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 In his many publications, Paul Erdös made uncountably many 
conjectures; some were subsequently proved, others disproved; 
quite a few are still open.  To the best of my knowledge, Erdös 
never published results that were later shown to be invalid. How-
ever, I was present in an hour-long lecture in which he was “prov-
ing” a theorem that shortly afterwards was shown to be false (see 
[G1] for details). This note discusses errors of a particular kind that 
were made by mathematicians, some of them quite famous. In 
most of the cases listed below the error was not noticed for a long 
time. 
 
 The type of errors I have in mind is the following. When trying 
to enumerate objects of a certain kind it is often advantageous to 
replace the objects in question by another (usually more general) 
type of objects, the enumeration of which is easier.  From this 
enumeration one is then supposed to go back to the original quest. 
Obviously, there is nothing wrong with this provided it is carried 
our correctly. However, errors arise if in this last step either some 
possibilities are missed on the unstated assumption that to each of 
the derived objects corresponds precisely one of the original ob-
ject, or all the possibilities of the general enumeration are assumed 
without justification to fit the more special original situation. The 
next few paragraphs will present examples illustrating these errors. 
 
 (1) Several old instances concern the enumeration of (n3)-
configurations. An (n3)-configuration is a collection of  n  distinct 
straight lines in the plane together with a collection of  n  distinct 
points, such that each of the points is on precisely three lines and 
every line is on precisely three points. Well-known examples are 
the Pappus configuration (with n = 9) and the Desargues configu-
ration (with n = 10). More on configurations and the errors dis-
cussed here can be found in [G2]. 
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Late in the nineteenth century, Kantor [K], Martinetti [M] and 
others considered the case n = 10 and attempted to enumerate the 
possible (103) configurations by counting the combinatorial possi-
bilities. By this are meant sets of n objects (“points”) and n triplets 
of points (“lines”) with the appropriate incidences. The easy enu-
meration of these objects yields ten distinct (nonisomorphic) (103) 
combinatorial configurations. The logical error arose when claim-
ing that therefore there are ten geometric configurations. However, 
a detailed analysis by Schröter [S] showed that while nine of them 
can be represented geometrically, one combinatorial (103) admits 
no such representation. In fact, Kantor [K] compounded the error 
by presenting a diagram which was purported to show this particu-
lar configuration; naturally, the diagram was incorrect. 
 
(2) Steinitz [St1] purported to show in 1894 hat each (n3) configu-
ration can be geometrically constructed stepwise so that only the 
last incidence of a line with three points is possibly unsatisfied. 
The idea of the construction is that the points and lines (considered 
combinatorially) can be ordered in such a way that each -- except 
for the last one -- is incident with at most two of the ones preced-
ing it in the ordering. The argument is nontrivial but correct. It fol-
lows, again correctly, that one can always -- except for the last one 
-- find (geometric) points or lines that satisfy the previous inci-
dences. However, where Steinitz goes wrong is in neglecting the 
possibility that additional incidences happen, that are not required 
or allowed by the configuration. A sketch of an easy example is 
shown in Figure 1, where the Pappus theorem implies that the line 
L must pass through the point P, although this incidence is not al-
lowed by the configuration. Remarkably, this error remained unno-
ticed till 2000, when T. Pisanski presented in [P] examples like the 
one in Figure 1. It is a puzzle how such a gross logical error re-
mained hidden for more than a century. Steinitz [St2] surveys the 
topic of configurations without noticing the error. This was about 
the last time Steinitz wrote about configurations; could he have no-
ticed his mistake but in the competitive atmosphere in German 
universities decided to leave well alone? On the other hand, the  
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thesis [St1] is written in such an unreadable style that apparently 
nobody checked the details for more than a century. In fact, the se-
cond part of the thesis, that deals with elucidation of the cases in 
which the last incidence is also fullfillable, is so confusing that I 
have not heard of anybody claiming to have understood it. The “fi-
nal polynomial” technique of Bokowski and Sturmfels [BS] pro-
vides insights in this question. 
 

 
Figure 1. An example of the failure of Steinitz’s theorem. By Pap-
pus theorem, the lowest horizontal line A2C2F3 is necessarily inci-
dent with an additional point, B2. From [G2, Figure 2.3.3]. 
 
 
(3) Brückner [B] attempted to enumerate the simple convex         
4-polytopes with 8 facets by enumerating the corresponding Schle-
gel diagrams in 3-space. Even if we disregard some errors in the 
actual enumeration of the diagrams, there remains the logical error 
of assuming that every complex that appears as if it were a Schle-
gel diagram of a convex polytope in the next higher dimension is 
actually such a Schlegel diagram. For 2-diagrams and convex pol-
yhedra (3-polytopes) this was tacitly assumed for a very long time, 
but it was actually proved only by Steinitz [St3] in 1922. (For an 
alternative proof, and history of the result, see [G3]). On the other 
hand, for 3-diagrams and 4-polytopes it was established by 
Grünbaum-Sreedharan [GS] that this is not valid, and that therefore 
Brückner’s enumeration is not correct in principle. 
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(4) Similar to (1) are the problems that arose in the enumeration of 
isohedral and isogonal tilings (tessellations) of the plane. Here a 
tiling is called isohedral if all tiles are images of each other under 
symmetries of the tiling; it is called isogonal if all vertices are 
equivalent under symmetries of the tiling. In both cases one can at-
tempt to enumerate the possible types by considering suitably 
marked (or labeled) tilings. Details are shown in both cases in 
[GSh]. However, previous enumerations were wrong, through the 
assumption that every marked tiling can be realized by an (un-
marked) tiling. (For references to the many papers see [GSh, Sec-
tion 6.6]). In fact, there are 93 marked isohedral tilings, and the 
same number of isogonal ones. However, there are only 81 types 
of (unmarked) isohedral tilings, and 91 types of (unmarked) isogo-
nal tilings. The differences of the actual numbers from the ex-
pected numbers (that were asserted by many authors) arise since 
the symmetries involved imply, in some cases, additional symme-
tries and hence lead to a type already counted. An example is 
shown in Figure 2. 
 
This also illustrates the fact that the duality which exists between 
marked isohedral and isogonal types does not remain valid in all 
circumstances. 
 

 
Figure 2. An example of a tiling by squares marked by T . Every 
tiling by unmarked quadrilateral tiles that has the same symmetries 
necessarily has additional symmetries, and hence is not of the same 
type. For details see [GSh, Chapter 6.2]. 
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(5) Very frequently an enumeration or investigation is found to be 
easier if a suitable dual question is considered. However, in prac-
tice this often leads to errors. Besides the instance of isohe-
dral/isogonal tilings, one should mention the case of uniform 3-
polyhedra and their polars. A 3-dimensional polyhedron is uniform 
provided it is isogonal (all vertices are equivalent under symme-
tries of the polyhedron) and all faces are regular polygons. (There 
are various definition of regular polygons, but they are all equiva-
lent to the one requiring that all pairs of mutually incident vertex 
and edge be equivalent under symmetries of the polygon.) An of-
ten-unstated assumption is that the vertices be distinct points. It has 
been known at least since Kepler in the seventeenth century, that 
except for the Platonic solids and the prisms and antiprisms there 
are precisely 13 distinct convex uniform polyhedra. Without the 
assumption of convexity, there are precisely 75 uniform polyhedra 
(other than the regular ones, and the prisms and antiprisms). Natu-
rally, polars (which a special kinds of dual polyhedra) of uniform 
polyhedra are expected to have regular vertices and to be isohedral. 
This had been uncritically asserted to be true – although it is not. 
The reasons for failure are of (at least) two kinds. First off, some of 
the uniform polyhedra have coplanar but distinct faces; hence their 
polars have coinciding distinct vertices – which is inadmissible.  
This happens for example in both [H] and [W]. Second, some of 
the uniform polyhedra have faces that pass through the center of 
the polyhedron; this implies that no finite points is the polar of 
such a plane. In [W] this is avoided by locating some vertices “at 
infinity”; but this again would lead us out of the family of polyhe-
dra as generally understood and accepted. 
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