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PROJECTIONS ONTO SOME FUNCTION SPACES!
B. GRUNBAUM

1. Introduction. The present note deals with estimates for norms
of projections onto subspaces (of a special kind) of the Banach spaces
of all bounded functions defined on infinite sets. The results obtained
generalize those of Sobczyk [8] and McWilliams [5] that any sepa-
rable Banach space containing (co) [resp. (¢)] as a subspace may be
projected onto (co) [resp. (c)] by a projection P with ||P|| =<2
[resp. ||P|| =3]. Our methods are related to those of Sobczyk and
McWilliams. (The author is indebted to Dr. R. D. McWilliams for
an exposition of results of [5] and the corresponding proofs prior to
their publication.) Related questions have been treated also by Dean
[3].

We find it convenient to define, for a (real, or complex) Banach
space X and a (finite, or infinite) cardinal k, the projection constant
PA(X) as follows:

Pi(X) is the greatest lower bound of reals p which have the property:
If Y is a Banach space, if X CY, and if the quotient-space Y /X con-
tains a dense set of cardinality less than or equal to k, then there exists a
projection P of Y onto X such that || P|| <p.

If P,(X) is not only the greatest lower bound but the minimum of
the numbers p, we call the projection constant exact.

The interest in the projection constants stems at least in part from
their connection with extensions of linear transformations, which
may be formulated as follows:

Pi(X) is the greatest lower bound of reals p having the property: For
any Banach spaces Y and Z, where Y CZ and Z/Y contains a dense
set of cardinality less than or equal to k, and for any linear transforma-
tion f of YV into X, there exists a linear transformation F of Z into X,
coinciding with f on Y and such that | F|| <p-||f]|.

This characterization of Px(X) may be easily established either by
using a theorem on extensions of linear transformations due to
Sobczyk [9, Theorem 4.1], or by observing the following well-known
facts:

(i) Any Banach space may be isometrically imbedded in the space
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m(A) of all bounded functions defined on a suitable set 4 [7, p. 538,
footnote 12].

(ii) Any m(A) space has the Hahn-Banach extension property
[6;7, Corollary 7.2]; in particular, Px(m(4)) =1 and is exact for any
cardinal k.

(Statements related to the above have been proved by various
authors; references may be found in Day [2, p. 947].)

The following notation will be used throughout the sequel:

A= {a} denotes a set of cardinality card 4 =a. m(4) [resp. m(4)]
is the set of all bounded real [complex] valued functions
x=(x(c), «EA), considered as a real [complex] Banach space with
norm ||x|| =supacs | x(@)].

For any €=0 and any x belonging to m(4) or #(4) let N(x; €)
denote the cardinal number of the subset A(x; €) of A defined by
Ax, = {a€4; |x(@)| >€}.

The following statements are easily verified:

(1) If 0£b<a, then the subset {x; N(x; 0)<b}={x; N(x; e =b
for each e>0} of m(A) [resp. m(A)] is a Banach space. We shall de-
note it by cp(A) [resp. &(4)].

(2) If a2, then the subset {x; N(x, €) <N for each e>0} of
m(A) [resp. m(A)] is o Banach space. We shall denote it by co(4)
[resp. Eo(4)].

With this notation we may formulate our results as follows:

THEOREM 1. If a =N then Py,(co(4)) = Px,(8(4)) =2; if a>b =N,
then Pp(cp(A)) = Pp(Ep(A)) =2. Moreover, all these projection constants
are exact.

THEOREM 2. If X is a subspace of m(4) and contains co(A4) [resp.
cs(A)] as a subspace of deficiency 1, then

Py,(X) =3 [resp. P5(X)=3]
and is exact. The same result holds in the complex case.

THEOREM 3. If X is a subspace of m(A) and contains co(4) [resp.
cs(4)] as a subspace of deficiency n, then

Pu,(X) <n+2 [resp. Po(X) Sn+2].

The proof of Theorem 1 will be given in §3, after we establish in
§2 a simple lemma of a combinatorial character, which is crucial in
our proofs. Theorems 2 and 3 are proved in §4, while §5 contains
some remarks and examples.
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2. A combinatorial lemma. Let M= { Mg} denote an array whose
rows are indexed by ordinals 8 with 1=3<Q, where Q is the initial
ordinal of an infinite cardinal <b, and whose columns have indices
o belonging to a set A of cardinality card A =a. The elements of M
are infinite sequences Mg= (¢5(n), 1=n< =) where each ¢g(n) is
one of the symbols 0 and 1. For any fixed k, 1 £k < =, and any fixed
Bo, 1<Be<, let M(k, Bo) denote the array M(k, Bo) = {M;‘(k) },
1=2B<Bo, aE A, whose elements are the initial segments of length &
of the corresponding Mg, i.e. Mg(k) = (¢5(1), (¢5(2), - - -, ¢5(k))).

LEMMA. Given any array M= { M3} of the type described, there exists
an array M= { M3} of the same type which satisfies the following condi-
tions:

(1) If Ro=b<a, then for each n and each B the inequality ¢g(n)
# $z(n) takes place for at most b different a © A, while for each k and
each By every column of M(k, Bo) occurs more than b times.

(i) If No=b=a, then for each n and each B the inequality ¢g(n)
# $g(n) takes place for at most a finite number of a & A while for each
k and each B every column of M(k, Bo) occurs infinitely many times.

Proor. We first consider the assertion (i). We shall prove it by
defining ¢5(#) in an appropriate way, using transfinite induction on 8
and induction on 7.

For =1 we consider the set {¢#(1); «€A}. Since card A=a>b,
at least one of the equations ¢7(1) =0, ¢$(1) =1 holds for more than
b indices a &€ A. If both are fulfilled for more than b different indices,
we define ¢§(1) =¢7(1) for all a € A. If only one of them holds more
than b times, let us say the first, we define ¢$(1) =0 for all aE 4.
Obviously, ¢7(1) #¢7(1) for at most b different aE A.

Assuming ¢7(k) already defined for 1=k =<#n and aE 4, we define
éf(n + 1) as follows. We consider the ordered #n-tuples
(5(1), #3(2), « -+, ¢7(n)). The set A may be partitioned into N =<2»
disjoint subsets 4; with UX., 4;=A4, such that card 4,> b for each i
and, if a, a*EA4; then ¢§(k) =¢7*(k) for all k, 1 =k <n. For each 1,
either ¢7(n+1)=0, or ¢§(n+1)=1, or both, occur for more than b
indices a € 4 ;. Therefore, as above, we may define ¢§(n-+1) properly
for all a &4 by taking ¢f(n+1) #¢T(n+1) for at most N-b=hb in-
dices a&EA. Thus the step B=1 of the transfinite induction on 8 is
completed.

Assuming @5(k) defined for all 8<By for some By with 1<B,<Q,
1=k< « and aE4, as well as for =P, k<n with n=1, and a &4,
we consider, in analogy to the above, the arrays
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$11) 412 - --Filn—1) i)
$2(1)  $2(2) - - Faln—1) $3(n)

TN 6@ - sm—1

(1) B(2) -+ Bp(n—1) 0
for a € A. Using the inductive hypothesis, it is possible to partition 4
into disjoint subsets 4;, 21, where card 1 £2%df < p in such a way
that card 4;>b for each ¢&1T and that «, a*E A4, imply ®*= Po*,
Again, for each i&1I, either ¢g,(n) =0, or ¢5,(n) =1, or both, hold for
more than b indices «© 4. Therefore, by taking ¢g,(n) #¢5,(n) for at
most card /-b=<b?=p different «&© 4, we may define $g(n) in the
proper way for all aEA4.

By the construction of M it is evident that for each %k and each
Bo<Q every column of M(k, Bo) is repeated for more than b different
aE A, which proves assertion (i) of the lemma.

In order to prove (ii), we have only to observe that it is possible
to repeat the above argument substituting “finitely many” for “not
more than b,” and “infinitely many” for “more than b.” This ends
the proof of the lemma.

3. Proof of Theorem 1. We begin with the proof of the state-
ments concerning Pp(cp(4)). If Y is any Banach space containing
cp(A) there exists a linear transformation T of Y into m(4) such that
T(x)=x for any x&cp(4), and HT” =1 [7, Corollary 7.2]. Then, if
P, is any projection of T(Y) onto ¢p(4) with ||Po|| =<2, we obtain a
projection of P of Y onto ¢,(4) by defining P=P,T. Since HPH
£||Py|| || || =2 we shall establish P,(c,(4)) <2 by constructing, for
any Y with ¢5(4) CY Cm(A4) such that Y/c,(4) has a dense subset
of cardinality at most b, a projection P of ¥ onto ¢,(4) with ||PH <2.
(The same reduction is possible in all the proofs of the present paper;
we shall therefore in the sequel always assume Y Cm(4) [resp.
YCm(4)])

If YCm(A) let D be a subset of YV, with card D <5, such that ¥
is the closed linear hull of D\Uc,(A4). Let Q denote the initial ordinal
of the cardinal card D, and let {5, 1 <8<Q} be a well-ordering of D.
Without loss of generality we assume, moreover, that D satisfies:
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(i) ||yp|| =1 for each B;

(ii) for each B and each ¢>0 we have N(ys, 1—€)> b (see §2);

(iii) any finite subfamily of D is linearly independent over
Cb(A).

For xEm(4) we define |||x|||,=inf {||x+x'||: x'Ecs(4)}. Obvi-
ously, |||x|||b§||x| for all x&Em(A4). Properties (i) and (ii) may then
be expressed as H ¥s|||p=1.

Now, for each a€ 4 and <R, let 0-y5(c)y(c) - - - ¥3(c) - - - be
a representation of |yg(a)| as a dyadic fraction, i.e. each yg(a) is
either 0 or 1. We define an array M of the kind discussed in §2 by
putting

a 0 if (a) < O,
on(l) = { it 39

1 if yﬂ(a) 20,
$o(n) = ¥3 () forn > 1,

for all a& 4, B<A.

Let M be the array whose existence was established in the lemma
of §2, obtained from M by the construction used in the proof of the
lemma. Let D= {45, 8<Q} be the subset of m(4) obtained from M
by the above correspondence. The properties of M and the method
of its construction, together with (i), (ii), and (iii), imply that:

) |17l =!l|5sl||s=1 for each B<Q;

(2) Js—ysEcn(4) for each B <Q; this implies that the linear hull
of D\Ucp(4) coincides with that of D\Ucp(4), and therefore V¥ is the
closed linear hull of D\Ucy(4).

(3) D is linearly independent over ¢,(4), and therefore the linear
hull of D has only the origin in common with c5(4).

The advantage of D over D is

(4) If Bis any finite set of ordinals <, then for any x&c,(4) and
reals As, BEB, we have ||x+ D_sez MaFs| =|| >sen NaFs -

To establish (4) it is sufficient to remark that, as a consequence

of (1), we have || Xsen NaFell = ||| Zsen Naslllo = ||+ 2sen ol
<|le4 sen Mol

Now we define a projection P, from the linear hull of ¢5(4)\JD
onto ¢,(4) by putting Po(x) =x for xEcp(A4) and Po(F) =0 for B <.

Then, using (4), we have I Po(x+ D sen )\p&p)“ =||Po(x)|| =||x|[
<[+ Xoen Nagall ]| Zoen Mool 2-[|x+ Lsen Nosl| ice. || Pol| =2.

Extending P, by continuity we obtain the desired projection P of
Y onto ¢,(4) with || P|| =2.

On the other hand, it is easily seen that Py(cs(4))=2 (in fact,
Pi(cp(A4)) 22). Therefore, as claimed, Py(cp(4)) =2 and is exact.

In order to prove Theorem 1 for spaces co(4) the same arguments
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may be applied, except for using the second part of the lemma of §2
instead of its first part, and replacing (ii) by

(ii*) for each B we have | yp(a)l =1 for infinitely many a€ 4. We
shall express (i) and (ii*) by |||ys||| = 1.

The same method applies also to the complex spaces &,(4) and
to(4), the only difference being in the way of associating the array
M to the set D (and D to M), which is done as follows.

For a€ 4 and <, let ys(a) = Iyﬁ(a)l e W@ with 0 <y¢s(a) <1,
and let |ys(@)| = 0-33(@)33(@) - - - 34(@) - - - and ys(@) = O
Ya(@)Yh(@) - - -¢¥h(a@) - - - by the dyadic representations of ys(c)
and Yp(a). Then we define ¢§(2n—1) =yp(er) and ¢5(2n) =yY3(e) and
the same correspondence is used for obtaining D from M.

This ends the proof of Theorem 1.

4. Proof of Theorems 2 and 3. We start with the following ob-
servation. Let YD X DX, where X, is a subspace of X of deficiency
1, and let P, be a projection of ¥ onto X,. If x*E X but x* & X,, each
element x&X has a unique representation in the form x=Ax*4x,,
with x¢&X,. Let the functional f,* on X be defined by f.*(x)
=f(Ax*4x0) =\, and let F,» be any extension of f,* to Y, with
[IFz' f*||. Then it is easily seen that the transformation P(y)
=Po(y) + Fa* () (x* — Po(x*)) is a projection of ¥ onto X with “PII
= || Pl [ Perll -[|* = Po ).

In order to apply this remark to the proof of Theorem 2, let X
satisfy the conditions of Theorem 2. We take a subset D of Y,
X CYCm(4), such that: (i) card D <N, [resp. card D<b]; (ii) Y is
the closed linear hull of D\Uco(4) [resp. DUcy(4)]; (iii) mEX;
(iv) the conditions (i), (ii*) and (iii) [resp. (i), (ii), and (iii)] of §3
are satisfied. As in the proof of Theorem 1, from D we obtain another
subset D of ¥, and a projection Py of ¥ onto ¢o(A4) [resp. c,(4)] such
that || Po|| <2 and Py(§s) =0 for all 54 D. On the other hand, prop-
erty (2) of D (§3) implies that 51 E€X, and since |[Ai| =]||[A7||
= I3+ wolll = N30 + xdl| [resp. [l = [[Molll6 = [[Ih9 + |5
<|\y1txd|] for any xe€co(4) [resp. xeEcp(4)] we have ||fz]| =1.
Therefore, taking x* =4, we obtain a projection P of ¥ onto X with
[|2]| | Poll | 7.l - | 31| = 3.

Obviously, the same reasoning applies to the complex case. Thus,
in order to complete the proof of Theorem 2 we have to show that
Py, (X) =3, and similarly for the other projection constants. Exam-
ples to that effect have been given by McWilliams for the space (c)
of all converging sequences; his example may readily be adapted to
any space X of the type considered in Theorem 2.

This ends the proof of Theorem 2.
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It may be remarked that on applying the reasoning given at the
beginning of §4, Theorem 1 yields the following result: If X is any
space containing co(4) as a subspace of deficiency 1 then Py,(X) <35;
similarly for X containing ¢,(4), (A4) or Z5(4).

In order to prove Theorem 3, we take any ¥, X CY Cm(4), which
is the closed linear hull of DUcy(4) [resp. D\Ucy(A)], where D
satisfies: (i) card D <N, [resp. card D < b]; (ii) conditions (i), (ii*)
[resp. (ii)] and (iii) of §3; (m) ysEX for 1ZB=n.

As in §3, we obtain a set D= { yg}, and a projection P, of ¥ onto
co(4) [resp. cp(4)] such that ||Pgl| £2, Po(x) =x for xEco(4) [resp.
xEcp(4)] and Po(55) =0 for all §5&E D. On the other hand, by (2) of
§3, we have 73X for 1=B=n.

Now we apply to the #-dimensional space Z CX spanned by the n
independent elements 75, 1 £B =, the following result due to Taylor
[10] and Day [1]:

In any n-dimensional real space Z there exist elements z;, 1<i<n,
and functionals fi, 1<i<n, such that ||z| =|fll=1 for 1=i<n and
fi(zx) = 0%

On X =co(4) ®Z [resp. X =cp(4) ®Z] we define functionals f* b
f¥(@42) =fi(2) for 1=i<n, where xEco(4) [resp. xEcy(4)] and
2EZ.

Since the points z; are linear combinations of the points ys with
1=B=n, and |||ys||=1 [resp. [[[3ell[s=1], we have [[f*|=1 for
1<i<#n. On the other hand, obviously Py(z:;)=0 for 1<i=n. Let
now F: denote an extension of f* to ¥, with || F;

(%) =Po(y) + D, Fi(y)2: is a projection of Y onto X and clearly
||P|| || Pl + 228 | Fd| - [|2d] <242

This ends the proof of Theorem 3.

5. Remarks. It would be interesting to know whether Theorem 2
remains true if the condition X Cm(4) is removed. The method used
in §4 seems not to be applicable to this case. Indeed, there exist spaces
X containing e.g. (co) as a subspace of deficiency 1 such that for any
xCX there exists x0E (co) with ||x 42| <||«]], i.e. no x*E&X satisfies

sequences x = (x("), 0=n< ») with lim,., x™ =0 and norm

Il = sup{1a], b

Obviously, this example as well as the following one may be suita-
bly modified for any co(4) or ¢p(4) space.
We do not know whether the bound #4-2 in Theorem 3 is the best

x© 4 1 (x© 4 x™)
n
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possible. The following construction shows that for X containing (co)
as a subspace of deficiency #, we may have

n—1
" 2n\1/2
Py,(X) = v, = . n—1 ~ (—) .
2n—1 5 T

Let n be given and let N=2"1, In [4] it was proved that there
exists an N-dimensional space Zy and an n-dimensional subspace X,
of Zy such that:

(i) Any projection P of Zy onto X, satisfies || P|| Zv,.

(ii) There exists a basis {2z;}., of Zy which may be represented
by sequences z;= (z), 1 <k <N, where each 2 is either +1 or —1,
with the properties: (1) {z;};‘_, is a basis for X,; (2) “ >y )\;z;H
=maXigksN I ZtN-l )\iz?)l .

Now let Y be the subspace of () spanned by (¢,) and the sequences
=), 1Sk<w, 1Zi<N, where yP=z" for 1<i{<N and
1<j<N, j=k (mod N). If Y,CY is the linear hull of {y,}¥,, and
X, that of {y;};‘_l, it is obvious that Y, is equivalent to Zy and X,
to X,.

Denoting X = (co) ® X, let P be any given projection of ¥ onto X.
Then, for n<i<N we have P(y,) =x;+ 2 t_, APy,, where x:E (co).
Defining P*(y:) = D> t.. APy, for n<i<N, we obtain a projection
of Y, onto X,. Since

> >\fk))’k

t=1

> )\Ek)yk 2+ > ka)yk
=1

i=1

w2 N

i=1

=

it follows that || P*|| <|| P|| and therefore, by the equivalence of ¥, X,
with Yy, X,, we have ||P|| Zv, as claimed.
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INSTITUTE FOR ADVANCED STUDY

DENSE ALGEBRAS OF FUNCTIONS IN L,
R. H. FARRELL!

1. Introduction. Several of the known examples of sets of functions
dense in Ly(0, 1) are in fact dense algebras of functions. For example
the Walsh functions are closed under pointwise multiplication and
therefore the linear combinations of these functions form an algebra.
The linear space generated by 1, {sin(n@), nx1 }, {cos(ne), n= 1} is
again an algebra. It is suggested then that perhaps the conditions of
the Stone-Weierstrass theorem can be given a measure-theoretic
interpretation which would allow proof of a corresponding theorem in
the L, spaces. It is the purpose of this paper to state and prove such
a theorem. We will assume that a locally-compact topological space
X is given and @® is the class of Baire sets of X. We assume ® is a
g-algebra containing X ; therefore that X is a Baire set.

We prove the following theorem.

THEOREM. Let u be a real valued o-finite Baire measure on X, ®. Let
E be an algebra of real valued essentially bounded Baire measurable
funciions. Suppose 1 £p < e« is given and ECL,y(u). Suppose

(1) there is an h&E E such that h>0 a.e. u;

(2) there is given a base { Ua} for the open Baire sets of X such that
if UsNUg=® then for some h&E, h=0 a.e. p on U, and k>0 a.e.
on Up. Then E is dense in Ly(u).

The proof is given in the next section. In the final section of this
paper additional examples are given.
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