorem 1
follows that for some graphs m{G)> [n(G)Y for some fixed
j 8 = l — a > 0 . Conceivably m&xn{G)==n(m(G) .p(G)\ > nx+y for some
y>0.

(4) Let 8(NV N2) denote the distance between Nx and N2 (i.e.
minimal number of nodes contained in a path connecting the nodes
N± and N2 of 0). From Balinski's [1'] result and Whitney's [12]

theorem it follows that 8{NV N2) < 2-\—^—' for (^-polyhedral graphs G

This result is the best possible one, as is shown by the following example
(described, for simplicity, for d = 3; completely analogous examples
may be given for d > 3). We take 3?i+2 points on the unit sphere,
namely the two poles and the points with (spherical) coordinates

(—; —o^j where ra = 0, 1, 2 and & = 0, 1, ..., n— 1. The convex

hull of these points has 3w+2 vertices, and the distance between the
poles is 7i-f2.

On the other hand, if the (Z-polyhedral graph G is required to be of
valence d, a better estimate of 8(N±, N2) should be possible. E.g., for

d = 3, one might conjecture 8(NV N2)^.2-]—^—J; this bound is

reached for ?i-sided prisms.

(5) One may also consider paths passing through some nodes more
than once. A result of Petersen [5; §5] may be stated as follows: For
every graph G of valence 2k there exists a closed path passing through
each edge once and through each node k times. Using the criterion
of Tutte [9; Theorem V] and Balinski's [1'] result on the degree of
connectivity of polyhedral graphs, it follows easily that for every
(2d—l)-polyhedral graph of valence 2d—1 there exists a closed path
passing d times through each node. One might inquire, e.g., whether
the last statement is true for all (2d— 1)-polyhedral graphs; how many
nodes have to be passed more than once by a path containing all the
nodes; what fraction of the n(G) nodes can be reached by paths con-
taining no node more than k times; and for which smallest k = k(n, d)
every (^-polyhedral graph with n nodes can be covered by a path that
passes through no node more than k times.

(v) Another class of related problems concerns the nature of trees, or
other special graphs, containing all the nodes of a given (polyhedral) graph.
The existence of such trees is obvious for all connected graphs; it is easy
to see, using Theorem 1, that already for 3-polyhedral graphs the number
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of, and the valences at, the branching points cannot be simultaneously
bounded. Provided the valences of branching points are bounded (as is
the case, e.g., in cZ-polyhedral graphs of valence d) how does the minimal
number of branching points of trees containing all the nodes of G increase
with increasing n{G)'1. Does there exist, for every 3-polyhedral graph G,
a connected graph G* containing all the nodes of G and such that each
node of G is of valence < 3 ?

Added in proof.

1. The main result of Whitney [11] is that there exists a Hamiltonian
path in every polyhedral graph G with the property that the corresponding
polyhedra P have only triangular faces, G being such that every 3-circuit
corresponds to a face of P. Whitney also established by an example that
the last condition may not be dropped. Starting from a 60-faced poly-
hedron derived from the icosahedron, it is not hard to produce examples
of polyhedral graphs Gn, with n nodes, whose corresponding polyhedra
have only triangular faces, such that p(Gn) < 2na, for some fixed a < 1.

2. J. Chuard claimed to have proved Tait's conjecture on the existence
of Hamiltonian paths in polyhedral graphs of valence 3 (and thus also to
have affirmatively solved the four-colour problem); see (i) " Une solution
du probleme des quatre couleurs ", Verh. Internat. Math.-Kongr., Zurich,
1932, Vol. 2, 199-200, and (ii) "Les reseaux cubiques et le probleme des
quatre couleurs ", Me'moires de la Socie'te' Vaudoise des Sciences Naturelles,
No. 25, Vol. 4 (1932), 41-101. Doubts in the validity of Chuard's claim
were raised in a review of (ii) by Pannwitz in the Jdhrbuch iiber die Fort-
schritte der Math., 58 (1932), 1204.
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